
~ TEXAS
INSTRUMENTS

TMS34020

1990 Computer Video Products

TltfS34020
User's Guide

2564006·9721 revision •
August 1990

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to orto discontinue any semiconduc­
tor product or service identified in this publication without notice. TI advises its customers to ob­
tain the latest version ofthe relevant information to verify, before placing orders, thatthe informa­
tion being relied upon is current.

TI warrants performance of its semiconductor products to current specifications in accordance
with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design, software per­
formance, or infringement of patents or services described herein. Nor does TI warrant or repre­
sent that license, either express or implied, is granted under any patent right, copyright, ma~k
work right, or other intellectual property right of TI covering or relating to any combination, ma­
chine, or process in which such semiconductor products or services might be or are used.

TRADEMARKS

Apollo is a trademark of Apollo Computer Incorporated.
DEC, Uftrix, VAX, and VMS are trademarks of Digital Equipment Corporation.
IBM-PC is a registered trademark of International Business Machines Corporation.
Macintosh is a trademark of Apple Computer Incorporated.
/lAS-DOS is a trademark of Microsoft Corporation.
SUN-3 is a trademark of Sun Microsystems Incorporated.
UNIX is a registered trademark of AT&T.
XDS is a trademark of Texas Instruments Incorporated.

Copyright © 1990, Texas Instruments Incorporated

li:::::1

Preface

Read This First
::11 m:iili:l:m:iIi:miill::::::i:liiiliii:;: i::i:::i:I:iIi:i:::::I~~ii:i:i:imm~::::::;:;iIi:; EI=~~iill:ii :::: :::i:I::::::::: :::::: :i:::::::::::::-=m~~i: : :*~

This document describes the TMS34020 Graphics System Processor. It
focuses on the TMS34020's role in applications that involve CRT-based
bit-mapped graphics systems.

If You Need Assistance •..

If you want to •••

Receive more information about
Texas Instruments graphics products

Order Texas Instruments
documentation

Ask questions about product
operation or report suspected
problems

Report mistakes in this document or
in any other TI documentation

Do this ...

Call the CRC thotline:
(800) 232-3200

Or write to:
Market Communications Manager
P.O. Box 1443, MS 736
Houston, Texas 77251-1443

Call the CRC thotline:
(800) 232-3200

Call the graphics hotline:
(713) 274-2340

Send your comments to:
Technical Publications Manager
Texas Instruments Incorporated
P.O. Box 1443, MS640
Houston, Texas 77251-9879

t Texas Instruments Customer Response Center

Related Documentation from Texas Instruments

The following TMS3401 0 and TMS34020 documents are available from Texas
Instruments. To obtain a copy of any of these TI documents, please call the Tex­
as Instruments Customer Response Center (CRC) at (800) 232-3200. When
ordering, please identify the book by its title and its literature number.

Pixel Perspectives is a quarterly newsletter, published by the Graphics Prod­
ucts group of Texas Instruments Incorporated. This newsletter describes
new products, discusses support for existing products, and identifies new
documentation releases.

iii

Notational Conventions

The TMS34020 Data Sheet (lit. number SPVS004) contains electrical specifi­
cations, timing information, and mechanical data for the TMS34020.

The TMS340 Family Code-Generation Tools User's Guide (lit. number
SPVU004) describes the C compiler, assembler, linker, arch ive r, and
auxiliary tools that are available for developing TMS3401 0 or TMS34020
code.

The TIGA-340 Interface User's Guide (lit. number SPVU015) describes the
Texas Instruments Graphics Architecture (TIGA), a software interface
that standardizes communication between application software and
TMS340-based hardware for IBM-compatible PCs.

The TMS34010 Software Development Board User's Guide (lit. number
SPVU002) describes a high-performance graphics card that aids in
understanding TI graphics products. Read Pixe I Perspectives for discus­
sions of a TMS34020 version of this product and its documentation.

The TMS34010 User's Guide (lit. number SPVU001) describes the
TMS34010, which is the first-generation graphics system processor in
the TMS340 family of graphics products.

Notational Conventions

iv

The following terms and conventions are used throughout this manual.

Term/Convention

RS,Rd

Rs.XV, Rd.XV

Rs.X, Rd.X

Rs.V, Rd.V

R

PC'

Rp

cc

IW,IL

SAddress, DAddress

SOffset, DOffset

LSB, MSB

LSbyte, MSbyte

LSW,MSW

Description

source register, destination register.

source or destination register in XY form.

X half of source or destination register.

Y half of source or destination register.

is a bit in an instruction opcode that identifies which reg­
ister file the register operands are in. R=O identifies file
A; R=1 identifies file B.

is the address of the next instruction (current PC plus
the length of the current instruction).

register pair.

condition codes for a jump instruction.

16-bit immediate value (short), 32-bit immediate value
(long).

source address, destination address.

source offset, destination offset.

least significant bit, most significant bit.

least significant byte, most significant byte.

least significant word, most significant word.

Read This First

Term/Convention

n

An,Bn

TOS

F

xxx[REGISTER]

special font

boldface text

italic text

[]

Ivaluel

Notational Conventions

Description

identifies a number that may have several values.

identifies register n in register file A or file B.

top of stack.
. . .

optional field select parameter for MOVE-field instruc­
tions. F=O selects the field size & extension of field 0 for
the move; F=1 selects the field size & extension of field
1 for the move.

identifies a bit within a register. For example,
CBP[CONFIG]
refers to the CBP bit in the CONFIG register.

identifies program listings, coding examples, filenames, and
symbol names. For example,
0011 00000210 0001
0012 00000212 0003
0013 00000215 0006
0014 00000220

.field

. field

.field

. even

1, 2
3, 4
6, 3

serves two purposes. In text, boldface identifies a key term
that is being defined. In instruction syntax, boldface identi­
fies the part of the instruction that you must enter as shown.
For example, enter
PIXBLT B,XY
exactly as shown (p IXBLT B, XY).

serves two purposes. In text, italics emphasize important
explanations. In instruction syntax, italics identify "place­
holders"that identify the type of information you should enter
for a parameter'. For example,
CVXYL Rs, Rd
CVXYL is an instruction that has two parameters, Rs and
Rcf-you must replace Rs and Rd with actual source and
destination registers (CvXYL AO, A3) •

identify an optional parameter. Here's an example of an in­
struction with an optional parameter:
CMPI IW, Rd [, W]
CMPI has 3 parameters; the first tw~ are required, the third is
optional. Note that the, W is bold-so if you use the optional
parameter, you must type it as shown.

means becomes the contents of. In an instruction execution
description, for example;

Rs-4 PC
the contents of Rs become the contents of (or replace the
contents of) the program counter.

means ~ake the absolute value of the item between the par­
allel bars.

v

Notational Conventions /Information About Cautions and Warnings / Suggested References

Term/Convention

{choice 1 Ichoice 2}

valueb , valueB

valueh , valueH

Description

identifies a list; you can enter choice 1 or choice 2.

indicates concatenation. For example,

Rd:Rd+1

forms a 84-bit register area of Rd and the next register in the
same file.

identifies a binary integer. For example,

01b 1111B

identifies a hexadecimal integer. A hex number can't start
with a letter-start it with a 0 instead. For example,

OFFFFh 123H

Information About Cautions and Warnings

The information in a caution or a warning is provided for your protection. Please
read each caution and warning carefully.

Suggested References

vi

The following books and articles provide further background information about
graphics and system concepts associated with graphics:

Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood
Cliffs, New Jersey: Prentice-Hall, 1984.

Asal, Short, Preston, Simpson, Roskell, and Guttag. "The Texas Instruments
34010 Graphics System Processor." IEEE Computer Graphics and
Applications vol.6, no.10, pp. 24-39.

Read This First

viii Read This First

Contents

1 Overview of the TMS34020 ... 1-1
Provides an overview of the TMS34020 and the TMS340 family, including key features, typical
applications, and a description of TMS340 support tools.
1.1 Key Features of the TMS34020 .. 1-2
1.2 Typical Applications of the TMS34020 .. 1-3
1.3 Major Components of the TMS34020 Architecture 1-4

1 .3.1 Internal Functions ... 1-5
1.3.2 Major Interfaces. .. 1-8

1.4 System Development Tools 1-10
1.4.1 Code-Generation Tools. .. 1-10
1.4.2 Supported Systems. . . • .. 1-12
1.4.3 Packages. .. 1-13
1.4.4 TIGA-340 Graphics Interface .. 1-13

1.5 Processors for a Graphics System 1-14
1.6 Compatibility Between the TMS34020 and TMS3401 0 .. 1-16

2 Pinouts and Signal Descriptions ... 2-1
Illustrates the TMS34020's two pinout packages, identifies the interfaces that signals are asso­
ciated with, and provides a description of each signal.

·2.1 Pinouts. .. 2-2
2.2 The TMS34020's Major Interfaces .. 2-8
2.3 Signal Descriptions ... 2-9

2.3.1 Local-Memory Interface Signals. 2-11
2.3.2 DRAM and VRAM Control Signals 2-12
2.3.3 Multiprocessor Interface Signals. .. 2-13
2.3.4 Host Interface Signals ... 2-13
2.3.5 Video Interface Signals .. 2-15
2.3.6 System Control Signals ... 2-16
2.3.7 Power Signals ... 2-16

3 Memory Organization and Data Structures .. 3-1
Discusses 32-bit addressing methods, the TMS34020 memory map, hardware supported data
structures, and XY addressing. This chapter also describes the differences between big-endian
and little-endian addressing.
3.1 Memory Map. .. 3-2
3.2 Memory Addressing .. 3-3
3.3 Fields. .. 3-5

ix

Contents

3.4 Pixels .. 3-10
3.4.1 Pixels in Memory ... 3-10
3.4.2 Pixels on the Screen .. 3-11
3.4.3 Display Pitch ... 3-13

3.5 XV Addressing .. 3-14
3.6 Converting an XV Address to a Linear Address 3-15
3.7 Pixel Arrays ... 3-18
3.8 Big-Endian and Little-Endian Addressing 3-20

3.8.1 Selecting Big-Endian or Little-Endian Mode 3-20
3.8.2 How the TMS34020 Accesses Memory in These Modes 3-21
3.8.3 Assembling Code for Big-Endian or Little-Endian Addressing 3-24
3.8.4 Wiring VRAMs to the LAD Bus 3-25
3.8.5 Big-Endian Effects on Instruction Timing 3-25

3.9 Stacks. 3-26
3.9.1 System Stack ; 3-26
3.9.2 Auxiliary Stacks .. 3-29

4 TMS34020 Registers ..•.......•....•......••..••....•.•...•...•••.•.•..•..•.•.... 4-1
Provides a detailed discussion the TMS34020's registers, including on-chip registers and I/O
registers; also provides an alphabetical reference of I/O registers combined with the a-file regis­
ters that graphics instructions use as implied operands.
4.1 The Status Register (ST) .. 4-2
4.2 The Program Counter (PC) .. 4-4
4.3 The Stack Pointer (SP) .. 4-5
4.4 General-Purpose Registers (Register Files A and B) .. 4-6
4.5 I/O Registers .. 4-9

4.5.1 CPU Control Registers .. 4-12
4.5.2 Host Communications Registers 4-12
4.5.3 Local-Memory and DRAMIVRAM Interface Registers 4-12
4.5.4 Interrupt Registers .. 4-12
4.5.5 Video Timing and Screen-Refresh Registers 4-13
4.5.6 Latency of Writes to I/O Registers ; 4-13

4.6 Alphabetical Summary of I/O Registers and B-File Registers 4-14

5 Instruction Cache and Internal Parallelism•..••....•...•••••..••...•.••...... 5-1
Provides a detailed description of TMS34020 cache architecture and operation.

x

5.1 Cache Architecture .. 5-2
5.2 Cache Replacement Algorithm. .. 5-4
5.3 Cache Operation ... 5-5

5.3.1 Cache Hits .. 5-5
5.3.2 Cache Misses 5-5
5.3.3 Fetching Data into the Cache Following a Cache Miss 5-6
5.3.4 Self-Modifying Code ... 5-8
5.3.5 Flushing the Cache .. 5-8
5.3.6 Disabling the Cache. 5-8

5.4 Performance with Cache Enabled vs. Cache Disabled 5-9
5.5 Internal Parallelism ... 5-10

Table of Contents

Contents
S$$'"

6 Interrupts, Traps, and Reset ••••••••••••••••••••••••••••••.•.•••.•.•.•......••..•. 6-1
Describes the TMS34020's internal and external interrupt structure, the priorities of these inter­
rupts, and reset operation.
6.1 Related Signals .. 6-2
6.2 Related Registers .. 6-2
6.3 Enabling and Disabling Interrupts ... 6-6
6.4 Interrupt Priorities and Vector Addresses 6-7
6.5 Interrupt Processing .. 6-9

6.5.1 Returning from an Interrupt Service Routine 6-10
6.5.2 Interrupt Latency ... 6-11

6.6 Interrupting Instruction Execution .. 6-13
6.7 External Interrupts 1 and 2 .. 6-15
6.8 Internal Interrupts , .. 6-16

6.8.1 The Nonmaskable Interrupt (NMI) 6-16
6.8.2 The Hostlnterrupt (HI) .. 6-16
6.8.3 The Display Interrupt (DI) .. 6-17
6.8.4 Window-Violation Interrupt (WV) 6-17
6.8.5 The Single-Step Interrupt. .. 6-17
6.8.6 lIIegal-Opcode Interrupts .. 6-18

6.9 The Bus-Fault Interrupt. .. 6-19
6.9.1 Activity During a Bus-Fault Interrupt 6-19
6.9.2 Bus Fault System Considerations. .. 6-20

6.10 Interrupting a Host Processor ... 6-21
6.11 Traps. .. 6-21
6.12 Reset.. .. 6-22

6.12.1 Activity During Reset ... 6-22
6.12.2 Initial State Following Reset ... 6-23
6.12.3 Activity Following Reset .. 6-24
6.12.4 System Configuration Following Reset 6-26
6.12.5 RESET and Multiprocessor Synchronization 6-27
6.12.6 State of VCLK During Reset ... 6-27

6.13 An Application for Interrupts: Debugging Code 6-28
6.13.1 How a Debugger Works .. 6-28
6.13.2 Using a Debugger .. ;. 6-28
6.13.3 Entering Single-Step Mode .. 6-28
6.13.4 Clearing the Single-Step Bit ... 6-29
6.13.5 A Few Things to Keep iii Mind 6-29

7 Communicating with a Host Processor ••••••••••••••.•••••••••••••••••••••••••••• 7-1
Describes methods for transferring information between the TMS34020 and a host processor.
7.1 Related Signals .. 7-2
7.2 Related Registers .. 7-3
7.3 A Basic Block Diagram for the Host Interface 7-6
7.4 Basic Communication: How a Host Processor Reads from

and Writes to TMS34020 Local Memory 7-7
7.4.1 How a Host Processor Requests a Read Cycle .. 7-8
7.4.2 How a Host Processor Requests a Write Cycle 7-9
7.4.3 Local-Memory Faults and Retries 7-9

xi

Contents

7.5 Features Thatlmprove Performance of the Hostlnterface 7-10
7.5.1 Prefetching Data from the TMS34020's Local Memory. 7-10
7.5.2 Autoincrementing (Implicit Addressing) 7-12
7.5.3 The TMS34020's Default Memory Cycle 7-15

7.6 Completing Host Accesses .. 7-16
7.6.1 Activating H ROY for Host Reads .. 7-16
7.6.2 ActivatingHRDYforHostWrites 7-16
7.6 .. 3 Activating HRDY for Host Reads and Writes after Prefetches 7-17

7.7 Timing Examples .. 7-18
7.8 Halting TMS34020 Execution and Downloading New Code 7-32
7.9 Host-Interface Data Throughput (Bandwidth) 7-34

7.9.1 Achieving Maximum Bandwidth 7-34
7.9.2 Timing Considerations for Optimizing Host-Interface Bandwidth 7-35

7.10 Delays to Host Accesses .. 7-37
7.10.1 Worst-Case Delay .. 7-37
7.10.2 Halt Latency ... 7-39

7.11 Systems with Multiple TMS34020s ... 7-40
7.12 Systems with 16-Bit Memory Devices .. 7-42
7.13 Systems with Big-Endian Addressing ... 7-44

8 Local-Memory and DRAMNRAM Interfaces .. 8-1

xii

Discusses the local memory interface timing, addressing mechanisms, and special topics
related to DRAMs and VRAMs.
8.1 Related Signals .. 8-2
8.2 Related Registers .. 8-4
8.3 Priorities of Memory Bus Requests .. 8-6
8.4 General Form of a Local-Memory Cycle. .. 8-8

8.4.1 The Address/Status Subcycle ... 8-8
8.4.2 The Data Subcycle 8-9

8.5 Local-Memory Cycle Status Codes ; .. 8-10
8.6 Ending a Local-Memory Cycle ... 8-12

8.6.1 Extending a Local-Memory Cycle with Wait States 8-12
8.6.2 Completing a Successful Local-Memory Cycle 8-13
8.6.3 Retrying a Local-Memory Cycle. .. 8-13
8.6.4 Bus Faulting a Local-Memory Cycle•.. .. 8-14

8.7 Performing Local-Memory Cycles in Page Mode 8-15
8.7.1 Selecting Page-Mode Operation 8-15
8.7.2 How the TMS34020 Uses Page Mode .•............ 8-16

8.8 Local-Memory Read and Write Cycles .. 8-18
8.8.1 Local-Memory Read Cycle Timing (with Page Mode) 8-20
8.8.2 Local-Memory Write-Cycle Timing (with Page Mode) 8-20
8.8.3 Local-Memory ReadlWrite or Read-Modify-Write Cycle Timing 8-22
8.8.4 Host-Initiated Local-Memory Read and Write Cycles 8-24

8.9 Accessing 16-Bit or 32-Bit Memory Devices (Dynamic Bus Sizing) 8-25
8.9.1 Data Transfer Using Dynamic Bus Sizing 8-26
8.9.2 Page Mode and Dynamic Bus Sizing 8-28
8.9.3 Bus-Locked Operation and Dynamic Bus Sizing 8-29

Table of Contents

Contents

8.10 VRAM Serial-Register Transfers 8-29
8.10.1 Memory-to-Serial-Data-Register Cycle (VRAM Read Transfer) 8-30
8.10.2 Memory-to-Split-Serial-Data-Register Cycle

(V RAM Split-Register Midline-Reload Transfer) .. 8-31
8.10.3 Serial-Data-Register-to-Memory Cycle

(V RAM Write Transfer and Pseudo-Write Transfer) 8-32
8.10.4 Serial-Data-Register-to-Memory Cycle (VRAM Alternate-Write Transfer) . .. 8-33

8.11 VRAM Write-Mask Local-Memory Cycles 8-34
8.11.1 Load-Write-Mask Cycle ... 8-34
8.11.2 Write Cycle (with Mask) ... 8-36

8.12 VRAM Block-Write Local-Memory Cycles 8-37
8.12.1 VRAM Support of Block-Write Cycles 8-37
8.12.2 TMS34020 Support of VRAM Block-Write Cycles .. 8-37
8.12.3 Load-Color-Register Cycle. .. 8-38
8.12.4 Block-Write Cycle (Without Mask) 8-39
8.12.5 Block-Write Cycle (with Mask) .. 8-40
8.12.6 Data Mapping During Block-Write Cycles 8-41

8.13 DRAM-Refresh Local-Memory Cycles 8-44
8.14 Local-Memory Cycles with Wait States 8-46

8.14.1 Adding Wait States in Read and Write Cycles 8-46
8.14.2 Adding Wait States in VRAM Serial-Register Transfers 8-48

8.15 The Host-Default Local-Memory Cycle 8-49
8.16 Addressing Mechanisms ~ .. 8-50

8.16.1 Nonmultiplexed Addressing .. 8-50
8.16.2 Multiplexed Addressing ... 8-51
8.16.3 Display Memory Requirements for Multiplexed Addressing. 8-54
8.16.4 Example Connections for Multiplexed Addressing. .. 8-54
8.16.5 Memory Organization and Bank Selecting 8-55
8.16.6 Display Memory Hardware Requirements. .. 8-56

8.17 Double-Buffered Display Example (2x1280x1 024) 8-57
8.17.1 Display Memory Implementation Using Midline Reload 8-58
8.17.2 Display Memory Implementation Without Midline Reload 8-59

9 Video Timing and Screen Refresh .. 9-1
Describes the TMS34020's video timing mechanisms, including separate and composite sync
and blanking, interlaced and noninterlaced video, and screen refreshes.
9.1 Related Signals .. 9-2
9.2 Related Registers .. 9-4

. 9.3 Relationship Between Horizontal and Vertical Timing Signals 9-9
9.4 Horizontal Video Timing (Internal) .. 9-11
9.5 Vertical Video Timing (Internal) .. 9-13
9.6 Composite Video Timing .. 9-15

9.6.1 Theory Behind Serration and Equalization Pulses 9-15
9.6.2 Serration Pulses on CSYNC ... 9-16
9.6.3 Equalization Pulses on CSYNC 9-17

xiii

Contents

9.7 Noninterlaced Video Timing ... 9-18
9.7.1 Activity in Noninterlaced Mode .. 9-18
9.7.2 Programming the Vertical Timing Registers for Noninterlaced Video 9-20

9.8 Interlaced Video Timing ... 9-21
9.8.1 Activity in Interlaced Mode ;'.' 9-21
9.8.2 Programming the Vertical Timing Registers for Interlaced Video 9-24
9.8.3 American and European Video Standards 9-27

9.9 External Synchronization Modes _ 9-29
9.9.1 Odd and Even Field Alignment in Interlaced Mode 9-31
9.9.2 Synchronizing External Syncs to VCLK 9-32
9.9.3 Loading the Video Counters .. " 9-32
9.9.4 Synchronization Conversion .. 9-34
9.9.5 Programming Flexibility and Limitations. .. 9-34
9.9.6 External Synchronization Pulse Widths 9-35

9.10 Screen Sizes and Dot Rate .. 9-36
9.11 Display Interrupts and Applications 9-37
9.12 Video Timing Programming Examples .. 9-38

9.12.1 Noninterlaced 1024 x 768 Display 9-38
9.12.2 Composite Interlaced NTSC Display Example 9-40

9.13 Video RAM Control ... 9-42
9.13.1 Screen Refreshes During Horizontal Blanking 9-42
9.13.2 Screen Refreshes During the Active Display Time (Midline Reload) 9-43
9.13.3 Why Use Midline Reload? ... 9-46
9.13.4 VRAM Bulk Initialization ... 9-47
9.13.5 Video Capture .. 9-48
9.13.6 Disabling Screen Refreshes. .. 9-49

9.14 Scheduling Screen-Refresh Cycles ... 9-50
9.15 Generating Screen-Refresh Addresses 9-51

9.15.1 Horizontal-Blanking Screen-Refresh Addresses 9-52
9.15.2 Screen-Refresh Addressing Sequence for Noninterlaced Displays 9-53
9.15.3 Screen-Refresh Addressing Sequence for Interlaced Displays 9-53
9.15.4 Midline-Reload Screen-Refresh Addresses 9-55
9.15.5 Display Magnification and V-Zoom 9-56
9.15.6 Panning the Display ... 9-57

10 Communicating with a Coprocessor ... 10-1

xiv

Describes a general protocol for interfacing with a coprocessor, and describes use of the
TMS34020's general-purpose coprocessor instructions.

10.1 Related Signals. .. 10-2
10.2 Overview of the Coprocessor Interface 10-3
10.3 Format of Commands Passed to a Coprocessor 10-5

10.3.1 Coprocessor ID ... 10-5
10.3.2 Coprocessor Command ... 10-6
10.3.3 Coprocessor Parameter Size (size) 10-6

Table of Contents

Contents

10.3.4 Coprocessor Parameter Index (I) 10.;7
10.3.5 16-Bit Word Select (S) .. 10-7
10.3.6 Coprocessor Status Code (BCST) 10-7

10.4 Local-Memory Coprocessor Cycles .. 10-8
10.4.1 Passing Commands to a Coprocessor 10-8
10.4.2 Transferring Data to or from a Coprocessor ~ 10-8
10.4.3 Data Transfer Sequences to or from a Coprocessor .. 1 0-9
10.4.4 Ending a Local-Memory Coprocessor Cycle. 10-9
10.4.5 Coprocessor Command Cycle 1 0-1 0
10.4.6 Transferring Values from TMS34020 Registers to a Coprocessor 10-11
10.4.7 Transferring Values from a Coprocessor to TMS34020 Registers 10-12
10.4.8 Transferring Values from Local Memory to a Coprocessor 10-14
10.4.9 Transferring Values from a Coprocessor to Local Memory 10-15

10.5 Coprocessor Aborts and Status Checks 10-17
10.6 System Configuration ... 10-18

11 Multiprocessing and System Architecture 11-1
Describes the TMS34020 multiprocessor interface and gives examples of using multiple pro­
cessors to share the same local memory space.
11.1 Related Signals ... 11-2
11.2 Overview. .. 11-2
11.3 Basic Multiprocessor System Configuration 11-3

11.3.1 Connecting Multiple Processors Together. .. 11-3
11.3.2 Synchronizing Multiple TMS34020s at Reset. 11-3

11.4 Protocols for Communicating in a Multiprocessor System 11-5
11 .4.1 How a Processor Requests Control of the Local-Memory Bus 11-5
11 .4.2 How a Processor Releases Control of the Local-Memory Bus 11-5
11.4.3 Passing Control of the Local-Memory Bus 11-6
11.4.4 Functional Timing Examples ... 11-7

11.5 Arbitration Logic Requirements .. 11-13
11.5.1 Passing Control of the Local-Memory Bus 11-13
11.5.2 Wait States, Retries, and High-Priority Bus Requests 11-15

11.6 Multiprocessor Arbitration Examples .. 11-15
11.6.1 Arbitration Scheme for Two TMS34020s .. 11-15
11.6.2 Arbitration Scheme for One TMS34020 and a Hold Device 11-17

11.7 Initializing Multiple TMS34020s : 11-19
11.8 Configuration with a Host Processor .. 11-20

12 Graphics Instructions and Operations ... 12-1
Offers a detailed look at the TMS34020's graphics instructions and their special capabilities.
12.1 An Overview of Graphics Instructions .. 12-2
12.2 An Overview of Graphics Operations .. 12-3
12.3 Single-Pixel Instructions .. 12-6
12.4 Line Instructions ... 12-7

xv

Contents

12.5 Pixel-Array Instructions ... 12-8
12.5.1 PIXBLTs with XV and Linear Addressing 12-9
12.5.2 Binary (Color Expanding) PIXBLTs 12-12
12.5.3 Masked PIXBLT ... 12-14
12.5.4 VRAM Block-Mode PIXBLT (VBLT) 12-14
12.5.5 FILLs .. 12-15
12.5.6 Horizontal Pattern Fill (PFILL) 12-16
12.5.7 VRAM Block-Mode Fill (VFILL) 12-16

12.6 Auxiliary Graphics Instructions .. 12-17
12.7 Window Checking ... 12-19

12.7.1 Defining a Window ... 12-19
12.7.2 Window-Violation Interrupt .. 12-20
12.7.3 Window Checking for Single-Pixel Instructions 12-21
12.7.4 Window Checking for Pixel-Array Instructions 12-21
12.7.5 Window Checking for the LINE Instruction 12-23

12.8 Pixel Processing .. 12-27
12.8.1 Boolean Processing Examples 12-28
12.8.2 Multiple-Bit Pixel Operations .. 12-30

12.9 Transparency ' ... 12-36
12.10 Plane Masking .. 12-39
12.11 Setting Up the Implied Operands for Graphics Instructions 12-43
12.12 Converting an XV Address to a Linear Address 12-47

12.12.1 Manual XV-to-Linear Conversion 12-47
12.12.2 The CONVxP Registers, Corner Adjusting, and Preclipping 12-49

13 TMS34020 Assembly Language Instruction Set 13-1

xvi

Explains TMS34020 addressing modes and provides an alphabetical reference of the
TMS34020 instruction set.

13.1 Addressing Modes and Operand Formats 13-2
13.1.1 Immediate Values and Constants 13-2
13.1.2 Absolute Addresses. .. 13-3
13.1.3 Register-Direct Operands .. 13-4
13.1.4 Register-Indirect Operands .. 13-5
13.1.5 Register-Indirect with Offset. .. 13-6
13.1.6 Register-Indirect with Postincrement 13-7
13.1.7 Register-Indirect with Predecrement . • 13-8
13.1.8 Register-Indirect in XV Mode .. 13-9

13.2 Summary Table. .. 13-9
13:3 Move Instructions Summary .. 13-19

13.3.1 Register-to-Register Moves ... 13-19
13.3.2 Value-to-Register Moves .. 13-19
13.3.3 XV Moves .. 13-19
13.3.4 Multiple-Register Moves .. 13-20
13.3.5 Byte Moves ... 13-20
13.3.6 Field Moves. 13-20

Table of Contents

Contents

13.4 Arithmetic, Logical, and Compare Instructions 13-24
13.5 Program-Control and Context-Switching Instructions 13-25

13.5.1 Subroutine Calls and Returns 13-25
13.5.2 Interrupt Handling ... 13-25
13.5.3 Setting, Saving, and Restoring Status Information ,.................... 13-25
13.5.4 Jump Instructions ... 13-25

13.6 Shift Instructions ... 13-28
13.7 XY Instructions ... 13-29
13.8 Instructions New to the TMS34020 ; 13-30
13.9 Alphabetical Instruction Reference 13-31

14 TMS34082 Pseudo-ops•......................... :......... 14-1
Provides a general description of the TMS34082 and the TMS34020's implementation of its
general-purpose coprocessor instructions in a manner that directly supports TMS34082 as­
sembly language instructions.

14.1 Overview and Key Features of the TMS34082 , 14-2
14.2 Pseudo-op Format .. 14-3
14.3 Register Operands ...•.......... 14-6

15 Instruction Timing. .. 15-1
Summarizes the instruction timings for all TMS34020 assembly language instructions.

15.1 Timing for All Instructions Except MOVEs and MOVBs 15-2
15.2 Timing for MOVE and MOVB Instructions 15-10

A Test and Emulation Considerations A-1
A1 Overview of an Emulation System .. A-2
A2 Emulation Connector (12-Pin Header) ... A-3
A.3 Signal Buffering .. A-4
A.4 Buffer Delays .. A-5
A5 Design Considerations .. A-7
A6 Mechanical Dimensions ... A-9

B Glossary. .. B-1

xvii

Figures
II

1-1 TMS34020 Block Diagram .. 1-5
1-2 TMS34020 Software Development Flow .. 1-10
1-3 Graphics Processing Shared Between TMS340 and Host Processors 1-13
1-4 Graphics Products Roadmap .. 1-14
1-5 TMS34020 1 Kx1 Kx8 PC Display System .. 1-15
2-1 TMS34020 Pinout, 145-Pin PGA Package (Bottom View) 2-2
2-2 TMS34020 Pinout, 132-Pin QFP Package .. 2-5
2-3 The TMS34020's Major Interfaces ... 2-8
3-1 TMS34020 Memory Map ... 3-2
3-2 Logical Memory Address Space .. 3-3
3-3 Physical Memory Addressing ... 3-4
3-4 Status Bits That Control Field 0 and Field 1 3-5
3-5 Field Storage in External Memory ... 3-6
3-6 Field Alignment in Memory ... 3-7
3-7 Field Insertion .. 3-9
3-8 Pixel Storage in External Memory .. 3-10
3-9 Mapping of Pixels to a Monitor Screen .. 3-11
3-10 Configurable Screen Origin .. 3-12
3-11 Display Memory Dimensions .. 3-12
3-12 Display Memory Coordinates .. 3-13
3-13 Pixel Addressing in Terms of XV Coordinates•............... 3-14
3-14 Conversion from XV Coordinates to Memory Address 3-17
3-15 Pixel Array .. 3-18
3-16 How BEN CONFIG Determines the Endian Mode 3-20
3-17 How CBP CONFIG Write-Protects CONFIG's LSbyte•... 3-21
3-18 How Data Is Represented in Little-Endian Mode .. 3-22
3-19 Addressing a Field in a Long-Word (Little-End ian) 3-22
3-20 Moving a Field into a General-Purpose Register (Little-End ian) .. 3-22
3-21 How Data Is Represented in Big-Endian Mode 3-23
3-22 Addressing a Field in a Long-Word (Big-Endian) 3-23
3-23 Moving a Field into a General-Purpose Register (Big-Endian) 3-23
3-24 Sample Listing File (Assembler Output) for Little-Endian and Big-Endian Code 3-24
3-25 Loading Object Code into Memory .. 3-25

xviii Table of Contents

3 26
3-27
3-28
3-29
3-30
4-1
4-2
4-3
4-4
4-5
4-6
4-7
+-B
5-1
5-2
5-3
5-4
6-1
6-2
6-3
7-1
7-2

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20

7-21
7-22

Figures

Connecting VRAMs to the LAD Bus .. ' 3-25
System Stack ... 3-26
Stack Operations .. 3-28
An Auxiliary Stack That Grows Toward Lower Addresses .. 3-30
An Auxiliary Stack That Grows Toward Higher Addresses 3-31
Status Register 4-2
Program Counter ... 4-4
The Stack-Pointer Register. .. 4-5
The Register Files .. 4-6
1/0 Register Memory Map ... 4-9
How DPYMSK Maps to the Logical Screen-Refresh Address 4-44
The Functions of the Different Fields of DPYMSK 4-45
Replicating the Mask Value for an 8-Bit Pixel 4-76
TMS34020 Instruction Cache .. 5-2
Segment Start Address ... 5-3
Internal Data Paths ... 5-10
Parallel Operation of Cache, Execution Unit, and Memory Interface 5-11
Vector Address Map .. 6-8
Actions Performed When the TMS34020 Takes an Interrupt 6-9
Actions Performed When the TMS34020 Executes a RETI or RETM Instruction 6-10
Block Diagram with a Host System, a TMS34020, and External Transceivers 7-6
How a Host Processor Uses the Host Byte-Select Signals
to Access Data in TMS34020 Memory ... 7-8
How the Values of HINC[HSTCTLH] and HPFW[HSTCTLH] Affect Prefetching 7-10
How the Value of HINC[HSTCTLH] Affects Address Comparison 7-10
How the Value of HLB[HSTCTLH] Affects Prefetching .. 7-11
Legal Host Byte-Select Combinations for Autoincrementing 7-13
How the Values of HINC[HSTCTLH] and HPFW[HSTCTLH] Affect Autoincrementing 7-13
Single Host Read Cycle; HCS Used as Strobe 7-19
Single Host Read from 1/0 Registers; HREAD Used as Strobe 7-20
Single Host Read with One Wait State; HCS Used as Strobe 7-21
Host Read Back-to-Back with Prefetch of Next Word; HCS Used as Strobe 7-22
Back-to-Back Host Read Cycles with Implicit Addressing; HREAD as Strobe 7-23
Successive Reads to Same 32-Bit Location; HCS and HREAD Strobed Together 7-24
Single Host Write Cycle; HCS Used as Strobe 7-25
Single Host Write Cycle to 1/0 Registers; HWRITE Used as Strobe 7-26
Single Host Write Cycle with One Wait State; HCS Used as Strobe 7-27
Back-to-Back Host Write Cycles; HCS Used as Strobe .. 7-28
Back-to-Back Host Write Cycles with Implicit Addressing; HWRITE as Strobe 7-29
Host Write Cycle Back-to-Back with Prefetch of Next Word; HCS Used as Strobe 7-30
Host Write CFfle Back-to-Back with Prefetch of Next Word and Implicit Addressing;
HREAD and WRITE Used as Strobes ... 7-31
Host Request Synchronization ... 7-35
Host-to-TMS34020 Transceiver Wiring with 16-Bit Memory 7-43

xix

Figures

7-23 Big-Endian and Little-Endian Byte Addressing Modes 7-44
8-1 The Two Parts of a Local-Memory Cycle ... 8-8
8-2 Multiple Local-Memory Cycles Using Page Mode 8-15
8-3 General TIming of the Local-Memory Read and Write Cycles .. 8-19
8-4 Local-Memory Read-Cycle TIming (with Page Mode) 8-21
8-5 Local-Memory Write-Cycle TIming (with Page Mode) 8-22
8-6 Local-Memory ReadlWrite or Read-Modify-Write-Cycle Timing 8-23
8"":7 DY':1amic Bus Sizing for a Re~d CYRJe (Connection to LADD-LAD15,

Indicated by SIZE16 Low Dunng 2 Data Cycle) 8-27
8-8 DY':1amic Bus Sizing for a Writ~ Cy~~ (Connection to LAD16-LAD31,

Indicated by SIZE16 High Dunng 2 Data Cycle) 8-28
8-9 Memory-to-Serial-Data-Register Cycle (VRAM Read Transfer) 8-30
8-10 Memory-to-Split-Serial-Data-Register Cycle .

(VRAM Split-Register Midline-Reload Transfer)•.................... 8-31
8-11 VRAM Write Transfer and Pseudo-Write Transfer. .. 8-32
8-12 VRAM Alternate-Write Transfer .. 8-33
8-13 Load-Write-Mask Cycle ... 8-35
8-14 Write Cycle (with Mask) ... 8-36
8-15 Load-Color-Register Cycle .. 8-38
8-16 Block-Write Cycle (Without Mask) .. 8-39
8-17 Block-Write Cycle (with Mask) ... 8-40
8-18 Refresh Cycle TIming ... 8-45
8-19 Local-Memory Read Cycle with 1 Wait State 8-47
8-20 Memory-to-Serial-Data-Register Cycle with Wait State (VRAM Read Transfer) 8-48
8-21 The Host-Default Cycle I •• 8-49
8-22 Logical Address Output on LAD .. 8-51
8-23 VRAM Address Decode for Example System 8-57
8-24 DRAM Address Decode for Example System 8-58
8-25 Example Display Memory Dimensions (with Midline Reload) 8-59
8-26 Example Display Memory Dimensions (Without Midline Reload) 8-60
9-1 Horizontal and Vertical TIming Relationship .. 9-9
9-2 The Porches .. 9-10
9-3 Horizontal TIming ... 9-11
9-4 Horizontal TIming Logic-Equivalent Circuit .. 9-12
9-5 Example of Horizontal Signal Generation 9-12
9-6 Vertical Timing for Noninterlaced Display .. 9-13
9-7 Vertical Timing Logic-Equivalent Circuit .. 9-14
9-8 Regions of Vertical Blanking Where Equalization and

Serration Pulses Occur on CSYNC ... 9-16
9-9 Composite Sync During Serration Region (Interlaced) .. 9-17
9-10 Composite Sync During Equalization Regions (Interlaced) 9-17
9-11 Electron Beam Pattern for Noninterlaced Video 9-18
9-12 Noninterlaced Video Timing Waveform Example 9-19
9-13 Programming the Video TIming Registers for Noninterlaced Video 9-20

xx Table of Contents

Figures

12-14
12-15
12-16
12-17
12-18
12-19
12-20
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
14-1
14-2

14-3
14-4
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8

xxii

Enabling Transparency and Selecting a Transparency Mode 12-36
Replicating the Plane-Mask Value Through PMASK 12-39
Read Cycle with Plane Masking, Transparency on Result = 0 12-40
Write Cycle with Transparency on Result=O and Plane Masking 12-41
Filled Area for Example 12-4 ... 12-43
How an XY Address Is Represented ; 12-47
How Values Are Contained in a CONVxP Register .. 12-49
An Example of Immediate Addressing. .. 13-2
An Example of Absolute Addressing .. 13-3
An Example of Register-Direct Addressing 13-4
An Example of Register-Indirect Addressing 13-5
An Example of Register-Indirect with Offset Addressing 13-6
An Example of Register-Indirect with Postincrement Addressing 13-7
An Example of Register-Indirect with Predecrement Addressing 13-8
Register-to-Memory Moves ... 13-21
Memory-to-Register Moves ; .. 13-22
Memory-to-Memory Moves ... 13-23
A Trapezoidal Fill ; 13-249
Vector Address Map•.. 13-254
Vector Address Map .. 13-257
Coprocessor Instruction Information on the LAD bus 14-3
How General Coprocessor Instruction Syntax
Corresponds to TMS34082 Pseudo-ops .. 14-5
TMS34082 Registers That Can Be Used as Pseudo-op Operands 14-6
TMS34082 Register Sequence List ... 14-7
Typical Setup Using the TMS34020 Emulator and Your Target System A-2
Connecting the TMS34020 Emulator to Your Target System A~2
12-Pin Header Signals ... A-3
LCLK1 Buffer Restrictions .. A-5
Emulator Pod Interface ... A-6
Target Cable ... A-9
Pod Dimensions .. A-9
12-Pin Connector Dimensions ... A-10

Table of Contents

*'::
~;;j!j;;;l

Tables

1-1 Quick Comparison of TMS34010 and TMS34020 Features 1-16
2-1 Numerical List of TMS34020 Pin Assignments (145-Pin PGA) 2-3
2-2 Alphabetical List of TMS34020 Pin Assignments (145-Pin PGA) .. 2-4
2-3 Numerical List of TMS34020 Pin Assignments (132-Pin QFP) .. 2-6
2-4 Alphabetical List of TMS34020 Pin Assignments (132-Pin QFP) 2-7
2-5 TMS34020 Pin Descriptions 2-9
2-6 Bus-Cycle Completion Conditions .. 2-12
3-1 Decoding the Field-Size Bits in the Status Register 3-5
4-1 Definitions of Bits in the Status Register. .. 4-2
4-2 How Instruction Execution Affects the PC .. 4-4
4-3 Summary of B-File Registers' Implied-Operand Functions 4-8
4-4 Summary of I/O Registers ... 4-10
6-1 Interrupt Priorities 6~7
6-2 Sources of-!nterrupt Delay .. 6-12
6-3 External Interrupt Vectors ... 6-15
6-4 Interrupts That are Associated with Internal Events .. 6-16
6-5 Initial State of Output Pins while RESET and GI are Low .. 6-22
7-1 Host Interface Estimated Maximum Bandwidth 7-34
7-2 Sources of Delay .. 7-37
8-1 Priorities for Memory Cycle Requests .. 8-6
8-2 LAD-Bus Status Codes ... 8-1 0
8-3 Bus Cycle Completion Conditions .. 8-12
8-4 Interpretation of SIZE16 .. 8-25
8-5 Connections of 4-Bit VRAMs to the TMS34020 LAD Bus for 4 Bits per Pixel 8-41
8-6 Data Remapping for Block Write at 4 Bits per Pixel 8-42
8-7 Block-Write Data Expansion 8-42
8-8 Connections of 4-Bit VRAMs to the TMS34020 LAD Bus for 8 Bits per Pixel 8-43
8-9 Data Remapping for Block Write at 8 Bits per Pixel 8-43
8-10 DRAM Array Sizes ... 8-52
8-11 Logical Addresses Output on the RCA Bus 8-53
8-12 Example Connections to the RCA Bus .. 8-55
9-1 Screen-Refresh Latency .. 9-50
9-2 Minimum Horizontal-Blanking Duration .. 9-51

xxiii

Tables

9-3
10-1
10-2
11-1
11-2
11-3
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
14-1
15-1
15-2
15-3

xxiv

Y -Zoom Control 9-57
TMS34020 General Coprocessor Instructions 10-3
Suggested Coprocessor ID Assignments .. 10-6
Bus Request Codes for the Multiprocessor Interface 11-5
Arbitration Scheme for Two TMS3402020s 11-16
Arbitration Scheme for One TMS3402020 and a Hold Device 11-17
Summary of Graphics Instructions 12-2
Summary of Graphics Operations .. 12-3
PIXBLTs That Can Start from Any Corner 12-11
Window-Checking Modes for Single-Pixel Instructions 12-21
Window-Checking Modes for Pixel Array Instructions 12-21
Window-Checking Modes for the LINE Instruction 12-23
Pixel-Processing Options 12-27
Summary of Implied Operands Used by the Graphics Instructions 12-45
TMS34020 Conversion (CONVxP) Registers .. 12-48
Summary of MOVE Instructions ... 13-19
Condition Codes for JRcc and JAcc Instructions 13-27
Summary for XV Instructions .. 13-29
Summary of Operand Formats for the MOVB Instruction 13-154
Summary of Operand Formats for the MOVE Instruction. .. 13-159
Summary of Array Types for the PIXBLT Instruction 13-191
Summary of B-File Registers for PIXBLT Instructions 13-191
Summary of I/O Registers for the PIXBLT Instructions .. 13-192
Summary of Operand Formats for the PIXT Instructions 13-206
Summary of B-File Registers for PIXT Instructions 13-206
Summary of I/O Registers for the PIXT Instructions 13-207
Symbols Used in Pseudo-op Syntax Listings 14-6
Effects of Pixel-Processing Options on Graphics Instructions .. 15-2
Cases Table for MOVE and MOVB Timings 15-10
Source/Destination Alignment for MOVE and MOVB Timings 15-12

Table of Contents

xxvi Table of Contents

Chapter 1

Overview of the TMS34020
Ijf.mn l;mm!! ::=l '.!W ::= ~ p~

~;;:!ii:ii:iii:ili: ~~.~~~~::mmf?i:;::?i~~'iJM;m~mm:=~

~:m::mmlmmimmmmmmm::m:l::~:m:m:mm:m:::::::::::::::::m:m:::::::::::::::::::c:m:c:c:;m: co: ::::::::m:m::m::::::::::::m:::::::::::c::::::::::::::meCl:::: :::::::::m:wl:m:::::m:::::m::::::::::::::m;;::;

The TMS34020 Graphics System Processor (GSP) is an advanced, 32-bit
microprocessor, optimized for graphic display systems. The TMS34020 is the
second generation of the TMS340 family of computer graphics products from
Texas Instruments.

The TMS34020 provides a high-performance, cost-effective solution for appli­
cations that require efficient data manipulation in a graphics environment. The
TMS34020 can be configured to serve in a host-based, stand-alone, or mUlti­
processing system. The TMS34020 has host and multiprocessor interfaces to
facilitate implementation of multiple TMS34020 systems.

The TMS34020 is well supported by a full set of hardware and software devel­
opment tools, including an optimizing C compiler, an assembler, software
libraries, a PC-based development board, and an emulator. In addition, the
TMS34020 is fully compatible with and supported by the Texas Instruments
Graphics Architecture (TIGA-340).

Topics covered in this introductory section include

Section Page

TMS34020-specific information 1.1
describes characteristics of the 1.2

TMS34020 processor. 1.3

Information about related products 1.4
describes the development tools 1.5

and devices for supporting the 1 6
TMS34020, and discusses .

compatibility with earlier devices.

Key Features 1-2

Typical Applications 1-3
Major Components of
the TMS34020 Architecture•........ 1-4

System Development Tools•........ 1-10

Processors for a Graphics System .•....•• 1-14
Compatibility Between the
TMS34010 and TMS34020•...•• 1-16

1-1

Key Features of the TMS34020

1.1 Key Features of the TMS34020

1-2

[l Fully programmable 32-bit general-purpose processor with 512-Mbyte
linear address range (bit addressable)

[l Second-generation graphics system processor
• Object code compatible with the TMS3401 0
• Enhanced instruction set
• Optimized graphics instructions
• Direct coprocessor interface to TMS34082 floating-point processor

[l Instruction cycle times:
• TMS34020-40..... 100 ns
• TMS34020-32..... 125 ns

[lOn-chip peripheral functions include
• Programmable CRT control
• Direct DRAMNRAM interface
• Direct communication with an external (host) processor
• Communication with multiple TMS34020s
• Functional expansion with the coprocessor interface
• Automatic CRT display refresh

[l Instruction set supports special graphics functions such as pixel
processing, XV addressing, and window checking

[l Programmable 1-, 2-, 4-, 8-, 16-, or 32-bit pixel size

[l 16 Boolean and 6 arithmetic pixel processing options (raster-ops)

[l 30 general-purpose 32-bit registers

[l S12-byte LRU on-chip instruction cache

[l Optimized DRAMNRAM interface
• Page mode for burst memory operations up to 40 Mbytes per second
• Dynamic bus sizing (16-bit and 32-bit transfers)
• Byte-oriented CAS strobes
• Automatic CRT display refresh

[l Flexible host processor interface
• Supports host transfers at up to 20 Mbytes per second
• Direct access to all of the TMS34020 address space
• Implicit addressing (autoincrementing)
• Prefetching for enhanced read access

[l Flexible multiprocessor interlace

Overview of the TMS34020

Key Features / Typical Applications of the TMS34020
'(w... ':w

IJi Programmable CRT control
• Composite sync mode
• Separate sync mode
• Synchronization to external sync

IJi Direct support for special features of 1 M VRAMs
• Load write mask
• Load color mask
• Block write
• Write using the write mask

1.2 Typical Applications of the TMS34020

The TMS34020's 32-bit processing power and its ability to handle complex
data structures make it well suited for a variety of applications. Typical applica­
tions that take advantage of the TMS34020's features include

1-3

Major Components of the TMS34020 Architecture

1.3 Major Components of the TMS34020 Architecture

1-4

The TMS340 family of processors from Texas Instruments combines the best
features of general-purpose processors and graphics controllers to create a
range of cost-effective, flexible, powerful graphics systems. The key features
of the TMS340 family are speed, a high degree of programmability, and effi­
cient manipulation of hardware-supported data types such as pixels and
2-dimensional pixel arrays.

With a built-in instruction cache, the ability to simultaneously access memory
and registers, and an instruction set that enhances raster graphics operations,
the TMS34020 provides programmable control of the CRT interface as well as
the memory interface (both standard DRAM and multiport VRAM). The
TMS34020's 4-gigabit (512 Mbyte) physical address space is completely
bit-addressable on bit boundaries using variable-width data fields. Graphics
addressing modes support 1-, 2-, 4-, 8-, 16-, and 32-bit pixels.

The TMS34020's unique memory interface reduces the time needed to per­
form tasks such as bit alignment and masking while supporting advanced
DRAM access modes. The 32-bit architecture supplies the large blocks of con­
tinuously addressable memory that are necessary in graphics applications.
Systems designed with the TMS34020 can take advantage of VRAM technolo­
gy to facilitate applications such as high-bandwidth frame buffers; this circum­
vents the bottleneck often encountered when using conventional DRAMs in
graphics systems.

The TMS34020 instruction set includes a full complement of general- purpose
instructions, as well as graphics functions, that you can use to construct effi­
cient high-level functions. The instructions support arithmetic and Boolean op­
erations, data moves, conditional jumps, and subroutine calls and returns. The
TMS34020 instruction set also supports the TMS34082 as a coprocessor.

The TMS34020 architecture supports a variety of pixel sizes, frame buffer
sizes, and screen sizes. On-chip functions have been carefully selected so that
no functions tie the TMS34020 to a particular display resolution. This enhances
the portability of graphics software and allows the TMS34020 to adapt to
graphics standards such as TIGA, MIT's X, CGI/CGM, GKS, NAPLPS, PHIGS,
and evolving industry and display-management standards.

Figure 1-1 illustrates the TMS34020's internal architecture.

Overview of the TMS34020

Major Components of the TMS34020 Architecture
~~;:;~:~;.::::::::~.::::::x:;x.~::::m-.r~:::::::~.::::::~::::::~~::::::::x.x::::::xr~::::~:~x(.~::::x.xY'...x::::r#/"'::~·X~WA'.X::::::::::-/.:X~::::W...:::::;W.r"':::::::<'::~::-;~:::;::~@X::X::::::::~~f,~::::~r.~<.::~X~::::~.::~~X0~~~::~:::~::::::::::::w...::w..:;:«~.:::::w..x7..:;r"'::W'«$.:::::~.:::;::.:~;x:mx:::::~.:::::::::::w",::::::f,~~$~f,::::%:~;::::::::::::::::::::f,::f,~:::::::;O;~~::::::X~~~X::r.~:~:~f,~$f.:

Figure 1-1. TMS34020 Block Diagram

RESET,
L1NT1, L1NT2

1.3.1 Internal Functions

bus
interface

EEEE~III~2EEB~~IC:=::vSYNC
[,"" 1-. HSYNC
1::::+ ... 1-. CSYNC/HBLN~
[::::1--. CBLNKNBLNK
[<1 1--VCLK

illllilililillllillilillllililitlbz::z:::zz:::l~- SCLK

The center portion of Figure 1-1 highlights the main internal functions of the
TMS34020 CPU.

[J The 32-bit status register (ST) contains several bits that indicate the CPU
status. Section 4.1 (page 4-2) discusses the status register.

[J The 32-bit program counter (PC) points to the next instruction word to be
fetched. The PC's four LSBs are always O. Section 4.2 (page 4-4) dis­
cusses the program counter.

[J Register files A and B each contain fifteen 32-bit general-purpose regis­
ters. The B-file registers are also used as implied operands forthe graphics
instructions. Section 4.4 (page 4-6) discusses the register files.

[J The 32-bit stack pointer (SP) contains the bit address of the top of the sys­
tem stack. The SP is also available to instructions that operate on either
register file. For more information, refer to Section 4.3 (page 4-5).

1-5

Major Components of the TMS34020 Architecture

I:i The 32-bit barrel shifter shifts or rotates 32-bit operands. from 1 to 32 bit
positions in a single machine cycle. This user's guide does not discuss bar­
rel-shifter operation because the operation is transparent.

I:i The 32-bit ALU allows the TMS34020 to perform most register-to-register
operations in a single machine state. (Accessing external memory
requires a minimum of two states.) The following actions can occur in par­
allel during a single machine state:

• Two operands are transferred from the selected general-purpose reg­
ister file to the ALU.

• The ALU performs the specified operation on the operands.

• The result is routed back to the general-purpose register file.

Instruction cache -------------------------

The TMS34020 contains a 512-byte instruction cache that can contain up to
256 instruction words (an instruction word may be an entire single-word
instruction or 16 bits of a multiple-word instruction). When the cache is
enabled, the TMS34020 provides single-cycle execution of general-purpose
instructions and of most integer arithmetic and Boolean operations.

Chapter 5 discusses cache operation.

1/0 registers -------------------------

1-6

Fifty-four 16-bit, on-chip registers are dedicated to peripheral control functions.
The I/O registers are divided into five categories:

I:i Local-memory registers are dedicated to controlling functions such as big­
endian/little-endian addressing, refresh rate, row/column mode, plane
masking, refresh address, and recovery from bus faults.

I:i Video timing and screen-refresh registers generate the sync and blanking
signals used to drive a CRT, schedule screen refreshes, and allow external
synchronization.

I:i Host-interface registers help the TMS34020 to communicate with a host
proce~sor.

I:i Interrupt-control registers provide status information about interrupt
requests.

I:i CPU-control registers configure the TMS34020 to operate with specific
characteristics.

Section 4.6 (page 4-14) provides individual descriptions of each I/O register.

Overview of the TMS34020

Major Components of the TMS34020 Architecture
--=--=~-----=~-~==.~===.-===-==~--~===--=~-=~==--=--=---~=-=-==-=~==

Microcontrol ROM -------------------------

The TMS34020 transfers decoded instructions to the microcontrol ROM for in­
terpretation.

Clock timing logic -------------------------

The clock timing logic converts the clock-input signal (ClKIN) to internal timing
signals and generates the clock-output signals, lClK1 and lClK2, used by
external devices. The machine state is a fundamental time unit of the
TMS34020's graphics processor; it is the time interval during which the proces­
sor is in a particular microinstruction state. The instruction timing for each
assembly-language instruction is specified in multiples of machine states. The
TMS34020's machine state is a single local clock period in duration (the time
from one lClK1 low-to-high transition to the next). The local clock period is
four times the period of ClKIN.

Host control logic --------------------------

The host control logic allows a host processor to communicate with the
TMS34020 and allows access to TMS34020 local memory. Commands, data,
and status information are communicated through this logic.

Page-mode registers -------------------------

The page-mode registers buffer data to and from the local-memory interface
so that data may be temporarily stored during processing. This enhances data
flow to memory.

Other special processing hardware -------------------

The TMS34020 CPU also supports the following special processing functions
in hardware:

Q Detecting whether a pixel lies within a specified display window
Q Detecting the leftmost or rightmost 1 within a 32-bit register
Q Expanding a black-and-white pattern to a variable pixel-depth pattern
Q Rotating and merging variable-width fields
Q Individual byte strobes for partial word writes to memory
Q Dynamic bus sizing
Q Data bus swizzling for special VRAM block modes
Q Big-endian and little-end ian addressing modes

1-7

Major Components of the TMS34020 Architecture

1.3.2 Major Interfaces

Local-memory and DRAMIVRAM interfaces --------------­

The TMS34020's local-memory interface consists of a 32-bit, bidirectional
address/data bus, various control signals, and row/column address control.
During a local-memory cycle, address and status information are output on the
local address/data (LAD) bus; then, data is transferred over the same LAD
lines. The TMS34020 can transfer data over 16-bit or 32-bit buses.

The TMS34020 interfaces directly to DRAMs and VRAMs, providing address
multiplexing for 64Kxn, 256Kxn, 1 MXn, and 4Mxn devices. The row and col­
umn addresses necessary for accessing DRAMs and VRAMs are available
directly from the TMS34020's RCA bus, eliminating the need for external mUlti­
plexing hardware.

For more information, refer to Chapter 8.

Videointerface---------------------------

The TMS34020's video interface is extremely flexible and programmable,
allowing you to choose between

I:l Separate sync and blanking or composite sync and blanking
I:l Synchronization to externally or internally generated video signals
I:l Interlaced or noninterlaced video

The video interface directly supports VRAMs by generating the serial-register
transfers necessary for refreshing a display.

For more information, refer to Chapter 9.

The host interface allows you to map the TMS34020's local memory into a
host's memory address space. This allows you to transfer data, commands,
and status information between the TMS34020 and the host processor.

For more information, refer to Chapter 7.

Coprocessorinterface------------------------­

The coprocessor interface allows you to extend the TMS34020's basic archi­
tecture. Most coprocessor interfaces require a memory-mapped approach, so
that a processor treats a coprocessor as a peripheral device. The TMS34020,
however, allows. direct connection to a coprocessor and provides special

1-8 Overview of the TMS34020

Major Components of the TMS34020 Architecture
~r~WH,;~~~~~$~W~WWhXX$~Whraxx::~%$::::::xzx.;:;:;~X.o/..-;:;:;:;w~..x~::u:'.::::w"::::::::X:;X$~m:;:;m::xx~~::::m::::x::::«.::::w~::::::-':::::::~.:.":".:»;~~.«:x~":::::::;X::-;"-;::::::::~$:~o;:;w..:::;xm

instructions that allow you to send instructions and data between the
TMS34020 and a coprocessor. The TMS34020 provides extended coproces­
sor support for the TMS34082 Floating-Point Processor, which is specially
designed to serve in a TMS34020 system.

For more information, refer to Chapter 10.

Multiprocessor interface ----------------------­

The multiprocessor interface allows multiple TMS34020s (as well as other
processors) to share the same local memory. The TMS34020's grant-in and
request-priority signals provide a flexible method of passing control from one
processor to another. The multiprocessor interface requires external arbitra­
tion logic to

[J inform a TMS34020 when it can take control of the bus, and

[J decode the priorities of requests from the multiple processors.

This scheme allows back-to-back memory cycles even when control passes
from one TMS34020 to another.

Any number of devices can be configured together within a single system.
However, system performance is not increased significantly when a system
contains more than three TMS34020s.

For more information, refer to Chapter 11.

Emulation interface ------------------------

The TMS34020 supports a 4-wire interface that simplifies connections
between a debugger and a target system. For details about emulation, refer
to Appendix A.

1-9

System Development Tools

1.4 System Development Tools

The TMS34020 is well supported by a complete set of hardware and software
development tools, including a C compiler, an assembler/linker, software
libraries, and a PC-based development board. In addition, the TMS34020 is
fully compatible with and supported by the Texas Instruments Graphics Archi­
tecture (TIGA-340).

1.4.1 Code-Generation Tools

Figure 1-2 illustrates the TMS34020 code development flow. The figure high­
lights the most common paths of software development; the other portions are
optional.

Rgure 1-2. TMS34020 Software Development Flow

1-10

emulator

software
development

board

·m;::w:::::~~~~::?:m:::'"%:~·:::~-m&~i;:~

wt~'Umaor.o1WJ!rf
t$%%librawM@ir
::::~I:::f~ .. ". ::::;:=r~:r::-t;:::::

)w.kassembler"'!lf
mi*J*~$.QW1e.a>M1t~,~;

. i4~i~&ftW~~
<t{MJlbranesr@t;%I--'----t
::::.4:::~:~~?:~:§.l::::::~~::::~&:*::::!f&.:t:~f.?:

TMS34020
target

system

EPROM
programmer

Overview of the TMS34020

System Development Tools
:4Sl'mS~f4~mc ~~~ Z?;S :::-~:::::- Sl'Sl'S~~sssss:::-mm

These tools use common objectfiles format (GOFF), which encourages modu­
lar programming. GOFF allows you to divide your code into logical blocks,
define your system's memory map, and then link code into specific memory
areas. GOFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1-2.

The TMS34020 C compiler is a full-featured optimizing compiler that trans­
lates standard Kernighan-and-Ritchie G programs into TMS34020 assem­
bly-language source. Key characteristics include

Q Standard Kernighan-and-Ritchie C with extensions. The compiler
compiles standard G programs as defined by Kernighan and Ritchie's The
C Programming Language (first edition). The compiler supports these
standard extensions: enumeration types, structure assignments, passing
structures to functions, and returning structures from functions. A future
release of the compiler will support the full ANSI standard.

Q Big-endian or little-endian code.

Q Optimization. The compiler uses several advanced techniques for gener­
ating efficient, compact code from G source.

Q Assembly-language output. The compiler generates assembly- language
source that is easily inspected, enabling you to see the code generated
from the G source files.

Q ANSI standard runtime support. The compiler package comes with a com­
plete runtime library that conforms to the ANSI G library standard. The
library includes functions for string manipulation, dynamic memory alloca­
tion, data conversion, timekeeping, trigonometry, exponential, and hyper­
bolic functions. Functions for 1/0 and signal handling are not included
because they are application-specific.

Q Flexible assembly-language interface. The compiler has straight-forward
calling conventions, allowing you to easily write assembly and G functions
that call each other.

Q Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

Q Source interlist utility. The compiler package includes a utility that interlists
your original G source statements into the assembly-language output of
the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each G statement.

The assembler translates assembly-language source files into machine lan­
guage object files.

The archiver allows you to collect a group of files into a library. It also allows
you to modify a library by deleting, replacing, extracting, or adding members.

1-11

System Development Tools

One of the most useful applications of the archiver is to build a library of object
modules. Several object libraries and a source library are included with the C
compiler.

You can also use application-specific object libraries, available as separate
products:

IJi The math/graphics function library contains math functions for perform­
ing algebraic, trigonometric, and transcendental operations as well as
graphics functions for performing viewport management, bitmapped text,
graphics output, color-palette control, 3-dimensional transformations, and
graphics initialization.

IJi The font library contains a variety of proportionally spaced and mono­
spaced fonts. You can use the functions in the graphics library to display
the fonts.

IJi The CCITT data compression function library contains CCITT-compat­
ible routines for compressing and decompressing monochrome image
data.

IJi The 8514 adaptor emulation function library contains routines for emu-
lating IBM PS/2 high-resolution display.

These functions and routines can be called from C programs. You can also
create your own object libraries.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system's
memory map and associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a TMS34020 target system. You can use one of several debug­
ging tools to refine and correct your code. Available products include a PC­
based software development board (SOB) and a realtime in-circuit emula­
tor.

An object format converter is also available; it converts a COFF object file
into an Intel, Tektronix, or TI-tagged object-format file that can be downloaded
to an EPROM programmer. .

1.4.2 Supported Systems

1-12

The TMS34020 C compiler and assembly language tools are available for
these systems:

IJi IBM-PC with PC-DOS
IJi VAX:

• VMS
• Ultrix

Overview of the TMS34020

1.4.3 Packages

System Development Tools
~~:::::::'s(:::;«::1m~~~Z:·~~S$f~~:s~::e::;.e:rSll:fS6X~ ~f~,:,s::!::::;:,~mms mmss:'::::l'

!:l Apollo workstations:
• Domain/IX
• AEGIS

!:l Sun-3 workstations with UNIX
!:l Macintosh with MPW

Texas Instruments supplies development tools in several packages.

!:l Assembly language tools package

!:l C compiler package

tools

1.4.4 TIGA-340 Graphics Interface

The Texas Instruments Graphics Architecture (TIGA-340) is a software inter­
face standard for the TMS340 family of graphics system processors. TIGA
enhances the performance of MS-DOS-based pes that contain a TMS3401 0
or TMS34020 and an 8088/86 or 80286/80386 host microprocessor by opti­
mizing communications between the graphics processor and the host proces­
sor. The TIGA interface allows the host and graphics processors to share
execution of the application.

Figure 1-3. Graphics Processing Shared Between TMS340 and Host Processors

application
r------,
I application I
L _ ~terface _-l

Host System

TIGA·340
Interface TMS340-based

TIGA routines
and

drawing primitives.

TMS340 Board

1-13

Processors for a Graphics System

1.5 Processors for a Graphics System
Texas Instruments offers a broad line of graphics and video products. The
TMS34020 Graphics System Processor, TMS34082 Floating-Point Proces­
sor, and TMS44C251 1-Mbit Video RAM bring workstation performance to the
PC and other small systems. Figure 1-4 shows all of the Texas Instruments
Graphics products.

Figure 1-4. Graphics Products Roadmap

The following paragraphs describe the TMS34082 and TMS44C251, which
are included in the TMS34020 sample system shown in Figure 1-5.

TMS34082--

1-14

Many TMS34020 applications require floating-point operations. The
TMS34082 floating-point processor is designed to interface directly with the
TMS34020, allowing the TMS34020 to perform computation-intensive func­
tions more than 100 times faster than a software implementation. The
TMS34082 performs single- and double-precision floating-point operations,
conforming fully to the IEEE 754 standard.

In addition to normal floating-point operations, the TMS34082 performs com­
plex 2- and 3-dimensional operations such as 3x3 convolution, 4x4 matrix, and
cubic spline operations.

Additional TMS34082 features include

IJi 32-bit data path
IJi 32-bit integer and logical operations
IJi 40-MFLOPS sustained operation
IJi Single-instruction divide/square-root operations
IJi External microcode memory interface for defining custom instructions

Overview of the TMS34020

Processors for a Graphics System
mmssxmmmsmss ~

TMS44C251--

A video RAM (V RAM) is a special memory device, optimized for use in graphics
systems. The TMS44C251 multiport VRAM is a high-speed, dual-ported
memory. It consists of DRAM organized as 262,144 4-bit words, interfaced
to a serial data register.

Sample system ------------------------

A typical graphics system designed with the TMS34020 uses several types of
memory, as well as external latches, buffers, and transceivers to connect the
TMS34020 to the memories, a coprocessor, or a host processor. Figure 1-5
shows a representative TMS34020 design for a PC display system. Note that
this system uses the TMS34082 as a coprocessor, a palette, and VRAMs,
DRAMs, and ROM memories.

Figure 1-5. TMS34020 1 Kx 1 Kx8 PC Display System

Interface

Key: '652
'623
'244

'652
32

TMS34020

Memory

Bidirectional, latching transceivers (such as the 74ALS652)
Bidirectional bus transceivers (such as the 74ALS623)
Buffer (such as the 74ALS244)

Memory

Required
Optional
Optional

Interface

1-15

Compatibility Between the TMS34020 and TMS34010

1.6 Compatibility Between the TMS34020 and TMS34010

Table 1-1.

1-16

The information in this section is for readers who are familiar with the
TMS34010 graphics system processor. If you are not familiar with the
TMS34010, you may want to skip this section. Note that this user's
guide does not require you to be familiar with the TMS3401 O.

The TMS34020 is the second generation of the TMS340 family of graphics
system processors; the TMS3401 0 is the first generation. The TMS3401 0 was
the building block forthe TMS34020; however, the TMS34020 greatly extends
the TMS3401 O's capabilities by adding new features and enhancing existing
features. Table 1-1 shows a sample comparison of the TMS34010 and
TMS34020 features.

Note that the TMS3401 0 and TMS34020 are not pin-for-pin compatible.

Quick Comparison of TMS3401 0 and TMS34020 Features

Feature TMS34010 TMS34020

External bus size II 16 bits II 32 bits

Cycle time [JI 130, 160, or 200 ns [JI 100 or 125 ns

Cache size II 256 bytes II 512 bytes

Horizontal pitch II Powerof2 II Unlimited

Word addressing II Little endian II Little or big endian

VRAM support II Serial registers II Serial registers
II Block writes
II Split serial registers
II Enhanced page mode

Interfaces II Host II Host

II Hold II Coprocessor
II Multiprocessor

Coprocessor support II Memory mapped II Direct connection

Throughout this user's guide you'll find descriptions of compatibility between
the TMS34010 and TMS34020. Such passages are marked with this symbol
in the margin:

TMS34010 object code is upward compatible with the TMS34020. If new
TMS34020 features would prevent TMS34010 code from running, the
TMS34020 provides you with a method of switching these features off. At
reset, these features are off to provide compatibility with the TMS3401 O.

Overview of the TMS34020

In general, if you followed the compatibility notes in the TMS34010 User's
Guide, your TMS34010 code should be object-code compatible with the
TMS34020.

The following list describes restrictions that TMS3401 0 code must adhere to
in order to be compatible with the TMS34020.

Q Color information. The TMS34020 uses all 32 bits of the COLORO (B8)
and COLOR 1 (B9) values. The TMS340 10 used only the 16 LSBs of these
values. Although the TMS3401 0 will ignore the 16 MSBs of these values,
TMS34010 code should replicate the color information throughout all 32
bits of these registers.

Q Plane mask. All 32 bits of the PMASK register, at addresses COOO 0160h
(16 LSBs) and COOO 0170h (16 MSBs), are valid for the TMS34020.
TMS34010 could should copy the 16-bit PMASK value at address
COOO 0160h to address COOO 0170h.

Q Reserved bits. TMS3401 0 code should not use any reserved bits in the
status register or the I/O registers.

Q Register 813. The TMS34020 uses register B13 as a pattern register.
TMS34010 code should load B 13 with all 1 s, causing the code to draw a
solid line instead of an unexpected patterned line.

Q CONVSP & SPTCH, CONVDP & DPTCH. The TMS34020 uses SPTCH
and DPTCH to determine the values of CONVSP and CONVDP, respec­
tively. TMS3401 0 code should be sure that SPTCH and DPTCH agree with
CONVSP and CONVDP. That is, the 5 LSBs of CONVxP must equal the
1 s complement of 1092(xPTCH), which is given by the LMO of xPTCH. Set
the 11 MSBs of CONVxP to o.
If an instruction uses CONVSP or CONVDP, then the MSB of CONVxP
should be 0 and xPTCH should contain 2CONvxP before instruction execu­
tion.

Q Timing loops. TMS3401 0 code should avoid timing loops; obtain timing
via the video logic (using DPYINT) or via external interrupt 1 or 2.

Q Data alignment. For optimum TMS34020 performance, TMS3401 0 code
should align to 32-bit boundaries (instead of 16-bit boundaries).

Q Cache. TMS34010 code should not depend on cache-load order.

Q Saving the graphics context. If TMS3401 0 code requires saving/restor­
ing of the graphics context, the code should store the I/O registers at
addresses COOO OOBOh and COOO 013D-COOO 01AOh (inclusive).

Q Reset vector. At reset, the TMS34020 loads the 4 LSBs of the reset vector
into the 4 LSBs of the CONFIG register. TMS34010 code should not
depend on values in the 4 LSBs of the reset vector.

1-17

Compatibility Between the TMS34020 and TMS34010

1-18

Il Video registers. All accesses to video timing registers should be separate
from other code. Particularly, HESYNC, HEBLNK, HSBLNK, HTOTAL,
HCOUNT, VESYNC, VEBLNK, VSBLNK, VTOTAL, and VCOUNT should
be manipulated through symbolic names (not by addresses) because their
addresses have changed.

Il Interrupt routines. Interrupt service routines for the TMS3401 0 should
make no assumptions about the state of the stack, except that the PC and
ST are stacked after any extra words. The interrupt routine must return
with an RETI instruction, which will pop any extra words to the correct inter­
nal registers.

Il Illegal opcodes. TMS34010 code should not depend on any of the
TMS34010's illegal opcodes (except OOOOh) to cause a TRAP 30.

Il Traps. Trap FFFF FBCOh is the TMS34020's bus-fault trap. Trap
FFFF FBEOh is the TMS34020's single-step trap.

Il Host interface. To TMS34010 code, the TMS34020's host interface
appears the same as the TMS3401 O's host interface. It is desirable for data
. shared with the host to be aligned on 32-bit boundaries. In general, code
written for the TMS3401 0 host interface will need to be changed because
the TMS34020's host interface is different from the TMS3401 O's.

Overview of the TMS34020

Pinouts """""'_-m""" _____ =~«~_· _______ ·~·""':::"~"m ___ ··:·x:::_·C;NT_::::::~,::::~:w~%_?:~=., ===~""==_. x~~

2.1 Pinouts

The TMS34020 is offered in two packages:

Q a 145-pin grid array (PGA) package and

Q a 132-pin quad flat package (QFP).

Figure 2-1 shows the pinout of the 145-pin PGA, and Figure 2-2 shows the
pinout for the 132-pin QFP.

Figure 2-1. TMS34020 Pinout, 145-Pin PGA Package (Bottom View)

ABC 0 E F G H J K L M N P R

2-2

1 @@@@@@@@@@@@@@@
2 @@@@@@@@@@@@@@@
3 @@@@@@@@@@@@@@@
4 @@@@ @@@
5 @@@ @@@
6 @@@ @@@
7 @@@ @@@
8 @@@ @@@
9 @@@ @@@

10 @@@ @@@
11 @@@ @@@
12 @@@ @@@
13 @@@@@@@@@@ @@@@@
14 @@@@@@@@@@ @@@@@
15 @@@@@@@@@@ @@@@@

Pinouts and Signal Descriptions

Pinouts

Table 2-1. Numerical List of TMS34020 Pin Assignments (145-Pin PGA)

Pln# Signal Pln# Signal Pln# Signal Pln# Signal Pln# Signal
A1 Vss 815 LAD12 F1 HRDY K15 LAD20 P2 HWRITE
A2 ALTCH C1 CASO F2 RO L1 LlNT1 P3 HCS
A3 C8LNKI C2 Vee F3 Vss L2 CAMD P4 HA30

V8LNK

A4 HSYNC C3 DDOUT F13 LAD24 L3 LRDY P5 HA27

A5 TRlQE C4 ODIN F14 LAD8 L13 LAD1 P6 HA24
A6 RCA2 C5 Vss F15 Vss L14 LAD2 P7 HA22

A7 RCA3 C6 SF G1 HINT L15 LAD19 P8 HA18
A8 Vee C7 RCA4 G2 HOE M1 8USFLT P9 HA14
A9 RCA6 C8 Vss G3 HDST M2 PGMD P10 HA13
A10 RCA7 C9 RCA8 G13 LAD7 M3 VCLK P11 HA10
A11 RCA10 C10 RCA12 G14 Vss M13 Vss P12 HA7
A12 SCLK C11 LAD30 G15 LAD23 M14 LAD16 P13 HA5

A13 LAD15 C12 Vss H1 LCLK1 M15 LAD18 P14 H8S0

A14 LAD29 C13 Vss H2 EMU3 N1 SIZE16 P15 LADO

A15 Vss C14 Vee H3 LCLK2 N2 Vee R1 HREAD

81 CAS3 C15 LAD26 H13 LAD22 N3 CLKIN R2 HA31

82 WE D1 RAS H14 LAD21 N4 Vss R3 HA28

83 Vss D2 CAS2 H15 LAD6 N5 HA29 R4 HA26

84 CSYNCI D3 Vss J1 EMUO N6 HA25 R5 HA23
H8LNK

85 VSYNC D4 NC J2 GI N7 HA21 R6 HA20

86 RCAO D13 LAD28 J3 EMU1 N8 Vss R7 HA19

87 RCA1 D14 LAD11 J13 LAD4 N9 Vss R8 HA17

88 RCA5 D15 LAD10 J14 Vee N10 HA12 R9 HA16

89 RCA9 E1 R1 J15 LADS N11 HA6 R10 HA15

810 RCA11 E2 Vee K1 EMU2 N12 HBS2 R11 HA11

811 LAD31 E3 CAS1 K2 RESET N13 HBS1 R12 HA9

812 LAD14 E13 LAD27 K3 LlNT2 N14 Vee R13 HAS

813 Vee E14 LAD25 K13 Vss N15 LAD17 R14 H8S3

814 LAD13 E15 LAD9 K14 LAD3 P1 Vee R15 Vss
Note: Pin 04 is NC (not internally connected). You may use this pin for package alignment, but do not connect it.

2-3

Pinouts

Table 2-2. Alphabetical List of TMS34020 Pin Assignments (145-Pin PGA)

Signal Pin # Signal Pln# Signal Pint Signal Pint Signal Pln#

ALTCH A2. HA17 R8 LAD2 L14 LAD31 811 Vee A8

8USFLT M1 HA18 P8 LAD3 K14 LCLK1 Hi Vee 813

CAMD L2 HA19 R7 LAD4 J13 LCLK2 H3 Vee C2

CASO C1 HA2.0 R6 LAD5 J15 LlNT1 L1 Vee C14

CAS 1 E3 HA21 N7 LAD6 H15 LlNT2 K3 Vee E2

CAS2 D2 HA22 P7 LAD7 G13 LRDY L3 Vee J14

CAS3 81 HA23 R5 LAD8 F14 NC D4 Vee N2

C8LNKI A3 HA24 P6 . LAD9 E15 PGMD M2 Vee N14
V8LNK

CLKIN N3 HA25 N6 LAD10 D15 RO F2 Vee Pi

CSYNCI 84 HA2.6 R4 LAD11 D14 R1 E1 VCLK M3
H8LNK

DDIN C4 HA27 P5 LAD12 815 RAS D1 Vss Ai

DDOUT C3 HA2S R3 LAD13 814 RCAO 86 Vss A15

EMUO J1 HA29 N5 LAD14 812 RCA1 87 Vss 83

EMU1 J3 HA30 P4 LAD15 A13 RCA2. A6 Vss C5

EMU2 K1 HA31 R2 LAD16 M14 RCA3 A7 Vss CS

EM~3 H2 H8S0 P14 LAD17 N15 RCA4 C7 Vss C12

GI J2 H8S1 N13 LAD1S M15 RCA5 8S Vss C13

HA5 P13 H8S2 N12 LAD19 L15 RCA6 A9 Vss D3

HA6 N11 H8S3 R14 LAD20 K15 RCA7 A10 Vss F3

HA7 P12 HCS P3 LAD21 H14 RCAS C9 Vss F15

HAS·! R13 HDST G3 LAD22 H13 RCA9 89 Vss G14

HA9 R12 HINT G1 LAD23 G15 RCA10 A11 Vss K13

HA10 P11 HOE G2 LAD24 F13 RCA11 810 Vss M13

HA11 R11 HRDY F1 LAD25 E14 RCA12 C10 Vss N4

HA12 N10 HREAD R1 LAD26 C15 RESET K2 Vss NS

HA13 P10 HSYNC A4 LAD27 E13 SCLK A12 Vss N9

HA14 P9 HWRITE P2 LAD28 D13 SF C6 Vss R15

HA15 RiO LADO P15 LAD29 A14 SIZE16 N1 VSYNC 85

HA16 R9 LAD1 L13 LAD30 C11 TR/QE A5 WE 82

Note: Pin 04 is NC {not internally connected}. You may use this pin for package alignment, but do not connect it.

2-4 Pinouts and Signal Descriptions

2l
::J
0

.50 a.:

I

&
~
~

~
B:
Q
.s;
a.:
~
cr:i -....:-::;,
0 .s;
a.:
~ c::s
~
~ j.;:;:

~
ct.
~
:::i

~

1171
118'
119,
120
121
122
123
124
125
126
127
128
129
130
131
132

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

~~vMN~om~~~~vMN~O
~~~~~~~oooooooooom~~~~vMN~om~~~~v 
~~~~~~~~~~~~~~~~~mmmmmmmmmmm~~moom 

~~~N~~~~~~~rug~~~~~~~~m~~~~;~~~~~~ 

83 
82 
81 
80 
79 
78 
77 
76 
75 
74 
73 
72 
71 
70 
69 
68 
67 
66 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 

Il) 

~ 



Pinouts 

Table 2-3. Numerical List of TMS34020 Pin Assignments (132-Pin QFP) 

Pin# Signal Pin# Signal Pin# Signal Pin# Signal 

1 EMU1 34 Vss 67 LAD7 100 RCA4 

2 EMUO 35 HA16 68 LAD23 101 RCA3 

3 EMU2 36 HA15 69 Vss 102 RCA2 

4 GI 37 HA14 70 Vss 103 RCA1 

5 RESET 38 HA13 71 LAD8 104 RCAO 

6 LlNT2 39 HA12 72 LAD24 105 SF 

7 LlNT1 40 HA11 73 LAD9 106 TRlQE 

8 CAMD 41 HA10 74 LAD25 107 VSYNC 

9 BUSERR 42 HA9 75 LAD10 108 HSYNC 

10 SIZE16 43 HAS 76 LAD26 109 CBLNKNBLNK 

11 PGMD 44 HA7 77 LAD11 110 CSYNC/HBLNK 

12 LRDY 45 HA6 78 LAD27 111 Vss 

13 Vee 46 HA5 79 Vee 112 Vss 

14 VCLK 47 HBS3 80 LAD12 113 ALTCH 

15 CLKIN 48 HBS2 81 LAD28 114 DDIN 

16 HWRITE 49 HBS1 82 Vss 115 DDOUT 

17 HREAD 50 HBSO 83 LAD13 116 WE 

18 HCS 51 LADO 84 LAD29 117 CAS3 

19 HA31 52 LAD16 85 LAD14 118 CAS2 

20 HA30 53 LAD1 86 LAD30 119 CAS1 

21 HA29 54 LAD17 87 LAD15 120 CASO 

22 HA28 55 LAD2 88 LAD31 121 Vee 

23 HA27 56 LAD18 89 SCLK 122 RAS 

24 HA26 57 Vss 90 RCA12 123 Vss 

25 HA25 58 LAD3 91 RCA11 124 RO 

26 HA24 59 LAD19 92 RCA10 125 R1 

27 HA23 60 Vee 93 RCA9 126 HOE 

28 HA22 61 LAD4 94 RCA8 127 HDST 

29 HA21 62 LAD20 95 RCA7 128 HRDY 

30 HA20 63 LAD5 96 RCA6 129 HINT 

31 HA19 64 LAD21 97 RCA5 130 EMU3 

32 HA18 65 LAD6 98 Vee 131 LCLK1 

33 HA17 66 LAD22 99 Vss 132 LCLK2 

2-6 Pinouts and Signal Descriptions 



Pinouts 

Table 2-4. Alphabetical List of TMS34020 Pin Assignments (132-Pin QFP) 

Signal Pin# Signal Pin# Signal Pin# Signal Pin# 

ALTCH 113 HA21 29 LAD10 75 RCA2 102 

BUS ERR 9 HA22 28 LAD11 77 RCA3 101 

CAMD 8 HA23 27 LAD12 80 RCA4 100 

CASO 120 HA24 26 LAD13 83 RCA5 97 

CAS1 119 HA25 25 LAD14 85 RCA6 96 

CAS2 118 HA26 24 LAD15 87 RCA7 95 

CAS3 117 HA27 23 LAD16 52 RCA8 94 

CBLNKNBLNK 109 HA28 22 LAD17 54 RCA9 93 

CLKIN 15 HA29 21 LAD18 56 RCA10 92 

CSYNC/HBLNK 110 HA30 20 LAD19 59 RCA11 91 

DDiN 114 HA31 19 LAD20 62 RCA12 90 

DDOUT 115 HBSO 50 LAD21 64 RESET 5 

EMUO 2 HBS1 49 LAD22 66 SCLK 89 

EMU1 1 HBS2 48 LAD23 68 SF 105 

EMU2 3 HBS3 47 LAD24 72 SIZE16 10 

EMU3 130 HCS 18 LAD25 74 TR/QE 106 

GI 4 HDST 127 LAD26 76 Vee 13 

HA5 46 HOE 126 LAD27 78 Vee 60 

HA6 45 HINT 129 LAD28 81 Vee 79 

HA7 44 HRDY 128 LAD29 84 Vee 98 

HAS 43 HREAD 17 LAD30 86 Vee 121 

HA9 42 HSYNC 108 LAD31 88 VCLK 14 

HA10 41 HWRITE 16 LCLK1 131 Vss 34 

HA11 40 LADO 51 LCLK2 132 Vss 57 

HA12 39 LAD1 53 LlNT1 7 Vss 69 

HA13 38 LAD2 55 LlNT2 6 Vss 70 

HA14 37 LAD3 58 LRDY 12 Vss 82 

HA15 36 LAD4 61 PGMD 11 Vss 99 

HA16 35 LAD5 63 . RO 124 Vss 111 

HA17 33 LAD6 65 R1 125 Vss 112 

HA18 32 LAD7 67 RAS 122 Vss 123 

HA19 31 LAD8 71 RCAO 104 VSYNC 107 

HA20 30 LAD9 73 RCA1 103 WE 116 

2-7 



The TMS34020's Major Interfaces 

2.2 The TMS34020's Major Interfaces 

The TMS34020's pins are divided among several interfaces: 

Name Pins 
Local-memory interface 39 pins 

DRAMNRAM control interface 22 pins 

Multiprocessor interface 3 pins 

Host interface 38 pins 

Video interface 6 pins 

Emulation interface 4 pins 

System control 6 pins 

Power and ground 26 pins (PGA) 
14 pins (QFP) 

Figure 2-3 associates the TMS34020's pins with its major interfaces. 

Figure 2-3. The TMS34020's Major Interfaces 

2-8 

local-memory 
interface 

DRAMNRAM 
interface 

video { 
interface 

power < 

A 

< 3~ , ~ 

,'> 

~ 

~arJL 

~ 

LADQ-LAD31 

ALTCH 
DDIN 
DDOUT 
LRDY 
PGMD 
SIZE16 
BUSFLT 

RCAQ-RCA12 

CASD-CAS3 
RAS 
WE 
TR/QE 
SF 
CAMD 

VCLK 
SCLK 
VSYNC 
HSYNC 
CSYNC/HBLNK 
CBLNKNBLNK 

Vee 

Vss 

HA5-HA31 

HBSQ-HBS3 
HCS 

HREAD 
HWRITE 

HRDY 
HINT 
HDST 
HOE 

GI 
RO 
R1 

EMU3 
EMUQ-EMU2 

CLKIN 
RESET 

LlNT1 
LlNT2 

LCLK1 
LCLK2 

A 

07 

/ 

> 
II ) 

} 

host 
interface 

multiprocessor 
bus arbitration 

emulation 
interface 

system 
control 

Pinouts and Signal Descriptions 





Signal Descriptions 

Table 2-5. TMS34020 Pin Descriptions (Continued) 

Refer to 
Signal Name 110 Description Page .. . 

HA5-HA31 I Host-address input signals 2-13 

Host byte selects 2-13 

Host chip select 2-13 

o Host data-latch strobe 2-13 

o Host interrupt 2~13 

o Host data-latch output enable 2-13 

o Host ready 2-13 

Host read strobe 2-13 

Host write strobe 2-13 

o Composite blanking or vertical blank- 2-15 
ing 

1/0 Composite sync or horizontal blank- 2-15 
ing 

1/0 Horizontal sync 2-15 

Serial data clock 2-15 

Video clock 2-15 

I/O Vertical sync 2-15 

Emulation pins 0-2 Appendix A 

o Emulation pin 3 Appendix A 

0 Local output clocks 2-16 

Local interrupt requests 2-16 

System reset 2-16 

Nominal 5-volt power supply inputs (5 2-16 
pins on QFP, 9 pins on PGA) 

Electrical ground inputs (9 pins pins 2-16 
on QFP, 17 pins on PGA) 

2-10 Pinouts and Signal Descriptions 



Signal Descriptions 
~~XX'~~~-::x~::x::-;~::::::-,g.M';::::~::::;w..:=::x:;:;:;x:;x:::::;x:;y-..::m:::;>~::::::x:;.::~~zz--/'.::::::Y..::::::::::::;m:mr..::~~:::::::::;:<-~:;mm:-.$::::v...xx::.:;:;::x::::x::x::::::::x:;::x:::;:;x::~:::::::::::::"xm::::::::::::zx::::~..::;::m:m:;::::::::::::::::~,--=::::::%'mm::m::::::::::::::m::x::m:::;r.::~-:;::::m::m 

2.3.1 Local-Memory Interface Signals 

Signal Name 

ALTCH 

BUSFLT 

DDIN 

DDOUT 

LADD-LAD31 

LRDY 

SIZE16 

The TMS34020 communicates with external memory and with external memo­
ry-mapped I/O devices through its local-memory interface. This interface's sig­
nals are also used in conjunction with the DRAM and VRAM interface. 

I/O Description 

o Address latch. The high-to-Iow transition of ALTCH can be used to capture the ad­
dress and status present on the LAD bus. A transparent latch (such as a 74ALS373) 
will maintain the current address and status as long as ALTCH remains low. 

Bus fault. External logic asserts BUSFL T high to the TMS34020 to indicate that an 
error orfault has occurred on the current bus cycle. BUSFLT is also used with LRDY 
to generate bus-cycle retries so that the entire memory address is presented again 
on the LAD pins. 

o Data bus direction, input enable. This active-high output is used to drive the acti­
ve-high input enables on bidirectional transceivers (such as the 74ALS623). The 
transceivers buffer data input and output on the LADD-LAD31 pins when the 
TMS34020 is interfaced to several memories. 

o Data bus direction, output enable. This active· low signal drives the active-low 
output enables on bidirectional transceivers (such as the 74ALS623). The trans­
ceivers buffer data input and output on the LADD-LAD31 pins. 

I/O Multiplexed local address/data bus. At the beginning of a memory cycle, the word 
address is output on LAD4-LAD31 , and the cycle status is output on LADO-LAD3. 
After the address is presented, LADO-LAD31 are used for transferring data within 
the TMS34020 system. LADO is the LSB and LAD31 is the MSB. 

Local ready. External circuitry drives this signal low to stop the TMS34020 from 
completing a local-memory cycle it has initiated. While LRDY remains low, the 
TMS34020 will wait, unless the TMS34020 is given a retry request (through the 
BUSFLT signal). Wait states are generated in increments of one full LCLK1 cycle. 
LRDY can be driven low to extend local-memory read and write cycles, VRAM ser­
ial-data-register transfer cycles, and DRAM-refresh cycles. During internal cycles, 
the TMS34020 ignores LRDY. 

Page mode. The memory decode logic asserts this signal low if the currently ad­
dressed memory supports burst (page mode) accesses. Burst accesses occur as 
a series of CAS cycles for a single RAS cycle to memory. 

Bus size. The memory decode logic may pull this signal low if the currently ad­
dressed memory or port supports only 16-bit transfers. SIZE16 can also be used 
to determine which 16 bits of the data bus are used for a data transfer. 

Table 2-6 lists the bus cycle completion conditions controlled by LRDY and 
BUSFLT. 

2-11 



Signal Descriptions 

Table 2-6. Bus-Cycle Completion Conditions 

Completion Condition BUSFLT LRDY 

Wait 0 0 

Successful transfer 0 

Retry 0 

Bus fault 

2.3.2 DRAM and VRAM Control Signals 

Signal Name 

CAMD 

CASO-CAS3 

RAS 

RCAO-RCA12 

SF 

TRlQE 

2-12 

I/O Description 

I Column-address mode. This input dynamically shifts the column address on the 
RCAO-RCA 12 bus to allow the mixing of DRAM and VRAM address matrices us­
ing the same multiplexed address RCAO-RCA 12 signals. 

o Column-address strobes. The CAS outputs drive the CAS inputs of DRAMs and 
VRAMs. These signals strobe the column address on RCAO-RCA 12 to the mem­
ory. The four CAS strobes provide byte write access to the memory. 

o Row-address strobe. The RAS output drives the RAS inputs of DRAMs and 
VRAMs. The high-to-Iow transition on this signal strobes the row address on 
RCAO-RCA 12 to memory. 

o Multiplexed row-address/column-address signals. At the beginning of a 
memory access cycle, the row address for DRAMs is present on RCAO-RCA 12. 
The row address contains the most significant address bits for the memory. As the 
cycle progresses, the memory column address is placed on RCAO-RCA 12. The 
addresses that are actually output during row and column times depend on the 
memory configuration (set by RCMO and RCM1 in the CON FIG register) and the 
state of CAMD during the access. RCAO is the LSB and RCA 12 is the MSB. 

o Special-function pin. This is the special-function signal to 1 M VRAMs. This signal 
allows the use of block write, load write mask, load color mask, and write using write 
mask. This signal is also used to differentiate instructions and addresses for the 
coprocessor as part of the coprocessor interface. 

o Transfer/output enable. This signal drives the TRlQE input of VRAMs. During a 
local-memory read cycle, TR/QE functions as an active-low output enable to gate 
data from memory to LADO-LAD31. During special VRAM function cycles, TRlQE 
controls the type of cycle that is performed. 

o Write enable. The active low WE output drives the WE inputs of DRAMs and 
VRAMs. WE can also be used as the active-low write enable to static memories and 
other devices connected to the TMS34020 local interface. During a local-memory 
read cycle, WE remains inactive high while CAS is strobed active low. During a lo­
cal-memory write cycle, WE is strobed active low before CAS is. During VRAM ser­
ial-data-register transfer cycles, the state of WE at the falling edge of RAS controls 
the direction of the transfer. 

Pinouts and Signal Descriptions 



Signal Descriptions ..... 

2.3.3 Multiprocessor Interface Signals 

Signal Name 

GI 

R1, RO 

The multiprocessor interface allows multiple TMS34020s to share the same 
local memory by providing a requesVgrant protocol for devices that want to ac­
cess shared memory. 

1/0 Description 

Bus grant input. External bus arbitration logic drives GI low to enable the 
TMS34020 to gain access to the local-memory bus. The TMS34020 must release 
the bus if GI is high so that another device can access the bus. 

o Bus request and control. These two signals indicate a request for use of the bus 
in a multiprocessor system; they are decoded as shown below. 

R1 RO Bus Request Type 
o 0 High-priority bus request 
o 1 Bus cycle termination 
1 0 Low-priority bus request 
1 1 No bus request pending 

Q A high-priority bus request provides for VRAM serial-data-register transfer 
cycles, DRAM refresh (when 12 or more refresh cycles are pending), or a host­
initiated access. The external arbitration logic should grant this request as soon 
as possible by asserting Gllow. 

Q A low-priority bus request is used to provide for CPU-requested access and 
DRAM refresh (when less than 12 refresh cycles are pending). 

Bus cycle termination status is provided so that the arbitration logic can determine 
that the device currently accessing the bus is completing an access and other de­
vices may compete for the next bus cycle. A no bus request pending status is output 
when the currently active device does not require the bus on subsequent cycles. 

2.3.4 Host Interface Signals 

The host interface signals are used for communication between the 
TMS34020 and a host processor. Signals input on these pins are assumed to 
be asynchronous with respect to the local clocks (LCLK1 and LCLK2). Signals 
output on these pins are synchronized only when responses are dependent on 
memory cycles that must be generated by the TMS34020. 

The host interface allows the TMS34020's memory to be mapped into a host 
processor's address space. The TMS34020 can act as a DRAM controller for 
a host processor. The address ofthe required access is inputto the TMS34020, 
and data is transferred through external transceivers. 

2-13 



Signal Name 

HA5-HA31 

HBSo-HBS4 

HCS 

HOST 

HINT 

HRDY 

HREAD 

HWRITE 

2-14 

I/O Description 

I 27 host-address input signals. A host can access a long-word by placing the ad­
dress on these lines. HA5-HA31 correspond to the LAD5-LAD31 signals that 
output the address to the local memory. 

4 host byte selects. The byte selects identify which bytes within the long-word are 
being selected. 

Host chip select. A host drives this signal low to latch the current host address pre­
sent on HA5-HA31 and the host byte selects on HBSo-HBS3. This signal also 
enables host access cycles to the TMS34020 I/O registers or local memory. During 
the low-to-high transition of RESET, the level on the HCS input determines whether 
the TMS34020 is halted (HCS is high for host-present mode) or whether it begins 
executing its reset service routine (HCS is low for self-bootstrap mode). 

o Host data strobe. The rising edge of this signal latches data from the TMS34020 
local address space to the external transceivers on host read accesses. It can be 
used in conjunction with H RDY to indicate that data is valid in the external transceiv­
ers. 

o 

o 

o 

Host interrupt. This signal allows the TMS34020 to interrupt a host by setting the 
INTOUT bit in the HSTCTLL I/O register. This signal can also be used to interrupt 
the host if a BUSFLT or RETRY occurs due to a host access cycle. 

Host-data output enable. This signal enables data from the external transceivers 
to the TMS34020 local address space on host write cycles. HOE can be used in con­
junction with HRDY to indicate data has been written to memory from the external 
transceivers. 

Host ready. This signal is normally low and goes high to indicate that the 
TMS34020 is ready to complete a host-initiated read or write cycle. A host can use 
HRDY logically combined with HDST and HOE to determine when the local bus ac­
cess cycles have completed. 

Host read strobe. This signal is driven low during a read request from a host proc­
essor. This notifies the TMS34020 that the host is requesting access to local 
memory orto the I/O registers. HREAD should not be asserted atthe same time that 
HWRITE is asserted. 

Host write strobe. This signal is driven low to indicate a write request by a host 
processor. This notifies the TMS34020 that a write request is pending. The rising 
edge of HWRITE is used to indicate that the data provided by the host in the external 
data transceivers can be written. HWRITE should not be asserted at the same time 
HREAD is asserted. 

Pinouts and Signal Descriptions 



Signal Descriptions 
mo m;nm;;:;;:;:;;: w ::%tI4$~ 

2.3.5 Video Interface Signals 

Signal Name 

CBLNKNBLNK 

CSYNC/HBLNK 

HSYNC 

SCLK 

VCLK 

110 Description 

o Composite blankinglvertical blanking. You can program this signal to select one 
of two blanking functions: 

Q Composite blanking for blanking the display during both horizontal- and verti­
cal- retrace periods in composite-sync video mode. 

Q Vertical blanking for blanking the display during vertical retrace in separate­
sync video mode. 

Immediately following reset, this signal is configured as CBLNK output. 

I/O Composite sync/horizontal blanking. You can program this signal to select one 
of two functions: 

I/O 

Q Composite sync (either input or output as set by a control bit in the DPYCTL 
register) in composite-sync video mode: 

• 

• 

As an input, CSY.NC synchronizes the TMS34020 video-control registers 
to externally generated horizontal-sync pulses. The actual synchronization 
can be programmed to begin at any VCLK cycle; this allows for any external 
pipe lining of signals. CSYNC extracts HSYNC and VSYNC from externally 
generated horizontal-sync pulses . 

As an output, CSYNC is the active-low composite-sync pulse generated 
by the TMS34020's on-chip video timers. . 

Q Horizontal blank (output only) for blanking the display during horizontal retrace 
in separate-sync video mode. 

Immediately following reset, this signal is configured as a CSYNC input. 

Horizontal sync. HSYNC is the horizontal-sync signal that controls external video 
circuitry. You can program this signal to be either an input or an output by modifying 
a control bit in the DPYCTL register. 

Q As an output, HSYNC is the active-low horizontal-sync signal generated by the 
TMS34020's on-chip video timers. 

Q As an input, HSYNC synchronizes the TMS34020 video-control registers to ex­
ternally generated horizontal-sync pulses. The actual synchronization can be 
programmed to begin at any VCLK cycle; this allows for any external pipe lining 
of signals. 

Immediately following reset, HSYNC is configured as an input. 

Serial data clock. This signal is the same as the signal that drives VRAM serial-da­
ta registers. This allows the TMS34020 to track the VRAM serial-data-register 
count, providing serial-register-transfer midline-reload cycles. (SCLK may be 
asynchronous to VCLK; however, it typically has a frequency that is a multiple of the 
VCLK frequency.) 

Video clock. This clock is a derivative of the video system's dotclock and is used 
internally to drive the video timing logic. 

2-15 



Signal Descriptions 

Signal Name 

VSYNC 

I/O Description 

I/O Vertical sync. VSYNC is the vertical-sync signal that controls external video cir­
cuitry. You can program this signal to be either an input or an output by modifying 
a control bit in the DPYCTL register. 

~ As an output, VSYNC is the active-low vertical-sync signal generated by the 
TMS34020's on-chip video timers. 

~ As an Input, VSYNC synchronizes the TMS34020 video-control registers to ex­
ternally generated vertical-sync pulses. The actual synchronization can be pro­
grammed to begin at any horizontal line; this allows for any external pipelining 
of signals. 

Immediately following reset, VSYNC is configured as an input. 

2.3.6 System Control Signals 

Signal Name 

CLKIN 

LCLK1,LCLK2 

LlNT1 , LlNT2 

I/O Description 

I Clock input. This system input clock is used to generate the LCLK1 and LCLK2 out­
puts, to which all processor functions in the TMS34020 are synchronous. A sepa­
rate asynchronous input clock (VCLK) controls the video timing and video registers. 

o Local output clocks. These two clocks are 90 degrees out of phase with each 
other. They provide convenient synchronous control of external circuitry to the inter­
nal timing. All signals output from the TMS34020 (except the CRT timing signals) 
are synchronous to these clocks. 

Local Interrupt requests. Interrupts from external devices are transmitted to the 
TMS34020 on LlNT1 and LlNT2. Each local interrupt signal activates the request 
for one of two interrupt request levels. An external device generates an interrupt re­
quest by driving the appropriate interrupt request pin to its active-low state. These 
signals can be applied asynchronously to the TMS34020 as they are synchronized 
internally before use. The signal should remain low until it is recognized by the 
TMS34020. 

System reset. RESET is normally high. During normal operation, RESET is driven 
low to reset the TMS34020. When RESET is asserted low, the TMS34020's internal 
registers are set to an initial known state, all output pins are driven to inactive levels, 
and all bidirectional pins are driven to a high-impedance state. The TMS34020's be­
havior following reset depends on the level of the HCS input just before the low-to­
high transition of RESET. If HCS is low, the TMS34020 begins executing the instruc­
tions pointed to by the reset vector. If HCS is high, the TMS34020 is halted until a 
host processor writes a 0 to the HLT bit in the HSTCTLL register. 

2.3.7 Power Signals 

Signal Name I/O Description 

Vee Nominal 5-volt power supply inputs (5 pins for the OFP, 9 pins for the PGA) 

Vss Electrical ground inputs (9 pins for the OFP, 17 pins for the PGA) 

Note: For proper TMS34020 operation, all these signals must be connected externally. 

2-16 Pinouts and Signal Descriptions 



:mm§ ;: 

Chapter 3 

Memory Organization and Data Structures 
ii!ml;=:il;mbm::::::!1m~ i ';;l:b::::~·~~ it] wmm~w~ :;:::1$;'" ~'Mmm~1 

iii::: 

Much of the TMS34020's power derives from its flexible memory access. 
Several memory organization features are tailored specifically for graphics 
applications: 

IJi A large memory space supports a variety of display resolutions. 
IJi You can access memory locations with linear or XY addresses. 
IJi The TMS34020 provides hardware support for several data structures: 

• Fields are configurable data structures. A field can begin and end at 
any bit address and can be 1 to 32 bits long. 

• As used by the TMS34020, bytes are a special type of field; byte 
length is fixed at 8 bits. 

• Pixels are configurable data structures; pixel length can be any power 
of 2 in the range of 1 to 32 bits. 

• Pixel arrays are 2-dimensional, rectangular blocks of pixels. 

Additionally, the TMS34020 can be addressed in little-endian or big-endian 
mode, and provides a system stack. Unless explicitly stated otherwise, all 
discussions refer to little-endian addressing. 

Section Page 

Memory organization sections 3.1 Memory Map ........................... 3-2 

illustrate the TMS34020's memory 3.2 Memory Addressing . . . . . . . . . . . . . . . . . . . . .. 3-3 
map and general addressing 

schemes. 

Graphics-specific features 3.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
include hardware-supported data 3.4 Pixels •..........•..................... 3-10 

structures and the ability to use XY . 
addressing. 3.5 XY Addressing .......................... 3-14 

3.6 Converting an XY Address to 
a Linear Address ..•.........•..•........ 3-15 

3.7 Pixel Arrays .........••.......... ,...... 3-18 

Additional features include endian 3.8 Big-Endian and Little-Endian Addressing .... 3-20 
modes and stack operations. 3.9 Stacks ................................ 3-26 

3-1 



Memory Map 

3.1 Memory Map 

Figure 3-1 illustrates the TMS34020 memory map. 

Figure 3-1. TMS34020 Memory Map 

3-2 

_bit232_1 
_ - - (last bit in memory) 

Memory is logically organized as 4 gigabits, but is physically accessed 32 bits 
at a time. Figure 3-1 shows locations as long (32~bit) words, identified by 32-bit 
addresses. Word addresses range from 0000 OOOOh to FFFF· FFEOh (bit 
address 0000 OOOOh is the rightmost bit in the word at the bottom of 
Figure 3-1, and bit address FFFF·FFFFh is the leftmost bit in the word at the 
top.) Reading or writing to an address in the range COOO OOOOh to COO a 03EOh 
accesses an internall/Oregister. (An external memory cycle is also generated 
on accesses to these locations, allowing the lID registers to be shadow 
mapped in external memory.) Reading or writing to any address outside this 
range accesses external memory (or a memory-mapped device). 

Memory Organization and Data Structures 



Memory Map I Memory Addressing 
:::!Y..x:::;m:.;:;~::::::x::::-.:::::::::m~Z»'!o-:;::-~~~%'Yx~~~,.;:::-;:w..:;~;:;~::-::~~~~»m::-;::-m~~~::::::::::::-;:;~w~~~$:'.:::;::::~..xx~::-;:;~%::»m~~::x::::;:x::.:::;:;:;~::.m::::;:;~m;::;-/m~:::;~::::::.~:::~~::::::::~~~7;::::-':::::::-~":::' 

As Figure 3-1 shows, memory is divided into several regions: 

o General use 

Address ranges Oh-BFFF FFEOh and COOO 2000h-FFFF DFEOh are 
for general use (executable code, data tables, etc.). 

o I/O registers 

Addresses COO a OOOOh-COOO 03EOh are reserved for the internal 1/0 
registers. Chapter 4 discusses the 110 registers; it contains a map of this 
memory area that associates each 1/0 register with the appropriate 
address. 

o Interrupt, reset, and trap vectors 

Addresses FFFF FBCOh-FFFF FFEOh are reserved for 34 interrupt, 
reset, and trap vectors. A vector is a 32-bit address that points to the start­
ing location in memory of the appropriate interrupt, reset, or trap service 
routine. Chapter 6 contains more information about interrupts and traps. 

o Reserved memory 

Addresses COOO 0400h-COOO 1 FEOh are reserved for future expansion 
of the 1/0 registers. Addresses FFFF EOOOh-FFFF FBAOh are reserved 
for future expansion of the interrupt vectors. 

3.2 Memory Addressing 

The TMS34020 is a bit-addressable machine with a 32-bit memory address. 
The total memory capacity is 4 gigabits (512 Mbytes). Memory is accessed as 
a continuously addressable string of bits; each 32-bit address points to an indi­
vidual bit within memory. Bit addresses range from 0000 OOOOh to 
FFFF FFFFh. 

Figure 3-2 illustrates the TMS34020's logical memory structure. 

Figure 3-2. Logical Memory Address Space 

3-3 



Memory Addressing 
z::::-,::::::::::::,w,:::·~""""' .......... X%:'~:;z:;::::::xm;:;:;z:;~..::x.x1:;:;:;~~;:;:rq~;:;:::;:;:>::::~::::~z:;::m:;-~ .............................. ~~~m:;:.:::::m;w.;:;:::;z:;zz:;:;:;-m:;::~'ZZ~~:r...$~'§:>:::;~:;m-~%Z:"~;:;:;z:;x .......... ::r~:>:>%::~ili""..;.~z~ 

Figure 3-3 illustrates physical memory organization. 

Figure 3-3. Physical Memory Addressing 

3-4 

The TMS34020 communicates with memory over a 32-bit address/data bus 
(LADO-LAD31) and always reads a complete long (32-bit) word from 
memory. Writes to memory may be 8-, 16-, 24-, or 32-bit values through the 
use of the TMS34020's CAS (byte) strobes. 

A long-word accessed during a memory cycle always begins on a 32-bit bound­
ary; thus, the 5 LSBs of the 32-bit starting address of the word are always Os. 
Bits within a word are numbered from 0 to 31; bit 31 is the MSB and bit 0 is the 
LSB. A word is identified by the address of its LSB.The LSB of a memory word 
is depicted as the rightmost bit in the word. 

The 4 LSBs of the 32-bit logical address in Figure 3-3 do not appear on the 
LAD bus. Bit 4 is output for use with 16-bit memory devices only. When the 
TMS34020 accesses a field that does not begin and end on long-word bound­
aries, these 5 LSBs are used internally to identify a bit boundary within an 
accessed long-word. 

Internal logic automatically performs the bit alignment and masking necessary 
to extract a field from physical memory; this is completely transparent to soft­
ware. Similarly, inserting a field into memory may require a series of read and 
write cycles, accompanied by internal masking and shifting of data to properly 
align the data structure within memory. The memory control logic performs 
these tasks automatically. 

Memory Organization and Data Structures 



3.3 Fields 

Fields 

The TMS34020 supports 2 software-configurable field types, field 0 and field 
1. A field is defined by 2 parameters: 

I::i Starting address. A field's starting address is the address of the field's 
LSB. A field can begin at an arbitrary bit address in memory. When a field 
is moved from memory to a general-purpose register, the field is right-justi­
fied within the register; that is, the field's LSB coincides with the register's 
rightmost bit (bit 0). The register bits to the left of the field are all 1 s or all 
Os, depending on the values of both the appropriate FE (field extension) 
status bit and the field's sign bit (MSB). If FE=1 the field is sign-extended; 
if FE=O, the field is zero-extended. 

I::i Field size. Field size can range from 1 to 32 bits. The lengths of fields 0 
and 1 are defined by two 5-bit fields in the status register, FSO and FS1. 

Figure 3-4 identifies the status bits that control the size and extension of field 
o and field 1. Table 3-1 shows how the field size is encoded in FSO and FS 1. 

Figure 3-4. Status Bits That Control Field 0 and Field 1 

Note: For a complete description and illustration of the ST, see Chapter 4. 

Table 3-1. Decoding the Field-Size Bits in the Status Register 

Field Field Field Field 
5 FS Bits Size 5 FS Bits Size 5 FS Bits Size 5 FS Bits Size 

00001 1 01001 9 10001 17 11001 25 

00010 2 01010 10 10010 18 11010 26 

00011 3 01011 11 10011 19 11011 27 

00100 4 01100 12 10100 20 11100 28 

00101 5 01101 13 10101 21 11101 29 

00110 6 01110 14 10110 22 11110 30 

00111 7 01111 15 10111 23 11111 31 

01000 8 10000 16 11000 24 00000 32 

Figure 3-5 illustrates a field in memory. In this example, the field straddles the 
boundary between words nand n+ 1 in memory. Field extraction and insertion 
is performed by on-chip hardware: 

I::i To move the field to a general-purpose register, the TMS34020 extracts 
the field from memory by reading word n and word n+ 1 in separate cycles. 

3-5 



Fields 

!J To move the field from a general-purpose register, the TMS34020 inserts 
the field into memory by reading and writing word n and reading and writing 
word n+ 1. 

The memory operations necessary to insert or extract a field are performed 
automatically by special hardware and are transparent to software. 

Figure 3-5. Field Storage in External Memory 

3-6 

In Figure 3-5, word n is pointed to by a 27-bit physical address, output by the 
TMS34020 to memory. This 27-bit address corresponds to bits 5-31 of the 
field's 32-bit logical address. The 5 LSBs of the logical address point to the 
beginning of the field within word n. 

The number of memory cycles required to extract or insert a field depends on 
how the field is aligned within memory. Field manipulation is more rapid when 
fields are stored in memory so that they do not cross word boundaries. 
Figure 3-6 illustrates various cases of alignment and nonalignment of fields 
to word boundaries in memory. Given a field starting address and field length, 
the memory controller will recognize the specified field alignment as one of the 
6 cases in Figure 3-6. Field extraction and field insertion are performed in a 
manner that requires the minimum number of memory cycles. 

!J Cases A 1-A4. The field begins and ends on byte boundaries within a 
single word. 

• In Case A 1, the field is 8 bits wide and the starting address is aligned to 
a byte boundary within a word. 

• In Case A2, the field is 16 bits wide and the starting address is aligned 
to the first, second, or third byte boundary within a word. 

• In Case A3, the field is 24 bits wide and is aligned to the first or second 
byte boundary in a word. 

• In Case A4, the field is 32 bits wide and is word-aligned. 

For Cases A 1-A4, a field extraction requires a single read cycle, and a 
field insertion requires a single write cycle. 

Memory Organization and Data Structures 



Figure 3-6. Field Alignment in Memory 

[Ji Case B. The field does not straddle a word boundary and does not begin 
and end on byte boundaries (that is, either it is not aligned on a byte bound­
ary, or it is aligned on a byte boundary but is not a multiple of 8 bits). A field 
extraction requires a single read cycle. A field insertion requires the follow­
ing sequence of memory cycles: 

• Read word n 
• Write word n 

[Ji Case C. The field straddles the boundary between 2 words and begins and 
ends on byte boundaries. A field extraction requires the following 
sequence of memory cycles: 

• Read word n 
• Read word n+ 1 

3-7 



Fields 

3-8 

A field insertion requires the following sequence or memory cycles: 

• Write word n 
• Write word n+1 

Il Case D. The field straddles the boundary between 2 words. The field 
address is byte aligned, but the end of the field does not coincide with the 
end of a byte. A field extraction requires the following sequence of memory 
cycles: 

• Read word n 
• Read word n+ 1 

A field insertion requires the following sequence of memory cycles: 

• Write word n 
• Read word n+1 
• Write word n+ 1 

Il Case E. The field straddles the boundary between 2 words. The end of the 
field is byte aligned, but the start is not. A field extraction requires the 
following sequence of memory cycles: 

• Read word n 
• Read word n+ 1 

A field insertion requires the following sequence of memory cycles: 

• Read word n 
• Write word n 
• Write word n+ 1 

Il Case F. The field straddles the boundary between 2 words and neither the 
start nor the end of the field is aligned to a byte boundary. A field extraction 
requires the following sequence of memory cycles: 

• Read word n 
• Read word n+1 

A field insertion requires the following sequence of memory cycles: 

• Read word n 
• Write word n 
• Read word n+1 
• Write word n+ 1 

A field insertion modifies only the portion of a word that lies within a field. The 
TMS34020 memory controller must perform a read-modify-write operation 
when afield that does not begin and end on byte boundaries is written to 
memory. The memory controller uses these 2 parameters (address LSBs and 

Memory Organization and Data Structures 



Fields 

field size) to produce a mask that identifies the bits in the word corresponding 
to the field. Hardware uses the mask to perform the read-modify-write cycle. 
The TMS34020's local memory control logic automatically generates the mask 
and executes the read-modify-write operation; this is transparent to the 
software. 

Figure 3-7 shows an example of inserting a 14-bit field stored in a register to 
logical address 0000 0007h. 

Figure 3-7. Field Insertion 

(a) Field to be inserted 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X IfillfllflfilFlfillfJlflfil·elfilelfilfid 

(b) Rotate to align to bit 7 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X \filfillflFIF·lgI15IelflelfiI F \fiIFI X 1 X 1 X 1 X 1 X 1 X 1 X 1 

(c) Initial destination data 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
IAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAIAI 

(d) Mask generated 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
10101010101010101010101111111111111111111111111111101010101010101 

(e) Field destination data 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
IAIAIAIAIAIAIAIAIAIAIAIFleIFIFlfII7IFIFlfilFII7IFl!5IFIAIAIAIAIAIAIAI 

(a) The field to be inserted is shown right-justified in the designated 
general-purpose register. 

(b) The CPU has rotated the field to align it with the destination in memory. 

(c) The TMS34020 reads the original word from the destination in memory. 

(d) The mask is generated to designate the bits to be modified. 

(e) The field is inserted into the word from memory, and the result is written 
back to the destination address in memory. 

In the more complex case in which a field straddles a word boundary in 
memory, the portion of the field lying within each word is inserted into that word 
using the methods described above. 

3-9 



Pixels 

3.4 Pixels 

The term pixel has two meanings in the context of a TMS34020-based graph­
ics system. Outside the TMS34020, a physical pixel is a picture element on a 
display surface. Inside the TMS34020, a logical pixel is a software configurable 
data structure supported by the TMS34020 instruction set. The logical pixel 
data structure in TMS34020 memory contains the information needed to speci­
fy the attributes of a picture element visible on a screen. The information for 
a horizontal line of pixels on a screen is usually stored in consecutive words 
in memory. 

3.4.1 Pixels in Memory 

Within TMS34020 memory, the pixel data structure is defined by 2 parameters: 

IJi its starting address (the address of the pixel's LSB) and 

IJi the pixel size (the number of bits per pixel). 

The PSIZE register defines the current pixel size. A pixel can be 1, 2, 4, 8, 16, 
or 32 bits long. The TMS34020 treats pixels as a special case of a field in which 
the field size is constrained to be a power of 2. Unlike other memory fields, pix­
els do not cross long-word boundaries within memory; they are aligned within 
memory so that a memory word contains an integral number of pixels. For 
example, a 2-bit pixel should begin at a bit address whose LSB is 0, a 4-bit pixel 
should begin at a bit address whose 2 LSBs are Os, and so forth. 

When a pixel is moved from memory to a general-purpose register, the pixel 
is right-justified within the register. That is, the pixel's LSB coincides with the 
rightmost bit (bit 0) of the register. Register bits to the left of the pixel are loaded 
with Os. 

Figure 3-8 illustrates pixel storage in memory. The pixel is located within the 
word pointed to by the 27-bit physical address corresponding to bits 5-31 of 
the pixel's 32-bit logical address. The 5 LSBs of the logical address specify the 
displacement of the pixel within the word. When the pixel length is less than 
32, each word contains 2 or more pixels. 

Figure 3-8. Pixel Storage in External Memory 

3-10 Memory Organization and Data Structures 



Pixels 

On-chip hardware performs pixel extraction and insertion in a manner that 
requires the minimum number of memory cycles. (The operations are trans­
parentto software.) Two memory cycles (a read followed by a write) are always 
required to insert a pixel of less than 8 bits. Inserting an 8-, 16-, or 32-bit pixel 
requires a single write cycle (unless plane masking is enabled). Extracting a 
pixel (1 to 32 bits) requires a single read cycle. 

3.4.2 Pixels on the Screen 

Figure 3-9 illustrates the mapping of pixels from memory to a display screen. 
The screen-refresh function outputs pixels in the sequence of ascending pixel 
addresses. However, the electron beam sweeps from the left edge of the 
screen to the right edge during each horizontal scan interval, so pixels appear 
on the screen in the opposite order of their representation in memory. That is, 
the least significant pixel (in terms of bit address) appears on the left, and the 
most significant pixel appears on the right. 

Figure 3-9. Mapping of Pixels to a Monitor Screen 

word word word 
• _n,:-j or _ A or _nj-j • 

The TMS34020 allows you to identify a pixel in terms of its XV coordinates on 
the screen or in terms of the address of the logical pixel in memory. These 2 
methods are called XV addressing and linear addressing, respectively. 

When you use XV addressing, you can select the origin to lie in either the upper 
left or lower left corner of the screen. The DPVST and DING registers control 
the origin's position. Figure 3-10 (a) illustrates the default coordinate system 
in which the origin of the 2 coordinate axes is located in the upper left corner 
of the screen. In this system, DPVST contains the address of the pixel at the 
upper left of the screen, and DING contains the display pitch. Figure 3-10 (b) 
shows the alternate coordinate system in which the origin is located in the lower 
left corner of the screen. In this case, DPVST contains the address of the pixel 
at the lower left of the screen, and DING contains the 2s compliment of the 
display pitch. 

3-11 



Pixels 

Figure 3-10. Configurable Screen Origin 
(a) Default screen origin (b) Alternate screen origin 

Using the default screen origin, Figure 3-11 illustrates the mapping of pixels 
from the memory to the screen. In Figure 3-11, horizontal movement repre­
sents travel in the X direction on the screen. Vertical movement represents 
travel in the Y direction. The depth of the buffer represents the pixel size. The 
on-screen memory contains the pixels that appear on the screen. 

In Figure 3-11 , the display memory is shown in terms of a screen format, rather 
than the memory format used in the memory map in Figure 3-1 (page 3-2). 
The screen format places the lowest pixel address at the upper left corner of 
the memory map. This is the same relative orientation in which the pixels 
appear on the screen. Compare this to the memory format shown in 
Figure 3-1, which places the lowest bit address at the lower right corner of the 
memory map. This convention is frequently used in industry to represent the 
relative location of addresses in memory. In this user's guide, assume the stan­
dard format is used unless the screen format is explicitly indicated. 

Figure 3-11. Display Memory Dimensions 

3-12 

on-screen 
memory 

off-screen 
memory 

Memory Organization and Data Structures 



Pixels 

Figure 3-12 illustrates the mapping of XV coordinates to on-screen memory. 
For simplicity, assume that the screen origin coincides with the upper left cor­
ner of the display memory. p represents the X extent of the display memory; 
n represents the V extent. Each box represents a pixel within the memory; the 
number in the box represents the pixel's memory location, relative to the begin­
ning of the on-screen memory. 

Figure 3-12. Display Memory Coordinates 

irlllll~~m~~llllllillllliil;tisPI!'Y pitch = (X extent) x (pixel size) differences in 32-bit 
memory addresses of 
2 vertically adjacent p-2 
pixels 

p p+1 p+2 p+3 2p-2 2p-1 

2p 2p+ 1 2p+2 2p+3 3p-2 

(n-2)p (n-2)p 

Display memory 
p = X extent 
n = Yextent 

i (\il-_--t---:.+....:..1-+........;.;+2~1__=-_I _-f...J.===I:=:::::;tItp-- Each box contains a pixel. The 

(n-1)p (n-1)p (n-1)p np-2 np-1 number inside the box is the 
+ 1 +2 pixel's linear address. 

3.4.3 Display Pitch 

Display pitch is the difference in memory addresses between 2 pixels that are 
vertically adjacent on the screen (one is directly above the other). In 
Figure 3-12, the pitch is calculated as p times the pixel size, where p is the X 
extent of the display memory. The pixel size is constrained to be a power of 2, 
so the multiply can be replaced by a shift operation. Array pitch is the differ­
ence in memory addresses of 2 vertically adjacent pixels in the array. If the 
array occupies a rectangular area on the screen, the array pitch is the same 
as the display pitch. 

During a pixel operation such as a PIXBLT, the source array pitch, destination 
array pitch, and (if it is a masked PIXBLT) mask array pitch are defined in sepa­
rate, dedicated hardware registers. This eases the transfer of pixel arrays 
between on-screen and off-screen memory, which may have different pitches. 

As an example, here's how you would calculate the display pitch if the pixel size 
= 4 bits and the X extent of the pixel display = 1024 pixels: 

display pitch = (1024 pixels per line) x (4 bits per pixel) 
= 4096 (which is 212) 

Note that the TMS34020 does not require the display pitch to be a power of 
2, as was the case for the TMS3401 O. 

3-13 



XY Addressing 
~~:::::::;m:::::.:::::::::::~~~~~ _____ ::::::,.#'~~~;:."%~::1:'~:::Z::::. ~ ;~~::::::::m~ 

3.5 XV Addressing 

The TMS34020 allows you to define pixel addresses in terms of 2-dimensional 
XV coordinates that correspond to screen locations. This is referred to as XV 
addressing. XV addressing has several benefits: 

Q TMS34020 software can be easily ported from one display configuration 
to another. System-dependent details, such as the number of bits per pixel 
and the X extent of the display memory, are transparent to the software. 
However, these are used by the machine to automatically convert the XV 
coordinates to the address of a pixel in memory. 

Q XV addressing allows you to think in terms of the high-level concept of XV 
coordinates rather than in terms of the machine-level mapping of pixels 
into memory. 

Q XV addressing facilitates operations such as window checking. 

The TMS34020 supports XV coordinates in the range (-32768,-32768) to 
( +32767,+32767). 

The TMS3401 0 did not support signed XV values, as the TMS34020 does. 

Figure 3-13 illustrates the XV addressing format. 

Figure 3-13. Pixel Addressing in Terms of XY Coordinates 

3-14 

In Figure 3-13, a 32-bit general-purpose register contains an XV address. The 
X and V components are treated as separate16-bit signed integers. The X 
component is right-justified within the 16 LSBs of the register. The V compo­
nent is right-justified within the 16 MSBs of the register. 

Memory Organization and Data Structures 



Converting an XV Address to a Linear Address . 

3.6 Converting an XV Address to a Linear Address 

For all instructions that use XY addressing, the TMS34020 automatically con­
verts a pixel's XY address to a 32-bit logical address (linear address). The 
TMS34020 uses four parameters to perform XY-to-linear conversion: 

logical pixel size 

pitch conversion 
factor 

actual pitch 

offset 

defined in the PSIZE register 
defined in the CONVSP, CONVDP, or CONVMP reg­
ister 
defined in the SPTCH, DPTCH, or MPTCH register 
if the conversion involves a pitch that is not a power 
of 2 or a sum two of powers of 2 
specifies the XY origin, defined in the OFFSET regis­
ter 

The TMS34020 uses the following formula to calculate the physical address 
associated with the XY address: 

address = [(Y x display pitch) + (X x pixel size)] + offset 

Because the pixel size must always be a power of 2, the multiplication of the 
X component is performed using a shift operation. The method of calculating 
the Y component depends on the pitch value. 

If the pitch is ••• 

a power of 2 

two powers of 2 

an arbitrary pitch (not a 
power of 2 and not two 
powers of 2) 

This is how the V value is calculated 

The TMS34020 performs a left shift. The amount that 
the component is shifted is contained in the lower half 
of the appropriate CONVxP register. 

The operation is performed by summing 2 shifts of the 
V value. The number of bits to be shifted during the first 
and second shifts are contained in the lower and upper 
halves of the appropriate CONVxP register, respective­
ly. This adds a cycle to each conversion. 

The TMS34020 must perform a full 16-bitx32-bit multi­
ply.ln this case, the appropriate xPTCH register is used 
directly as the multiplier of the Yvalue. This adds about 
12 cycles to each conversion. 

The TMS34020 must perform one or more XY -to-linear conversions for the fol­
lowing instructions: 

CVDXYL 
CVMXYL 
eVSXYL 
CVXYL 
DRAV 

FILLXY 
FLiNE 
LINE 
PIXBLT B, XY 

PIXBLTL, XY 
PIXBLTXY, L 
PIXBLT XV, XY 
PIXTs 

3-15 



Converting an XY Address to a Linear Address 

3-16 

The TMS34020 uses the pitch conversion factors in the CONVSP, CONVDP, 
and CONVMP registers to calculate the V component of an address. 

CONVSP (source pitch) is used ifthe XV address points to a source pixel or 
pixel array. 

CONVDP (destination pitch) is used if the XV address points to a destina­
tion pixel or pixel array. 

CONVMP (mask pitch) is used for calculating the correct value when using 
a binary mask array. 

Before executing an instruction that uses XV addressing, use the SETCSP, 
SETCDP, or SETCMP instruction to load the value for the appropriate register. 

The TMS34020 uses the PSIZE value to determine the displacement of the X 
component. 

The OFFSET register contains the linear memory address of the pixel located 
at coordinates (O,O). The TMS34020 uses the OFFSET register when translat­
ing XV coordinates into linear addresses. (Note that OFFSET does not control 
which region of the display memory is output to refresh the video screen-it 
is a virtual screen origin.) This allows the coordinate axes of the XV address 
to be translated to an arbitrary position in memory. The OFFSET register sup­
ports the use of window-relative addressing in which the XV coordinates are 
specified relative to coordinate offsets in the display memory. The window's 
position and size can be specified arbitrarily. Vou can use the CVXVL instruc­
tion to convert a new XV offset to a linear address. CVXVL converts an XV 
address to a linear address for the purpose of absolute memory addressing, 
orfor using special features available to instructions that use linear addressing. 
Figure 3-14 illustrates the XV-to- linear conversion process. 

Memory Organization and Data Structures 





Pixel Arrays 

3.7 Pixel Arrays 

Figure 3-15. Pixel Array 

3-18 

A rectangular area of the screen that is OX pixels wide and OV pixels high is 
an example of a data structure called a 2-dimensional pixel array. An array 
may contain many pixels, but the TMS34020 can manipulate an array as a 
single structure. The TMS34020's instruction set includes a powerful set of ras­
ter operations, called PIXBLTs (pixel-block transfers), that manipulate pixel 
arrays on the screen and elsewhere in memory~ 

Figure 3-15 shows a pixel array that occupies a rectangular area in display 
memory. The pixels in each row are packed together into adjacent cells in the 
display memory. Rows don't usually occupy adjacent areas of memory; they're 
separated from each other by a constant displacement (the array pitch). The 
array pitch is the difference in memory addresses between 2 vertically adjacent 
pixels. In Figure 3-15, the array pitch equals the display pitch. The product of 
the array width (OX) and the pixel size must be less than or equal to the pitch. 

______ ~A~ ____ __ 

L / " 
I 

14-1. -- ox ---t-I 

I 
1 

Ku.;. ox = pixels per row of array OY = pixels per column of array 

A pixel array is specified in terms of its width, height, pitch, and starting ad­
dress. The starting address is usually the address of the first pixel to be moved 
during a PIXBLT. The default starting address is simply the base address in the 
array-that is, the address of the pixel with the lowest address in the array. 

In Figure 3-15, the XV origin is located in its default position at the upper left 
corner of the screen. The default starting address is the address of the pixel 
located in the upper left corner of the array. When a PIXBLT operation moves 
the pixels from a source pixel array to a destination array, the pixels in each 
row are moved in sequence from left to right, and the rows are moved in 
sequence from top to bottom. 

Certain PIXBLT operations allow the starting pixel to be specified as the pixel 
in one of the other three corners of the array. This feature is provided so that 
when the source and destination arrays overlap, the appropriate starting 
corner can be selected to insure that no data is lost by being overwritten during 

Memory Organization and Data Structures 



Pixel Arrays 
~":::::::=.....",...... .... ;;:;;W:;~~X"'~:::::::::::::::::7Z""""""';:;''''';:;'·':::::;.::::::@.:::r~'.:::::''::;::::::''W''''''''''",=~,~~~-:::;:;:;r..x',x::.;:~::::::,.-::::::-,::;~~..::::::~.:::~~::::u::::~~:::::;:;:;:;w .. -::~~~~r..:;~~~::-;~:;:;~~~w~:::.,::m;=·::::"""····"" .... ~:;:; ...................... =m 

PIXBlT execution. The order in which pixels in the array are moved can be 
altered to be from right to left and from bottom to top, as appropriate, to accom­
modate the change in the starting corner. 

The starting address of a pixel array can be specified in terms of either the XY 
coordinates of the starting pixel (XY address), or the memory address of the 
starting pixel (linear address): 

Q An array whose starting location is specified as an XY address is referred 
to as an XY array. In this format, the starting location of the array is identi­
fied by the XY coordinates of the first pixel in the array. 

Q A pixel array whose starting location is specified as a memory address is 
referred to as a linear array. In this format, the location of the array is identi­
fied by the memory address of the first pixel in the array. 

The XY array format has 2 advantages. First, the starting location of the array 
is given in system-independent Cartesian coordinates, rather than as a 
system-dependent memory address. Second, using XY addressing allows you 
to take advantage of the TMS34020's window checking facilities (which allows 
it to automatically detect an attempt to write a pixel inside or outside a defined 
area). 

The linear format's main advantage is that it allows PIXBlTs to execute more 
quickly because it eliminates th_e need to translate from XY to linear format 
before accessing memory. 

The general rules governing array pitch are 

Q When an array is specified in XY format, the pitch can be any multiple of 
the pixel size. However, PIXBlT operations performed on XV-format 
arrays are most efficient if the pitch is a power of 2. 

Q When an array is specified in linear format, the pitch must be a multiple of 
the pixel size. For the special case of a PIXBlT B,XY or PIXBlT B,l 
instruction, the source pitch may be any value. (Note that this corresponds 
to a pitch that is a multiple of the pixel size where the pixel size is 1.) This 
feature supports efficient use of memory by allowing adjacent rows of the 
source array to be packed together with no intervening gaps. 

PIXBlTs are useful for moving arrays from one area of the screen to another; 
they can also be used to move arrays to the screen from other parts of memory, 
and vice versa. The pitch for the off-screen pixel array can be specified inde­
pendently of the pitch for the on-screen array. This allows you to store 
off-screen data efficiently, regardless of the display pitch. On-screen objects 
can be defined as XY arrays but may be more efficiently stored as linear arrays 
in off-screen memory. The PIXBlT instructions support the transfer of a linear 
array to an XY array, and vice versa. PIXBlT instructions can also be used to 
rapidly move blocks of nonpixel data (for example, ASCII characters) from one 
memory location to another. 

3-19 



Big-Endian and Little-Endian Addressing 

3.8 Big-Endian and Little-Endian Addressing 

The TMS34020 allows you to address fields within memory in one of two 
ways-in little-end ian or big-endian mode. 

Note: 

Unless specifically stated otherwise, all illustrations and discussions in this 
user's guide refer to little-end ian mode. 

The TMS3401 0 uses little-end ian addressing only. 

3.8.1 Selecting Big-Endian or Little-Endian Mode 

The value of BEN[CONFIG] determines which endian mode the TMS34020 
will use for addressing. 

Figure 3-16. How BEN I[ CONFIGJ] Determines the Endian Mode 

3-20 

BEN=O selects 
little-end ian mode 

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 BEN=1 selects 
II II II II II II II II II II II II II II II II II II II II II II II II II big-endian mode 

Note: For a complete illustration and description of CONFIG, see Chapter 4. 

You can set BEN in one of two ways: 

o By writing to CON FIG via the host interface. In this case, the TMS34020 
should be halted. 

o By resetting the TMS34020. At the end of the reset routine, the TMS34020 
copies the 4 LSBs of the reset vector into the 4 LSBs of the CON FIG regis­
ter. 

Program code should not change bits 0-2 of the CON FIG register; this could 
cause unpredictable behavior. To ensure that code doesn't accidentally 
change these bits, you can set CBP[CONFIG] to write-protect the LSbyte of 
CONFIG. 

Memory Organization and Data Structures 



Big-Endian and Little-Endian Addressing 
=="""" __ ======_=="".,, __ .... W'""X'X~=mx=' ==""',~ *" *"~~mw .. W;";';'~ ;''itm ;;m:,s ~ 

Figure 3-17. How CBP [[ CONFIG]] Write-Protects CONFIG's LSbyte 

31 
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CBP=O offers no ~j 

1oiII"-'1111I:;.111oIIl:;lll..III1::...l11 u:;...111 ~III-'Il:II;.."j1 ~III 1I:;.111..u:;111..u:1;..u11 1:;.jlllll:;.IIIoIIl:;II.oIII l::...lll u:;...111 ~III-'Il:II;.."j1 ~III II:J.II __ ........u:;...w:;...~...u:;..a write protection I 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CBP=1 write-protect~ 

1oiII"-'111I:;.11oIIl:;ll..III1::...l1 u:;...11~II-'Il:II~IIII:;.II..u:;II..u:I;..u1 1:;.j111l:;.11oIIl:;ll.oII1::...l1 u:;...11~II-'Il:II~IIII:J.II __ ........u:;...w:;...~...u:;..a CONFIG's LSbyte ~ 

You can set CBP in one of three ways: 

I:l By writing to CON FIG via the host interface. 

I:l By resetting the TMS34020. At the end of the reset routine, the TMS34020 
copies the 4 LSBs of the reset vector into the 4 LSBs of the CON FIG regis­
ter. 

I:l By allowing TMS34020 program code to write to this bit. If you do this, be 
sure that you don't alter bits 0-2 of CON FIG. 

The only way to clear CBP is by resetting the TMS34020. CBP will remain 
cleared only if bit 3 of the reset vector is also 0 (if it's 1, then a reset will write 
a 1 back to CBP). 

3.8.2 How the TMS34020 Accesses Memory in These Modes 

The following descriptions uses several terms and conventions: 

I:l The terms least significant bit (LSB) and most significant bit (MSB) define 
specific bits within a 32-bit long-word, or specific bits within a field. These 
terms refer to the arithmetic significance of these bits. 

I:l The following illustrations show the MSB of a field or long-word on the left 
side. The bits at the ends of the word are numbered 0 or 31 , implying that 
the bits within a long-word are numbered 0 through 31. The 0 and 31 are 
positioned so that the implied number associated with each bit is its appro­
priate bit address within the long-word. The manner in which the 
TMS34020 addresses these bits differs in the two modes. 

I:l Note also that there are two frames of reference for data; illustrations show 
data in 

• memory or an I/O register or 
• a general-purpose register. 

The TMS34020 is primarily a little-endian processor; its method for placing 
data in a general-purpose register reflects this. 

3-21 



Big-Endian and Little-Endian Addressing 

Little-endian mode -----------------------

This is the TMS34020's default mode. Figure 3-18 shows the same 32-bit 
hexadecimal value (01234 ABCDh) in a register and in a long-word in memory. 
Note that this illustration shows the MSB (bit 31) on the left side. 

Figure 3-18. How Data Is Represented in Little-Endian Mode 

(b) Data in a register 

(a) Data in memory at 
address 0000 1000h 

Figure 3-19 shows how the TMS34020 uses little-end ian mode to access an 
8-bit field that starts at bit 4 within the long-word. Notice that for little-endian 
mode, the field's bit address is determined by counting in from the LS (little) 
end of the long-word. 

Figure 3-19. Addressing a Field in a Long-Word (Little-Endian) 

If you want to move this 8-bit data field into a general-purpose register, you 
might execute the following instructions: 

SETF 8,0,0 
MOVE @00001004,AO,0 

Figure 3-20 shows how the TMS34020 places this data into AO. 

Figure 3-20. Moving a Field into a General-Purpose Register (Little-Endian) 

3-22 

Note that the data is right-aligned within the register, so that the LSB of the field 
coincides with the register's LSB. 

Memory Organization and Data Structures 



Big-Endian and Little-Endian Addressing 
...... ~=:;'···x:::···'·YN'··',w'w*wur.·.w&~.::x::m::;:~~;z:;:;~;:;:::~;:;:~::::::~.:::-(.::::::~:~;::::W«<~~'':::::::::::::::::::::XW'':::'''';:;::::··:::~::::::::;X(~;z:::::<.:::;z:::~;z::::::-;:;:;-x.·%:::~~·.,"':::".;:,.::;,.~.~.«::;:~~::;:~~::::::;:::~..;:;:;:~~~~:X(~~~:x::.:;::.:: 

Big-endian mode -------------------------

Figure 3-21 shows the same 32-bit hexadecimal value (01234ABCDh) in a 
register and in a long-word in memory. This illustration shows the MSB on the 
left side. The register's MSB is bit 31; the long-word's MSB is bit o. 

Figure 3-21. How Data Is Represented in Big-Endian Mode 

(b) Data in a register 

(a) Data in memory at 
address 0000 1000h 

Figure 3-22 shows how the TMS34020 uses big-end ian mode to access an 
8-bit field that starts at bit 4 within the long-word. Notice that for big-end ian 
mode, the field's bit address is determined by counting in from the MS (big) end 
of the long-word. 

Figure 3-22. Addressing a Field in a Long-Word (Big-Endian) 

If you want to move this 8-bit data field into a general-purpose register, you 
might execute the following instructions: 

SETF 8,0,0 
MOVE @00001004,AO,0 

Figure 3-23 shows how the TMS34020 places this data into AO. 

Figure 3-23. Moving a Field into a General-Purpose Register (Big-Endian) 

Note that the data is right-aligned within the register, so that the LSB of the field 
coincides with the register's LSB. 

3-23 



Big-Endian and Little-Endian Addressing 
~"%.::::::~~-::;:,~~.x:::w~=V%:_" __ ~~~~~~"m_'''''''~=' ""'""'-=_*" ..... _;::::'''''''::-x ...... ~~ 

Differences between big- and little-endian modes -------------

Q The TMS34020 accesses 32-bit-wide, 32-bit-aligned fields in the same 
manner for both modes. Differences between the two modes are apparent 
only when data is not 32 bits long-or when it is not aligned to a 32-bit bound­
ary within memory. 

Q In both modes, data is right-aligned when it is moved into a general­
purpose register. 

Q In big-endian mode, bits within a field or long-word are renumbered, not 
reordered. 

3.8.3 Assembling Code for Big-Endian or little-End ian Addressing 

The TMS34020 assembler can produce object code for Iittle-endian or big­
endian mode. By default, the assembler produces Iittle-endian code; if you 
want it to produce big-endian code, be sure to use the -e assembler option. 

To assemble little-endian code To assemble big-end ian code 

gspa filename gspa -e filename 

(For more information about the assembler, refer to the TMS340 Family Code­
Generation Tools User's Guide.) 

If you compare the listing files of big- and little-end ian code, you'll find no differ­
ences in the listed object code. Figure 3-24 shows a listing file with object 
code. For ease of reading, the assembler lists object code in the same manner 
for both Iittle- and big-end ian code. 

Figure 3-24. Sample Listing File (Assembler Outpulj for Liftle-Endian and Big-Endian Code 

3-24 

I 0001 00000000 aabbccdd .long OAABBCCDDh 
0002 00000020 0geO MOVI 11223344h, AD 

00000030 11223344 

I 
0003 00000050 0380 ASS AD 
0004 00000060 09C1 MOVI 6677h, A1 

00000070 6677 

t l ------ object code 

Although the object code in the listing file looks the same for both modes, the 
assembler actually creates different object code for the two modes. If you're 
writing a loader, it's important to know how to load the object code into memory. 
Figure 3-25 demonstrates this. 

Memory Organization and Data Structures 



Big-Endian and Little-Endian Addressing 
::::;:::;xx::-;:;~~:;-;z-;::::x::-;::.::::~~~%~~~:;.;~::~~::::::~~~::::~~~~~~:;:;~~:::;x::::~::::::~~~~~:;:;:;:;o;~~~~~~~~::::rM:;:;:::::::;~:;:;:;:;:;>:;:;:;:;:;:;:;:;~:;::x:;:;:;:;::::%r..:;:;:>.::::;:;::::~:;:;:;~:;>:;:>,;;;::x~:;x>:;:;:;::::::::::x:;:::::::;:;:;:;:;:::::;:;:;:::::::>;:::::::::;:;::;::::;:;:::;:;:;:;:;:;:;:;:;:::;:;:;:;x:;w..:;:;::::zxx:::;:::::;:;:;:;z:;:;:::;:;:;:;:;:::::::;:;:;:;:::::;:::;:::;:;:;:;:;:;:::::::::::::;:;:;:;x:;z-;.;:::.~::::::::;:::;:::::::::>;:>mx:;::~ 

Figure 3-25. Loading Object Code into Memory 

3.8.4 Wiring VRAMs to the LAD Bus 

Figure 3-26 shows examples of how you might use TMS44C251 VRAMs in 
your system. A TMS44C251 has 4 bidirectional data pins, 000-003; each 
data pin is connected to an LAD pin. Figure 3-26 (a) shows wiring for little­
endian mode; as (b) shows, you must wire the VRAMs backwards for big­
endian mode. 

Figure 3-26. Connecting VRAMs to the LAD Bus 

(a) Little-endian mode 

31 130 29 281 7 6 5 4 3 2 1 01 

f If it 'A' 

1 ,t, iiki trL) \1) Ii 

i4 r~N~O (') N 0 (') N 0 a ~ 

a a a a a a a a a a a o 0 0 0 0 0 0 0 0 0 0 0 
i}I", ,. ". , .. ,,'."" "'" ,. "i' 

(b) Big-endian mode 

3.8.5 Big-Endian Effects on Instruction Timing 

The instruction timings listed in this document are for little-end ian code. 
Timings for big-end ian code are essentially the same as timings for little­
endian code; however, the setup for graphics instructions may consume extra 
machine states (instructions' inner loops consume no additional states). The 
effect on timing is slight. 

3-25 



Stacks 

3.9 Stacks 

The TMS34020's system stack is implemented in local memory and managed 
in hardware. The stack is used to store return addresses and processor status 
information during interrupts, traps, and subroutine calls. The contents of gen­
eral-purpose registers can be pushed onto the stack and popped off the stack. 
The system stack can also be used for dynamically allocated data storage. 

The stack is accessed through a dedicated 32-bit internal register, called the 
stack pointer, or SP. The SP points to the top of the system stack; it can be 
accessed as register 15 in either of the general-purpose register files, A or B. 

In addition to the system stack, you can define your own auxiliary stacks. The 
system stack always grows toward lower memory addresses; an auxiliary 
stack can be defined to grow toward either lower or higher addresses. The 
MOVE instructions, combined with the predecrement and postincrement 
addressing modes, facilitate pushing and popping of auxiliary stack data. You 
can use one or more general-purpose registers as auxiliary stack pointers and 
frame pointers. The indexed addressing modes can be used in conjunction 
with a frame pointer to access variables embedded within the stack. 

3.9.1 System Stack 

Figure 3-27 shows the structure of the system stack, which grows in the direc­
tion of lower memory addresses. 

Figure 3-27. System Stack 

3-26 

The SP points to the top of the stack; it contains the 32-bit address of the LSB 
(bit 0) of the value on top of the stack. The SP can contain any 32-bit address; 
however, stack operations execute more efficiently when the 5 LSBs of the SP 

Memory Organization and Data Structures 



are Os. This aligns the SP to long-word boundaries in memory, reducing the 
number of memory cycles needed to push or pop values. 

Any instruction that manipulates general-purpose registers can also be used 
to manipulate the SP. The SP can be specified as the source or destination op­
erand in any instruction that operates on the general-purpose registers. In­
structions that manipulate the SP include: 

Instructions That 
Push Values on the Stack 

MMTM SP, register list 
CALL Rs 
CALLA absolute address 
CALLR relative address 
TRAP number 
PUSHST 
MOVE Rs, -*SP 

3.9.1.1 Saving Registers on the System Stack 

Instructions That 
Pop Values from the Stack 

MMFM SP, register list 
RETI 
RETS 
POPST 
MOVE *SP+, Rd 

Register information can be stored on the stack during an interrupt or a subrou­
tine call. This frees up the register for use by an interrupt routine or a subroutine 
and allows you to restore the original register values from the stack when the 
routine completes. 

During an interrupt, the contents of the PC and ST are automatically saved on 
the stack; if you want to save values that are in general-purpose registers, you 
can use the MMTM and MMFM instructions. MMTM pushes multiple gener­
al-purpose registers onto the stack, and MMFM pops multiple general-purpose 
registers from the stack. 

When the contents of a 32-bit register are pushed onto the stack, they are 
stored in the 32-bit word below the word whose address is contained in the SP. 
This is shown in Figure 3-28, which demonstrates the effects of the following 
instruction sequence: 

MMTM SP,AD; Push register AD onto stack 
MMFM SP,Al ; Pop stack into register Al 

I:Ji Figure 3-28 (a) shows the original state of the stack and registers. 
I:Ji Figure 3-28 (b) illustrates the state after AO is pushed onto the stack. 
I:Ji Figure 3-28 (c) shows the results of popping the top of the stack into A 1. 

3-27 



Stacks 

Figure 3-28. Stack Operations 

3-28 Memory Organization and Data Structures 



Stacks 

The TMS34020 performs 2 steps to push the contents of a 32-bit register onto 
the top of the stack: 

1) Decrements the SP by 32. 
2) Pushes the register contents onto the stack. 

The TMS34020 performs 2 steps to pop the top of the stack into a 32-bit regis­
ter: 

1) Pops the 32 bits at the top of the stack into the register. 
2) Increments the SP by 32. 

3.9.1.2 Saving Information on the System Stack During an Interrupt 

During an interrupt, the TMS34020 pushes the PC and ST onto the stack; this 
allows the interrupted routine to resume execution when the interrupt process­
ing is completed. An interrupt routine performs the following actions: 

1) Decrements the SP by 32. 
2) Pushes the PC onto the stack. 
3) Decrements the SP again by 32. 
4) Pushes the ST onto the stack. 

During a return from an interrupt 

1) Pops the 32 bits at the top of the stack into the ST. 
2) Increments the SP by 32. 
3) Pops the 32 bits at the top of the stack into the PC. 
4) Increments the SP again by 32. 

3.9.1.3 Saving Information on the System Stack During a Subroutine Call 

A subroutine call saves the state of the calling routine on the stack; this allows 
the routine to resume execution when the subroutine completes. A subroutine 
call performs the following actions: 

1) Decrements the SP by 32. 
2) Pushes the PC onto the stack. 

During a return from a subroutine 

3) Pops the 32 bits at the top of the stack into the PC. 
4) Increments the SP by 32. 

3.9.2 Auxiliary Stacks 

Auxiliary stacks, which are typically used to contain dynamically allocated data 
storage, can be managed in software. You can use any A- or 8-file register 
(except the SP) as the auxiliary stack pOinter. For the purposes of discussion, 

3-29 



the symbol STK represents the auxiliary stack pointer. STK is a symbol that 
must be equated to one of the general-purpose registers; for example: 

STK .set AD 

S TK can contain any 32-bit value; however, stack operations execute more effi­
ciently when the 5 LSBs of the STK are Os. This aligns the STK to long-word 
boundaries in memory, reducing the number of memory cycles needed to push 
or pop values. 

As Figure 3-29 and Figure 3-30 show, an auxiliary stack can grow in either 
direction in memory. These figures represent memory as a string of continu­
ously addressable bits. 

Figure 3-29 shows a stack that grows toward lower memory addresses. 

Figure 3-29. An Auxiliary Stack That Grows Toward Lower Addresses 

3-30 

!]ill 

- high 
addresses t 

STK 

t 
STK 

t 
STK 

low­
addresses 

r:i Figure 3-29 (a) shows the original stack. 

r:i In Figure 3-29 (b), a field of arbitrary size is pushed onto the stack with this 
instruction: 

MOVE RS,*-STK 

(Rs and S TK represent general-purpose registers arid must be in the same 
register file.) 

r:i In Figure 3-29 (c), the field is popped off the stack with this instruction: 

MOVE *sTK+,Rd 

(Rd and S TK represent general-purpose registers and must be in the same 
register file.) 

Memory Organization and Data Structures 



Between instructions, STK always points to the lowest bit address in the 
stack-this corresponds to the very top of the stack. You can use the MMTM 
sTK,register list instruction to save multiple registers on the stack in 
Figure 3-29. Later, you can restore the registers to their former values with an 
MMFM sTK,register list instruction. 

Figure 3-30 shows a stack that grows toward higher memory addresses: 

Figure 3-30. An Auxiliary Stack That Grows Toward Higher Addresses 

[RJ 

- high 
addresses 

t 
STK 

Il Figure 3-30 (a) shows the original stack. 

stack 

it{tl~:m~t~;!~;!!!jji;;i~i;~ill:l~11~ll1!;i' 
t 

STK 

low­
addresses 

stack 
/ A ..... 

t 
STK 

~ In Figure 3-30 (b), a field of arbitrary size is pushed onto the stack using 
the following instruction: 

MOVE RS,*STK+ 

~ In Figure 3-30 (e), the field is popped off the stack with this instruction: 

MOVE *-STK,Rd 

Between instructions, the STK always points to one plus the highest bit address 
in the stack-this location is one bit beyond the very top of the stack. 

3-31 



3-32 Memory Organization and Data Structures 



Chapter 4 

TMS34020 Registers 
\Mi!iWJl!lImllSmlmllml!mlll!!lI!lImImli!mllSlllmIRI!I[~mml1llllti![lm!m:I!I~1liI1i![ml1lll!lil\1!~l1lIIlIlllIlimm,1lIli!!m!I1lII!!!iB, ! Hllliii mllliiiiiiMi.mWlblmlil1llli1lil'lll!!I1lIISIIWmB;llm_1IIiiIl1lll1IUJ1liI1i' 

The TMS34020 has two on-chip general-purpose register files, file A and file 
B. Each register file contains fifteen 32-bit registers. The register files share 
a 32-bit hardware stack pointer (SP) that automatically manages the system 
stack during interrupts and subroutine calls. The TMS34020 also has 2 dedi­
cated 32-bit registers-a program counter and a status register. 

In addition to the CPU registers, the TMS34020 has 54 memory-mapped regis­
ters that are dedicated to I/O functions. 

Section Page 

Dedicated registers include the 4.1 The Status Register (Sn .........•...•.. 4-2 
status register, program counter, 4.2 The Program Counter (PC) .............. 4-4 

and stack pointer. 4.3 Th St k P . t (SP) 4 5 e ac am er .• . . . .. .. ... . . . . . -

Programmable/general-purpose 4.4 General-Purpose Registers 
registers include dual register files (Register Files A and B) .. . . . . . . . . . . . . . .. 4-6 
and memory-mapped I/O registers. 4.5 I/O Registers ......................... 4-9 

4.6 Alphabetical Summary of I/O Registers 
and B-File Registers. . . . . . . . . . . . . . . . . . .. 4-14 

4-1 



The Status Register (ST) 

4.1 The Status Register (ST) 

The status register (ST) is a special-purpose, 32-bit register that reflects the 
processor status. The ST also contains several parameters that define the 
characteristics of two programmable data types, fields 0 and 1. At reset, the 
TMS34020 initializes the ST to 0000 001 Oh. Figure 4-1 illustrates the status 
register. Table 4-1 lists the functions associated with the status bits. 

Figure 4-1. Status Register 

Note: Shaded portions are reserved. 

Table 4-1. Definitions of Bits in the Status Register 

Bit Field 
Number Name 

0-4 FSO 

5 FEO 

6-10 FS1 

11 FE1 

21 IE 

22 SS 

25 IX 

4-2 

Function 

Field size 0: Length in bits of the first memory data field. 

FSO = 000012-111112 defines a field size of 1-31 

FSO = 000002 defines a field size of 32 

Field extension 0: Determines whether the memory field is extended with Os or with 
the sign bit when loaded into a 32-bit general-purpose register. 

FEO = 0 selects zero extension for field 0 

FEO = 1 selects sign extension for field 0 

Field size 1: Length in bits of the second memory data field. 

FS1 = 000012-111112 defines a field size of 1-31 

FS1 = 000002 defines a field size of 32 

Field extension 1: Determines whether the memory field is extended with Os or with 
the sign bit when loaded into a 32-bit general-purpose register. 

FE1 = 0 selects zero extension for field 1 

FE1 = 1 selects sign extension for field 1 

Interrupt enable: Master interrupt enable/disable bit. 

IE = 0 disables all maskable interrupts 

IE = 1 enables all maskable interrupts 

Single step: Setting the SS bit to 1 causes the TMS34020 to interrupt program execu­
tion following execution of each instruction. This is useful for debugging purposes. 

Interruptible instruction executing: When an interrupt occurs during instruction ex­
ecution, the TMS34020 sets or clears the IX bit before saving the ST on the stack. 

IX=O indicates that an interrupt occurred at an instruction boundary 

IX= 1 indicates that an interrupt occurred in the middle of an interruptible instruc-
tion . 

TMS34020 Registers 



The Status Register (ST) 

Table 4-1. Definitions of Bits in the Status Register (continued) 

Bit Field 
Number Name 

26 BF 
28 V 

29 Z 

30 C 

31 N 

12-20 I 

23-24 I 

27 

Function 

Bus fault: Set when a bus fault occurs on a local-memory cycle. 

Overflow: Set according to instruction execution. 

Zero: Set according to instruction execution. 

Carry: Set according to instruction execution. 

Negative: Set according to instruction execution. 

Reserved: These bits are reserved; the TMS34020 does not use them. At reset, the 
TMS34020 clears these reserved bits to O. 

Note: To maintain compatibility, you should write only Os to these bits. 

All instructions can potentially change the status register; during instruction 
execution, the TMS34D2D may set the V, Z, C, and N bits. If you want to directly 
affect the ST, you can use the following instructions. 

PUTST 

GETST 

SETC 

CLRC 

SETF 

EXGF 

EINT 

DINT 

PUSHST 

POPST 

writes the contents of a specified general-purpose register into 
the status register. Here's an example: 

MOVI OOOOOOlOh, AO 
PUTST AO 

copies the contents of the ST into a specified general-purpose 
register. 

sets the C bit without altering any other status bits. 

clears the C bit without altering any other status bits. 

writes values to the FSD and FED or FS1 and FE1 bits without 
altering any other status bits. 

exchanges the 6 LSBs of a specified general-purpose register 
with the FSD and FED bits or with the FS1 and FE1 bits. 

sets the IE bit. 

clears the IE bit. 

pushes the contents of the ST onto the stack. 

pops the value at the top of the stack into the ST. 

4-3 



The Program Counter (PC) 

4.2 The Program Counter (PC) 

The program counter (PC) is a special-purpose, 32-bit register that points to 
the next instruction word to be executed. Instructions are always aligned on 
16-bit boundaries; thus, as Figure 4-2 shows, the PC's 4 LSBs always contain 
Os. 

Figure 4-2. Program Counter 

31 4 3 2 1 0 

word address 

... ·-------------28 bitss----~---------4 bits-

An instruction consists of one or more 16-bit instruction words. The first word 
contains the opcode for the instruction; additional words may contain immedi­
ate data, displacements, or absolute addresses. As the TMS34020 fetches 
each 16-bit instruction word, it increments the PC to pOintto the next instruction 
word. 

The PC contents are replaced during a branch instruction, subroutine call 
instruction, return instruction, or interrupt. As Table 4-2 shows, instructions 
can be categorized according to their effects on the PC. 

Table 4-2. How Instruction Execution Affects the PC 

Instruction Type 

No branch 

Absolute branch 
(TRAP, CALLA, JAcc) 

Relative branch 
(CALLR, JRcc, DSJcc) 

Indirect branch 
(JUMP, CALL) 

Effect on PC 

The PC is incremented atthe end of the instruction, al­
lowing execution to proceed sequentially to the next in­
struction. 

The PC is loaded with an absolute address; the ad­
dress' 4 LSBs are set to Os. 

The signed displacement (8 or 16 bits) is added to the 
PC's current contents. The signed displacement is 
treated as a word displacement; that is, it is shifted left 
4 bit positions before it is added to the PC. 

The PC is loaded with the register contents. The 4 LSBs 
are set to Os. 

Two additional instructions provide you with direct control of the PC. 

GETPC copies the contents of the PC into a specified general-purpose reg­
ister. 

EXGPC exchanges the contents of the PC with the contents of a specified 
general-purpose register. 

4-4 TMS34020 Registers 



4.3 The Stack Pointer (SP) 

The stack pointer (SP) is a special-purpose, 32-bit register that contains the 
bit address of the top of the system stack. The TMS34020 contains only a 
single SP; however, this SP can be addressed as a member of either register 
file, as register A 15 or register B15. Any instruction that uses a general-pur­
pose register as an operand can also use the SP as an operand. 

Figure 4-3 illustrates the stack pointer; Section 3.9, Stacks, (page 3-26) 
describes stack operation in detail. 

Figure 4-3. The Stack-Pointer Register 

31 543210 

word address 

• 27 bits .. -5 bits-

Note: The 5 LSBs may not always be as; however, stack operations are more efficient when these bits are as. 

The system stack grows toward smaller addresses. The stack pOinter always 
points to the value at the top ofthe stack. Specifically, the SP contains the 32-bit 
address of the LSB of that value. Although the SP's 5 LSBs can have any arbi­
trary value, stack operations execute more efficiently when the 5 LSBs are O. 
Clearing these bits to Os aligns the stack pointer on a 32-bit word boundary; 
thus, only a single memory access (two cycles) is necessary to push or pop 
the contents of a 32-bit register. 

During subroutine calls and interrupts, the PC and ST are pushed onto the 
stack. These are both 32-bit registers. (If the SP is not long-word aligned when 
instruction execution is interrupted, the TMS34020 aligns the stack before 
saving the PC and ST.) The MMTM and MMFM instructions push/pop multiple 
32-bit registers from the A or 8 file. 

For the most efficient execution, you should ensure that the SP is always 
aligned to a long word and that it is incremented or decremented in multiples 
of 32 bits. 

4-5 



General-Purpose Registers (Register Files A and B) 

4.4 General-Purpose Registers (Register Files A and 8) 

The TMS34020 has thirty 32-bit general-purpose registers, divided into regis­
terfiles A and B. The registerfiles share a single stack pointer (SP). Figure 4-4 
illustrates the register files (note the shared SP). 

Figure 4-4. The Register Files 

4-6 

Register File A Register File B 
bit 31 bit 0 bit 31 bit 0 
MSB LSB MSB LSB 

t The line instructions use these registers for a different purpose. 
Some graphics instructions use these registers as temporary registers. 

As Figure 4-4 shows, 15 ofthe general-purpose registers, AO-A 14, form reg­
ister file A. Register file B also consists of 15 general-purpose registers, 
BO-B14. Many of the TMS34020 instructions use these registers for storing 
and manipulating data. 

The TMS34020's register files have several advantages: 

Q The general-purpose registers are dual-ported. This allows the TMS34020 
to read from or write to two separate registers at the same time. 

Q Several instructions use general-purpose registers to contain source and 
destination operands; these are called register-to-register instructions. 

TMS34020 Registers 



General-Purpose Registers (Register Files A and 8) 

Multiple internal data paths link the ALU to the general-purpose registers, 
allowing the TMS34020 to execute most register-to-register instructions 
in a single machine state. Single-state instructions include add, subtract, 
Boolean operations, and shifts (1 to 32 bits). 

During a single-state instruction, the following actions may occur: 

• The TMS34020 reads, in parallel, two 32-bit operands from the 
general-purpose registers. 

• The ALU performs the specified operation. 

• The 32-bit result is stored in the specified general-purpose register. 

All register-to-register instructions (except MOVE Rs, Rd) require both regis­
ters to be in the same file. Instructions that can use registers AO-A 14 and 
BO-B14 as operands can also use the SP as an operand. 

Note: 

For some graphics operations, the B-file registers have hardware-dedicated 
functions. When their special functions are used, the contents of the B-file reg­
isters are referred to as implied graphics operands. Several I/O registers 
also contain implied operands. 

No hardware-dedicated functions are associated with the A-file registers; 
generally, instructions do not use the A-file registers as implied operands. 

Table 4-3 (page 4-8) summarizes the names and functions associated with 
the B-file registers when they are used as implied operands. 

4-7 



General-Purpose Registers (Register Files A and B) 

Table 4-3. Summary of 8-File Registers' Implied-Operand Functions 

Register Function 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

810 

811 

812 

813 

814 

SADDR 

SPTCH 

DADDR 

DPTCH 

OFFSET 

WSTART 

WEND 

DYDX 

COLORO 

COLOR1 

MADDR 

COUNT 

TEMP 

MPTCH 

INC1 

INC2 

TEMP 

PATTERN 

TEMP 

Description 

Source address. Address (linear or XV) of a source pixel array; usually the address 
of the array's upper left corner (the lowest pixel address in the array). 

Source pitch. Difference in start addresses (linear) between adjacent rows of a 
source pixel array. 

Destination address. Address (linear or XV) of a destination pixel array; usually the 
address of the array's upper left corner (the lowest pixel address in the array). 

Destination pitch. Difference in start addresses (linear) between adjacent rows of 
a destination pixel array. 

Offset. Linear bit address, corresponds to the)0( origin (X=O, Y=O). 

Window start address. )0( address of the upper left corner of the window (smallest 
X and Y coordinate values in the window). 

Window end address. )0( address of the lower right corner of the window (largest 
X and Y coordinate values in the window). 

Delta Y/delta X. The 16 LS8s ofDYDX define the width (X dimension) of a pixel array. 
The 16 MS8s define the height (Y dimension) of a pixel array. 

Bac~ground pixel color. COLORO contains the background color for graphics oper­
ations. 

Foreground pixel color. COLOR1 contains the foreground colorfor graphics opera­
tions. 

Mask address. Address of the upper left corner of a mask pixel array (lowest pixel 
address in the array). 
Loop counter. LINE & FLiNE instructions use 810 to count the number of pixels 
drawn within the line. 
Temporary register. 

Mask pitch. Difference in start addresses (linear) between adjacent rows of a mask 
array. 
Diagonal increment. LINE & FLiNE use I NC1 to identify the amount by which a pixel 
address is incremented in the diagonal direction. 

Dominant increment. LINE & FLiNE use INC2 to identify the amount by which a pix­
el address is incremented in the dominant direction. 
Temporary register. 

Array or line pattern. The 1 s and Os within PATTERN identify a pixel pattern for an 
array or a line. 

Temporary register. 

Note: Some graphics instructions use the TEMP (temporary) registers to store temporary values and context in­
formation during instruction execution. 

4-8 TMS34020 Registers 



I/O Registers 
_~m~~~~~~~==-~~..;&~~~~~ 

4.5 I/O Registers 

The TMS34020 supports a set of I/O registers that control and monitor 

Q communications between the TMS34020 and a host processor, 
Q the TMS34020's interface to local memory, 
Q interrupts, 
Q video timing and screen refreshing, and 
Q graphics-drawing operations. 

The I/O registers reside in the TMS34020's on-chip memory, occupying 
addresses CODa OOOOh-COOO 03FFh. Figure 4-5 shows this. 

Figure 4-5. I/O Register Memory Map 

HESYNC 
HEBLNK 
HSBLNK 
HTOTAL 

DPYSTRT 
CONTROL 
HSTADRL 
HSTCTLL 

INTENB 
CONVSP 

PSIZE 
PMASKH 

CONTROL 
DPYTAP 

HCOUNT 
REFADR 

DPYSTH 
DPYNXH 

DINCH 
HESERR 
reserved 
reserved 

BSFLTST 
reserved 

SETHCNT 
BSFLTDH 

reserved 
reserved 

IHOST1H 
IHOST2H 
IHOST3H 
IHOST4H 

Most Significant Half Least Significant Half 

VESYNC 
VEBLNK 
VSBLNK 
VTOTAL 
DPYCTL 
DPYINT 
HSTDATA 
HSTADRH 

HSTCTLH 
INTPEND 
CONVDP 
PMASKL 
CONVMP 
CONFiG 
VCOUNT 
DPYADR 

DPYSTL 
DPYNXL 
DINCL 
reserved 
reserved 
reserved 
SCOUNT 
DPYMSK 

SETVCNT 
BSFLTDL 
reserved 
reserved 
IHOST1L 
iHOST2L 
iHOST3L 
IHOST4L 

The TMS34020 can access these registers directly; a host processor can 
access them through the TMS34020's host interface. I/O registers are 
accessed like any other memory location. Table 4-4 summarizes the I/O regis­
ters and their functions. 

4-9 



I/O Registers 

Table 4-4. Summary of I/O Registers 

Register 

BSFLTDL 
BSFLTDH 

BSFLTST 

CONFIG 

CONTROL 

CONVDP 

CONVMP 

CONVSP 

DINCL 
DINCH 

DPYADR 

DPYCTL 

DPYINT 

DPYNXL 
DPYNXH 

DPYMSK 

DPYSTL 
DPYSTH 

DPYSTRT 

DPYTAP 

HCOUNT 

HEBLNK 

HESERR 

HESYNC 

HSTADRH 
HSTADRL 

4-10 

Address 

COOO 0320h 
COOO 0330h 

COOO 2DOh 

COOO 01AOh 

COOO OOBOh 
COOO 0190h 

COOO 0140h 

COOO 0180h 

COOO 0130h 

COOO 0240h 
COOO 0250h 

COOO 01EOh 

COOO 0080h 

COOO OOAOh 

COCO 0220h 
COOO 0230h 

COCO 02EOh 

COOO0200h 
COOO 0210h 

COOO 0090h 

COOO 01BOh 

COOO 01 DOh 

COOO 0030h 

COCO 0270h 

COOO 0010h 

COOO OOEOh 
COCO OODOh 

Description 

Bus-fault data. When a bus fault occurs, the TMS34020 stores the cur­
rent LAD data in the BSFLTD registers. 

Bus-fault status. When a bus fault occurs, the TMS34020's memory con­
troller saves its current state into BSFLTST. 

System configuration. Contains several parameters that enable VRAM 
register loads and control litlle-/big-endian addressing, row-column ad­
dress configuration, and refresh rates. 

Memory control. Controls transparency, window checking, PIXBLT direc­
tion, and cache operation. 

Destination pitch conversion factor. Contains the XV -to-linear factor for 
converting a destination array address. 

Mask pitch conversion factor. Contains the XV-to-linear factor for con­
verting a mask array address. 

Source pitch conversion factor. Contains the XV -to-linear factor for con­
verting a source array address. 

Display Increment. Contains the difference in addresses between verti­
cally adjacent pixels (the display pitch). 

Display address. Provides TMS3401 0 compatibility. 

Display control. Controls video timing parameters. 

Display interrupt. Identifies the next scan line at which a display interrupt 
will be requested. 

Display next address. The DPYNX registers contain a 32-bit address. 

Display mask. When screen refreshes are enabled, DPYMSK defines 
which bits of the address in the DPYNX and DPYST registers correspond 
to the tap-point portion ofthe address output during screen-refresh cycles. 

Display start address. Points to the pixel at the left of the 1 st line dis­
played on the screen. 

Display start address. Provides TMS3401 0 compatibility. 

Display tap pOint address. Provides TMS3401 0 compatibility. 

Horizontal count. Tracks the number of VCLKs per horizontal scan line. 

Horizontal end blank. Defines the point at which the horizontal blanking 
interval ends. 

Horizontal end serration. Defines the point at which the composite sync 
pulse ends during the serration region of vertical blanking. 

Horizontal end sync. Defines the point at which the horizontal sync pulse 
ends. 

Host Interface address. Provides TMS3401 0 compatibility. 

TMS34020 Registers 



Table 4-4. 

Register 

HSTCTLH 

HSTCTLL 

HSTDATA 

HSBLNK 

HTOTAL 

IHOST 

INTENB 

INTPEND 

PMASKL 
PMASKH 

PSIZE 

REFADR 

SCOUNT 

SETHCNT 

SETVCNT 

VCOUNT 

VEBLNK 

VESYNC 

VSBLNK 

VTOTAL 

I/O Registers 

Summary of I/O Registers (continued) 

Address Description 

COOO 01 OOh Host interface control, high word. Controls host-interface functions 
such as halt acknowledge, software reset, the nonmaskable interrupt, host 
autoincrements and prefetches, and halting TMS34020 execution. 

COOO OOFOh Host interface control, low word. Controls host-interface functions such 
as messages, emulator control, and bus-fault and retry information. 

COOO OOCOh Host interface data. Provides TMS3401 a compatibility. 

COOO 0050h Horizontal start blank. Defines the point at which the horizontal blanking 
interval begins. 

COOO 0070h Horizontal total. Defines the duration of each horizontal scan line (in 
terms of VCLK periods). 

COOO 0380h Internal host interface address. The host interface uses these 32-bit 
through 

COOO 03FOh 

COOO 0110h 

COOO 0120h 

COOO 0160h 
COOO 0170h 

COOO 0150h 

COOO 01FOh 

COOO 02COh 

COOO 0310h 

COOO 0300h 

COOO 01COh 

COOO 0020h 

. COOO OOOOh 

COOO 0040h 

COOO 0060h 

locations. 

Interrupt enable. Assuming that the status IE bit = 1, setting specific bits 
to 1 enables external interrupts 1 & 2, the host interrupt, the display inter­
rupt, or the window-violation interrupt. 

Interrupt pending. The values of specific bits indicate whether an exter­
nal interrupt, host interrupt, display interrupt, or window-violation interrupt 
has been requested but not yet serviced. 

Plane mask. The PMASK registers form a 32-bit value that selectively en­
ables/disables individual planes in a multiple-bit-per-pixel display system. 

Pixel size. Defines the pixel size (in bits). Valid pixel sizes include 1,2,4, 
8, 16, and 32. 

Refresh pseudo-address. Contains the address output during DRAM­
refresh cycles. 

Shift clock counter. Incremented during the active display time so that 
it always contains the tap point of the bit most recently shifted out of the 
VRAM serial registers. 

Set horizontal count. When external video is enabled, SETHCNT con­
tains the value that is loaded into HCOUNT. 

Set vertical count. When external video is enabled, SETVCNT contains 
the value that is loaded into VCOUNT. 

Vertical count. Counts the horizontal lines in the video display, increment­
ing on the same clock edge that resets HCOUNT to O. 

Vertical end blank. Defines the time at which the vertical blanking interval 
ends. 

Vertical end sync. Defines the time at which the vertical sync pulse ends . 

Vertical start blank. Defines the time at which the vertical blanking inter­
val begins. 

Vertical total. Defines the time at which the vertical sync pulse begins. 

4-11 



110 Registers 

4.5.1 CPU Control Registers 

CONTROL 

CONVDP 

PSIZE 

CONVMP 

CONVSP 

These 5 registers provide CPU control. They allow you to select those 
TMS34020 characteristics that meet your specific system needs, such as the 
pitches for pixel transfers, window-checking modes, transparency modes, 
Boolean or arithmetic pixel-processing options, PIXBLT direction, and pixel 
size. 

4.5.2 Host Communications Registers 

HSTCTLH HSTCTLL 

These registers provide a host processor with the ability to interrupt or halt the 
TMS34020, flush the instruction cache, communicate with an emulator, and 
select modes for accessing TMS34020 local memory. 

4.5.3 Local-Memory and DRAMNRAM Interface Registers 

CONFIG 

BSFLTD 

PMASK 

BSFLTST 

REFADR 

The memory controller manages the TMS34020's interface to the local 
memory, automatically performing the bit alignment and the masking neces­
sary to access data located at arbitrary bit boundaries within memory. 

4.5.4 Interrupt Registers 

4-12 

INTENB INTPEND 

These registers control and monitor interrupt requests to the TMS34020, 
including 2 externally generated interrupts and 3 internally generated 
interrupts, including 

Q External interrupts 1 and 2 
Q Window-violation interrupt 
Q Host interrupt 
Q Display interrupt 

If the IE status bit (global interrupt enable) = 1, you can set a bit in the INTENB 
register to enable any of these interrupts. You can check bits in the INTPEND 
register to see if any of these interrupts are pending. 

TMS34020 Registers 



I/O Registers 

4.5.5 Video Timing and Screen-Refresh Registers 

Twenty-eight registers are dedicated to video timing and screen-refresh func­
tions. The TMS34020 can drive composite sync or separate sync displays. 
Parameters in the DPYCTL register allow you to selectthe direction (inpuVout­
put) of the sync signals: 

Composite Sync Mode Separate Sync Mode 

Signal Direction Signal Direction 

VSYNC I/O VSYNC I/O 

HSYNC I/O HSYNC I/O 

CSYNC I/O HBLNK a 
CBLNK a VBLNK a 

In composite mode, the TMS34020 can extract VSYNC and HSYNC from an 
external composite sync, or it can generate CSYNC from separate VSYNC and 
HSYNC inputs. Internally, you can set the TMS34020 to preset the horizontal 
and vertical counts upon receiving an external sync signal. This allows com­
pensation for any combination of internal and external delays that occur in the 
video synchronization process. 

Q An external HSYNC loads HCOUNT from SETHCNT. 

Q An external VSYNC loads VCOUNT. 

Q An external CSYNC loads both HCOUNT and VCOUNT from SETHCNT 
and SETVCNT, respectively. 

The TMS34020 directly supports multiport VRAMs by generating the serial­
register transfer cycles that are necessary for refreshing a display. The 
memory locations that contain the display information, as well as the number 
of horizontal scan lines displayed between serial-register transfer cycles, are 
programmable. 

4.5.6 Latency of Writes to I/O Registers 

The TMS34020 has a high degree of internal parallelism; for example, it can 
fetch instructions and data while still executing the current instruction. Normal­
ly this is beneficial.This could cause problems, however, if the current instruc­
tion alters an I/O register and the next instruction uses that register as an 
implied operand. In this situation, the second instruction may not execute prop­
erly. This could occur, for example, if a PIXBLTfoliowed a MOVE instruction 
that modified the CONTROL register. 

You can easily avoid this situation by ensuring that the write to the I/O register 
completes before any subsequent instructions use the modified register value. 
To do this, follow the write to the register with an MWAIT instruction. 

4-13 



Alphabetical Summary of I/O Registers and 8-File Registers 

4.6 Alphabetical Summary of 1/0 Registers and B·File Registers 

4-14 

The remainder of this chapter contains an alphabetical reference of the I/O and 
B-file registers. Some I/O registers contain implied operands for graphics 
instructions; the B-file registers also contain implied graphics operands. 
Therefore, the B-file registers and I/O registers are summarized together in this 
section. 

Here's an important pOint: Although you'll use both B-file and I/O registers as 
implied operands, you must access them differently. Because the I/O registers 
are memory mapped, they are accessed similarly to external memory loca­
tions. 

The code segment below shows a sample implied-operand setup for a FILL L 
instruction. It shows that you must use a different MOVE instruction for loading 
an I/O register than you would use for loading a B-file register. Note that most 
programs refer to registers by their symbolic names (such as DADDR or 
PSIZE, assuming you've equated these names to the actual register name or 
location). 

* Set up the B-file registers 
MOVI 0050h, B2 
MOVI OlOOh, B3 
MOVI 000050008h, B7 

* Set up the I/O registers 
MOVK 4, AO 
MOVE AO, @OC0000150h, 0 
CLR AO 
MOVE AO, @OC0000160h, 1 
MOVE AO, @OCOOOOOBOh, 0 
MWAIT ; wait until data 

FILL L 

DADDR 
DPTCH 
DYDX 

PSIZE 

PMASK 
; CONTROL 

has been written 

TMS34020 Registers 



Format 

or 

Description 

Bus-Fault Data Registers BSFLTD 

BSFLTD (32-bit address): 
BSFLTDL (16-bit address): 
BSFLTDH (16-bit address): 

15 o 

15 o 

Note: 

You can access the bus-fault registers separately or together by using differ­
ent addresses and different field sizes. 

I:l To access BSFLTD as a single 32-bit register, access the 32-bit field at 
address COOO 0320h. 

I:l To access BSFLTDL as a 16-bit register, access the 16-bitfield at address 
COOO 0320h. 

I:l To access BSFLTDH as a 16-bit register, access the 16-bit field at address 
COOO 0330h. 

When a bus fault occurs, the TMS34020's memory controller uses BSFLTD to 
store the data on the LAD bus. When any CPU-initiated memory access 
returns a bus-fault completion code on the LRDY and BUSFLT pins, the 
memory controller 

Step 1: Saves the data currently stored on LADO-LAD31 into BSFLTD. 

Step 2: Signals the CPU that a bus fault occurred. The CPU 

I:l pushes the current machine state onto the stack, 

I:l executes a bus fault interrupt routine to clear the cause of the bus 
fault, and 

I:l pops the machine state off the system stack to restore the CPU 
to its previous state. 

Step 3: Uses the data in the BSFLTD registers to restore LADO-LAD31 and 
re-executes the memory access that caused the bus fault. If the 
faulted memory access was a read, the data saved in and restored 

4-15 



BSFLTD Bus-Fault Data Registers 

4-16 

from the BSFLTD registers has no significance. However, the 
memory controller saves and restores the LAD data, regardless of 
whether the faulted memory access was a read or a write. 

Do not write to these registers. When a bus fault occurs, the saved LAD data 
writes over any data in the BSFLTD registers. If necessary, you can read the 
contents of the BSFLTD registers during your bus fault interrupt routine. 

Note: 

Although BSFLTDL and BSFLTDH are I/O registers, they are not loaded by 
a memory write when a bus fault occurs. If external memory shadows these 
locations, the BSFLTD registers are not copied to external memory. 

TMS34020 Registers 



Format 

Description When a bus-fault occurs, the TMS34020's memory controller saves its current 
state into the BSFLTST register. The status information tells the memory con­
troller what type of access triggered the bus fault and marks the point within 
the access where execution can resume. 

When any CPU-initiated memory access returns a bus-fault completion code 
on the LRDY and BUSFLT pins, the memory controller 

Step 1: Saves its current state into BSFL TST. 

Step 2: Signals to the main processor that a bus fault occurred. 

Step 3: After the CPU clears the cause of the bus fault and restores its inter­
nal state, the memory controller restores its pre-bus-fault state from 
the BSFLTST register and re-executes the memory access that 
caused the bus fault. 

Usually, you should not write to the BSFLTST register. When a bus fault occurs, 
the saved memory controller state writes over any data in the BSFLTST regis­
ter. If you do not want the TMS34020 to re-execute the faulted memory access, 
your bus-fault interrupt routine should write the value FFFF 16 to the BSFLTST 
register. This causes the memory controller to return from the bus fault in an 
idle state. 

Note: 

Although BSFLTST is an I/O register, it is not loaded by a memory write when 
a bus fault occurs. If external memory shadows this location, the BSFLTST 
register is not copied to external memory. 

4-17 



COLORO Background Color RefJ.ister 

Format 

Description 

Which instructions 
use this register? 

Example 

4-18 

COLORa provides a background color, defining the replacement color for a bits 
in a binary source array or in the PATTERN register. Pixel alignment within 
COLORa corresponds directly to alterable pixels within memory; individual 
pixels within COLORa are used as they align with pixels in the destination 
word. 

Binary PIXBLTs use color information in COLORa and COLOR1 to transform 
a binary pixel array into a multiple-bits-per-pixel array. 

Note: 

You must replicate the color information throughout all 32 bits of COLORa. 

Execution of graphics instructions does not modify COLORa. 

Instruction COLORO's function 

FLlNE, LINE 

FPIXEQ, FPIXNE 

PFILLXY 

PIXBLTB, L 

PIXBLT B, XY 

Replaces Os in the PATTERN value 

Comparison value 

Replaces Os in the PATTERN value 

Background pixel color for color-expanded array 

Background pixel color for color-expanded array 

This example is for 4-bit pixels. A pixel value of 5 is replicated throughout the 
COLORa register. 

COLORa .set B8 

MOVI 55555555h, COLORa store uniform pixel 
; value in COLORa 

TMS34020 Registers 



Format 

Description 

Which instructions 
use this register? 

Example 

COLOR 1 provides a foreground color, defining the replacement color for 1 bits 
in a binary source array. Pixel alignment within COLOR1 corresponds directly 
to alterable pixels within memory; individual pixels within COLOR1 are used 
as they align with pixels in the destination word. 

Binary PIXBLTs use color information in COLORO and COLOR1 to transform 
a binary pixel array into a multiple-bits-per-pixel array. Other graphics instruc­
tions use COLOR1 as the replacement color for an alterable destination pixel 
or for alterable pixels within a pixel block. 

Note: 

You must replicate the color information throughout all 32 bits of COLOR1. 

Execution of graphics instructions does not modify COLOR1. 

Instruction 

DRAV 

FILLs (both) 

FLlNE, LINE 

PFILLXY 

PIXBLTB, L 

PIXBLTB, XY 

TFILL 

VLCOL 

COLOR1 's function 

Pixel color for pixel draw 

Pixel color for filled array 

Replaces 1 s in the PATTERN value 

Replaces 1 s in the PATTERN value 

Foreground pixel color for color-expanded array 

Foreground pixel color for color-expanded array 

Pixel color for drawing 

Color-fill data value for VRAM color registers 

This example is for 4-bit pixels. A pixel value of 3 is replicated throughout the 
COLOR1 register . 

COLORl . set B9 

MOVI 33333333h, COLORl 
; value in COLORl 

Store uniform pixel 

4-19 



CON FIG System Confi~uration Register 

Format 

Bits 

Description 

4-20 

Bits Name Function 

0 BEN Enables big-endian memory addressing 

1-2 RCM Configures RCA bus address 

3 CBP Enables configuration byte protect 

8 VEN Enables VRAM internal register load 

12-10 RR Selects refresh rate 

4-7,9, 
Reserved; do not use 

13-15 

CONFIG controls several system parameters: it selects the memory address­
ing configuration, informs the TMS34020 thatthe system contains VRAMs with 
color-latch and write-mask registers, and selects the DRAM-refresh rate. 

Note: 

Future pin-compatible TMS340xO devices may use bit 4, providing you with 
the ability to extend the Q4 phase of certain memory subcycles. This will ease 
interfacing to DRAMs if the TMS340xO's LCLK frequency is increased above 
10 MHz. To ensure compatibility with your existing TMS34020 system, set bit 
4 to 1. Setting this bit will not affect the TMS34020. 

Before almost any system activity can take place, you must select appropriate 
values for CONFIG's 3 LSBs. BEN and RCM affect memory addressing; until 
BEN and RCM have appropriate values, the TMS34020 can successfully 
access only 32-bit words at memory addresses that have row addresses of all 
1s or all Os. 

~ Ifthe TMS34020 is not powered up in host-present mode, it reads the reset 
vector from address FFFF FFEOh. Then, before fetching any instructions, 
the TMS34020 writes the 4 LSBs of the reset vector to the 4 LSBs of 
CONFIG; this defines the system's memory addressing configuration. You 
should program the BEN and RCM values into the 3 LSBs of the reset vec­
tor; program bit 3 of the reset vector to set the CBP bit. Because the reset 
vector's row address is all 1 s, the TMS34020 can successfully read the 

TMS34020 Registers 



.. 
bit 0 

bits 1 &2 

reset vector, regardless of the BEN and RCM values. The TMS34020 
assumes that the reset vector is aligned to a 16-bit word, so the values in 
the reset vector's 4 LSBs do not affect the location from which the 
TMS34020 starts fetching instructions. 

o If the TMS34020 is powered up in host-present mode, the host must set 
BEN and RCM before accessing the TMS34020's local memory . 

Big-endian memory addressing enable 

BEN Effect 

o Selects little-end ian addressing (default) 

Selects big-endian addressing 

The TMS34020 can use either little- or big-endian addressing conventions. 
Little-endian is the default (BEN=O). To use big-endian memory addressing, 
set BEN to 1. For more information about these addressing modes, refer to 
Section 3.8, Big-Endian and Little-Endian Addressing, on page 3-20. 

RCA bus configuration mode 

RCM1 RCMO 
Base Array Size 
(CAMD=O) 

Logical Address Bits Output on 
RCAO-RCA12 at Row-Address Time 

0 0 64Kxn 24 to 12 

0 256Kxn 25 to 13 

0 1Mxn 26 to 14 

4Mxn 27 to 15 

The RCM bits determine which bits of the logical address are output on 
RCAO-RCA12 at row-address time. Additionally, the CAMD pin allows the 
address output at column-address time to be modified on a cycle-by-cycle 
basis. These capabilities allow you to directly wire DRAMs and VRAMs of more 
than 1 of the above sizes to the RCA bus in the same system, without using 
external multiplexing logic. If CAMD is set high during a cycle, most of the bits 
in the column address are shifted left by 1 bit. However, the logical address bits 
output on RCAO, RCA 11, and RCA 12 are not determined by a shift, and vary 
according to the value of the RCM bits. 

Logical Address Bits Output on RCAO-RCA12 at 
RCM1 RCMO Column-Address Time with CAMD=1 

o o 23,22,13,12,11,10,9,8,7,6,5,S,S 

o 26,14,13,12,11,10,9,8,7,6,5,S,S 

o 15,14,13,12,11,10,9,8,7,6,5,S,S 

28,14,13,12,11,10,9,8,7,6,5,S,16 
~ S is the 16-bit word select. 

4-21 



CONFIG Sr,stem Configuration Register 

.. 
bit 3 

.. 
bit 8 

4-22 

For more information about RCAD-RCA 12 address multiplexing, refer to Sec­
tion 8.16.2 on page 8-53 . 

Configuration byte protect 

CBP Effect 

o LSbyte of CON FIG is not write-protected 

1 Write-protects the LSbyte of CONFIG 

Setting CBP to 1 write-protects the LSbyte of CON FIG (bits 0 to 7). You can 
set CBP by writing to it or by placing a 1 in bit 3 of the reset vector. During a 
reset, the TMS34020 automatically copies the 4 LSBs of the reset vector to the 
4 LSBs of CON FIG. To clear CBP, reset the TMS34020 with a hardware reset 
or write a 1 to RST[HSTCTLH] . 

VRAM internal register load enable 

VEN Effect 

o Enables VRAM write-mask load and write with mask 

Disables VRAM write-mask load and write with mask 

The TMS34020 instructions and memory interface support VRAMs with inter­
nal write-mask and color registers (such as the TMS44251). Use VEN to inform 
the TMS34020 that your system's VRAMs support these features. 

The VEN bit does not enable or disable execution of VBLT or VFILL instruc­
tions. Don't use these instructions if your system's VRAMs do not support the 
block-write feature. 

If VEN=1 and any bit in the PMASK is written, the TMS34020 automatically 
executes a specialload-write-mask memory cycle to load the 1 s complement 
of the 32-bit plane mask into the VRAMs' write masks. This cycle is performed 
in the next available memory cycle. No further CPU-initiated memory cycles 
are executed until after the write mask is loaded. 

If the TMS34020 subsequently performs a VFILL, VBLT, or pixel write, the 
plane mask;t: 0, and VEN=1, the TMS34020 automatically generates special 
block-write-with-mask and write-with-mask cycles. This allows selected 
planes within each pixel to be written without the need for read-modify-write 
cycles. 

TMS34020 Registers 



I;i;t.§;hkl 
bits 10-12 

Which instructions 
use this register? 

Refresh rate 

RR2 RR1 RRO Refreshes scheduled every ..• 

0 0 0 8 machine states 

0 0 1 16 machine states 

0 0 32 machine states 

0 1 64 machine states 

0 0 128 machine states 

0 256 machine states 

1 0 undefined 

DRAM refresh disabled 

The RR bits determine the frequency of DRAM refreshes. An internal counter 
schedules a DRAM-refresh request at the frequency determined by RR. Each 
time a DRAM refresh is scheduled, the TMS34020 increments another internal 
counter to track the number of pending refreshes. (Pending DRAM refreshes 
are refreshes that are requested but not yet performed.) Each time a DRAM 
refresh is performed, the refresh pending counter is decremented. Note that 
if a retry terminates a DRAM-refresh cycle, the pending count is not decre­
mented, and the refresh is retried. 

A maximum of 15 DRAM refreshes can be pending. If more refreshes are 
requested, the pending counter overflows and the 16 refreshes are lost (15 
pending, plus the refresh that caused the overflow). However, 12 or more 
pending DRAM refreshes cause DRAM-refresh memory cycles to become one 
of the highest priority memory cycles, so losing the refreshes should never 
happen. Realistically, even 12 DRAM refreshes pending are unlikely, because 
4 or more DRAM refreshes pending are a higher priority than CPU-initiated 
memory accesses. 

Any write to the PMASK register while VEN=1 causes the TMS34020 to load 
the VRAM write-mask registers with the 1 s complement of PMASK. 

4-23 





MM 
bit 5 

-bits 6&7 

• ;=". 
bit 8 

Pixel transparency enable 

T Description 

o Disables transparency 

Enables transparency 

The T bit enables or disables pixel transparency. When transparency is 
enabled, the TMS34020 inhibits overwriting of a transparent pixel (as deter­
mined by the current transparency mode). 

Window checking 

W1 WO Description 

o o No pixel writes are inhibited, and no interrupt requests are generated 

o Generate interrupt request on attempt to write to pixel lying inside win­
dow and inhibit all pixel writes 

o Generate interrupt request on attemptto write to pixel lying outside win­
dow 

Inhibit pixel writes outside window, but do not request interrupt 

The W bits select the action the TMS34020 takes when a pixel operation would 
cause the TMS34020 to write a pixel to a location lying either inside or outside 
specified window limits. Window checking applies to attempts to write to pixel 
locations defined by XY addresses only. Window checking affects neither non­
pixel data writes nor writes to pixel locations defined by linear memory ad­
dresses. 

A request for a window violation interrupt can occur when W=012 or W=1 02. 
WVP[INTPEND] is set to 1 to indicate that a window violation occurred. This 
in turn interrupts the TMS34020, if both WVE[INTENB] and IE[Sl] equal 1 . 

PIXBLT horizontal direction 

PBH Description 

o Increment in the X direction (move from left to right) 

Decrement in the X direction (move from right to left) 

The PBH bit determines the horizontal direction (increasing or decreasing X) 
of pixel processing for these instructions: 

PIXBLT XY,XY 
PIXBLTXY, L 
PIXBLT L, M, L 

PIXBLT L, XY 
PIXBLT L, L 

4-25 



CONTROL Grae,hics Instruction Control and Memoz. Control Ref}/ster 

-p". bit 9 

*pg.'M 
bits 10-14 

4-26 

PIXBLT vertical direction 

PBV Description (assuming default screen origin) 

o Increment in the Y direction (move from top to bottom) 

Decrement in the Y direction (move from bottom to top) 

The PBV bit determines the vertical direction (increasing or decreasing Y) of 
pixel processing for these instructions: 

PIXBLT XY,XY PIXBLTL,XY 
PIXBLTXY, L PIXBLT L, L 
PIXBLT L, M, L 

Pixel processing operation 

The PPOP bits define the manner in which a source pixel is combined with a 
destination pixel during a pixel operation. The following 16 PPOP codes per-
form Boolean operations on pixels of 1, 2, 4, 8, 16, and 32 bits. 

PPOP: 4 3 2 1 0 Operation Description 

0 0 0 0 0 S~D Source replaces destination 

0 0 0 0 SAND D~D AND source with destination 

0 0 0 0 SANDD~D AND source with NOT(destination) 

0 0 0 1 O~D Os replace destination 

0 0 0 0 SORD~D OR source with NOT(destination) 

0 0 0 SXNOR D~D XNOR source with destination 

0 0 0 D~D Invert destination 

0 0 SNORD~D NOR source with destination 

0 0 0 0 SOR D~D OR source with destination 

0 0 0 D~D Do not change destination (note, however, 
that memory cycles still occur) 

0 0 0 SXOR D~D XOR source with destination 

0 0 SAND D~D AND NOT(source) with destination 

0 0 0 1~D 1 s replace destination 

0 0 SORD~D OR NOT(source) with destination 

0 0 SNAND D~D NAND the source and destination 

0 S~D NOT (source) replaces destination 

These PPOP codes perform arithmetic operations on 2, 4, 8, 16, and 32-bit pix­
els (but not on 1-bit pixels). 

TMS34020 Registers 



+g.+ 
bit 15 

Which instructions 
use this register? 

PPOP: 4 3 2 1 0 

000 0 

Operation Description 

S + 0-70 Add source to destination 

000 S ADDS 0-70 Add source to destination with saturation 

o 0 o 0- S-7D Subtract source from destination 

o 0 0 SUBS S-7D Subtract source from destination with satu­
ration 

o o 0 S MAX 0-70 Replace destination with maximum of 
source and destination 

o 0 S MIN 0-70 Replace destination with minimum of 
source and destination 

Note: PPOP codes 101102 through 111112 are reserved. 

Cache disable 

CD Description 

o Enables instruction cache 

Disables instruction cache 

CD enables or disables the instruction cache. When the cache is disabled, 
cache contents (including data, P flags, SSA registers, etc.) are not disturbed, 
and all instructions are fetched from memory, not the cache. When the cache 
is re-enabled, its previous state (before it was disabled) is restored, and the 
instructions retained within the cache are once again available for execution. 

Instruction 

all instructions 

DRAV 

FILL L 

FILL XV 

FLINE 

LINE 

PIXBLT B, L 

PIXBLT B, XV 

PIXBLT L, L 

PIXBLT L, XV 

PIXBLT XV, XV 

PIXBLTXV, L 

PIXT Rs, *Rd 

PIXT * Rs, * Rd 

PIXT Rs, *Rd.XY 

TFILL 

Bits used 

CD 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

PPOP T&TM 

w 

w 

w 

W 

W 

w 

w 
w 

PBH & PBV 

PBH & PBV 

PBH & PBV 

PBH & PBV 

4-27 



Format 
CONVDP 

CONVSP 

CONVMP 

Description 

4-28 

CONVDP address: 
CONVSP address: 
CONVMP address: 

15 o 

15 0 

IIl1n¥iM~lQof~9tqr!qr~m§9qrg~§g~t~§§..:I.1 
15 o 

CONVDP, CONVSP, and CONVMP are 16-bit registers that contain control 
parameters used during execution of a pixel operation. The TMS34020 uses 
CONVDP and CONVSP with 

Q XV addressing, 
Q window clipping, and 
Q FILLs or PIXBLTs (except for PIXBLT L,L) that process pixels from the 

bottom of the array to the top (PBV=1). 

The TMS34020 uses CONVMP for XV addressing (CVMXVL). 

Each conversion factor register is associated with an appropriate pitch regis­
ter; each CONVxP register associated with an instruction that loads the con­
version factor into CONVxP according to the pitch value in xPTCH. 

Conversion Factor 
Register (CONVxP) 

CONVDP 
CONVSP 
CONVMP 

Associated Pitch 
Register (xPTCH) 

DPTCH 
SPTCH 
MPTCH 

Associated Instruction 

SETCDP 
SETCSP 
SETCMP 

TMS34020 internal hardware uses the CONVDP and CONVSP values when 
converts an XV destination or source address, respectively, to a linear address. 

Q PIXBLT and FILL instructions with an XV destination use DPTCH and 
CONVDP to convert the XV coordinates to a linear address before the pixel 
transfer begins. 

Q PIXBLT instructions with an XV source address use the SPTCH and CON­
VSP values to convert the XV coordinates to a linear memory address be­
fore beginning the pixel transfer. 

TMS34020 Registers 



If the xPTCH 

If a PIXBLT or FILL requires preclipping of the destination array in the Y direc­
tion, the TMS34020 uses CONVDP to calculate the effect of the clipped start­
ing Y coordinate on the destination array's starting linear address. For 
PIXBLTs, the starting source address is modified to accommodate the resulting 
changes to the starting destination address. When a PIXBLT instruction's start­
ing Y coordinate lies in either of the 2 lower corners of the destination array 
(PBV=1), the TMS34020 uses CONVDP and CONVSP to calculate the linear 
addresses corresponding to the specified starting coordinates. 

CONVxP contains 1 of 3 types of values, depending on the value in the asso­
ciated pitch register: 

register = then ••• 

a power of 2 The 5 LSBs of CONVxP contain the 1 s complement of log2(xPTCH). During XV-to-linear 
conversion, the product of the V value and the pitch is calculated by shifting V left by 
log2(xPTCH). 

two powers of 2 CONVxP contains 2 conversion values. The 5 LSBs of CONVxP should contain the 1 s com­
plement of log2 of the greater of the powers of 2, and the 5 LSBs of the upper byte contain 
the 1 s complement of log2 of the lesser of the powers of 2. During conversion, the product 
of the V value and the pitch is calculated by adding V shifted left by each of the 2 conversion 
factors. 

arbitrary pitch The LSbyte of CONVxP contains Os. The TMS34020 must multiply the address by xPTCH. 

Which instructions 
use these registers? 

This is a 16-by-32-bit signed multiply in which only the 32 LSBs of the result are retained. 

CONVDP 
CVXVL 
CVDXVL 
DRAV 
FILL XV 
FLlNE, LINE 
PIXBLTB, XV 
PIXBLTL, XV 
PIXBLTXV, L 
PIXBLT XV, XV 
PIXT Rs, * Rd.XY 
PIXT *Rs.XY, *Rd.XY 
SETCDP 
TFILL 

CONVSP 
CVSXVL 
PIXBLTL, XV 
PIXBLTXV, L 
PIXBLT XV, XV 
PIXT *Rs.XY, Rd 
PIXT*Rs.XY, *Rd.XY 
SETCSP 

CONVMP 
CVMXVL 
SETCMP 

For more information about array pitches and XV-to-Iinear conversion, refer 
to Section 12.12, Converting an XV Address to a Linear Address, on page 
12-47. 

4-29 



DADDR Destination Address Register 

Format 

or 

Description 

Which instructions 
use this register? 

4-30 

o 
....\\ Ii:; : •••• · •••• ·!Ifi~~r~!~'~~ar~$§ , •• • •• (Ii ·······'·.··.·.··········.·.i.i/,jliI;:..IiiII 

DADDR contains the destination array address for PIXBLTs, FILLs, LINE, and 
FLiNE. DADDR usually points to the pixel with the lowest address in the desti­
nation array. When the selected starting corner is not the upper left corner, the 
TMS34020 automatically adjusts DADDR to point to the selected starting cor­
ner of the destination array. (For PIXBLT L,L, however, you must manually 
adjust DADDR to point to the starting corner.) 
Some instructions use DADDR with DVDX to perform a common rectangle 
function (FILL XV, PFILLXV, PIXBLT B,XY, PIXBLT L,XV, and PIXBLTXV,XV, 
with window option 1 ).In these cases, the TMS34020 sets DADDR to the start­
ing XV address of the rectangle that represents the intersection of the original 
destination array and the clipping window. No drawing is performed.lfthe array 
and the window do not intersect, the V bit is not set and the contents of DADDR 
are undefined. 
The TMS34020 treats the address in DADDR as an XV address or a linear 
address, depending on the instruction you use. 
If DADDR contains an XV address, the instruction converts it to the corre­
sponding linear address before beginning the pixel transfer. During a PIXBLT 
or FILL, DADDR is maintained in linear format. When the instruction com­
pletes, DADDR points to the linear starting address of the row following the last 
row in the array (for LINE, FLlNE, and VFILL, DADDR contains the address 
of the next point on the line). If a PIXBLT is interrupted, DADDR points to the 
next word of pixels to be read. 

Instruction 

BLMOVE 

CLIP 

FILLL 

FILL XV 

FLiNE 

LINE 

PFILLXV 

PIXBLTB, L 

PIXBLTB, XV 

DADDR's format and function 

Linear; points to the beginning of the destination array 

XV; points to the beginning of the destination array 

Linear; points to the beginning of the destination array 

XV; points to the beginning of the destination array 

Linear; starting point for the line 

XV; starting point for the line 

XV; points to the beginning of the destination array 

Linear; points to the beginning of the destination array 

XV; points to the beginning of the destination array 

TMS34020 Registers 



Example 

Instruction 

PIXBLTL, L 

PIXBLTL,XY 

PIXBLTXY, L 

PIXBLTXY,XY 

PIXBLT L,M,L 

TFILL 

VBLT 

VFILL 

DADDR .set B2 

Destination Address Register DADDR 

DADDR's format and function 

Linear with special requirements when PBH=1 or PBV=1 ; 
refer to PIXBLT L,L for a description of its unique require­
ments 

XY; points to the beginning of the destination array 

Linear; points to the beginning of the destination array 

XY; points to the beginning of the destination array 

Linear; points to the beginning of the destination array 

XV; instruction uses this to hold temporary values 

Linear; points to the beginning of the destination array 

Linear; points to the beginning of the destination array 

MOVI [0008h, 0015h], DADDR Move XY value 
15h,8h into B2 
Move linear 
value 10AFCh 
into B2 

MOVI OOOlOAFCh, DADDR 

4-31 



DINe Dise'ay Increment Registers 

Format 
DINC 

or DINCL 

DINCH 

Bits 

Description 

4-32 

Bits 
Q-4 

Note: 

.. (32-bli COOO 0240h 
DINCL (16-blt address): COOO 0240h 
DINCH (i6-bit address): COOO 0250h 

Name Function 

VZINC V-zoom increment value 

SRINC Screen-refresh address increment value 

You can access the display increment registers separately or together by 
using different addresses and different field sizes. 

IJi To access DINC as a single 32-bit register, access the 32-bit field at 
address COOO 0240h. 

IJi To access DINCL as a 16-bit register, access the 16-bit field at address 
COOO 0240h. . 

IJi To access DINCH as a 16-bitregister, access the 16-bit field at address 
COOO 0250h. 

The DINC. registers contain two increment values. One .controls the 
TMS34020's Y-zoom feature; the other is used for screen refreshes. 

TMS34020 Registers 



Wlm!M 
bits 0-4 

E;III!+ 
bits 

5-31 

V-zoom increment value 

YZINC Zoom 
4 3 2 1 0 Factor Description 

0 0 0 0 0 No repetition of scan lines 

0 0 0 0 2 Repeat scan line 2 times 

0 0 0 0 4 Repeat scan line 4 times 

0 0 1 0 0 8 Repeat scan line 8 times 

0 0 0 0 16 Repeat scan line 16 times 

0 0 0 0 32 Repeat scan line 32 times 

If you want to change the value in YZINC when video is enabled 
(ENV[DPYCTLJ=1), you should also clear YZCNT[DPYNX] to o. 

Display increment value 

The 27-bit SRINC value specifies the amount by which the address stored in 
SRNX[DPYNX] should be incremented following completion of each horizon­
tal-blanking screen-refresh cycle. This value corresponds to the display pitch. 
If you are using the V-zoom feature, the TMS34020 will not increment SRNX 
after each horizontal-blanking screen refresh. Instead, it will increment SRNX 
after every nth screen refresh if zoomxn is selected. 

For both interlaced and noninterlaced video, load SRINC with the display pitch. 
In interlaced video, the SRNX[DPYNX] registers are automatically increm­
ented by 2xSRINC to account for the fact that in any field (odd or even), only 
alternate lines are displayed. 

The bits of DPYNX and DPYST that correspond to the column and row 
addresses actually latched into the VRAMs vary from system to system. The 
bits of SRINC that contain the display pitch depend on the alignment of the 
address in SRNX[DPYNX] and SRST[DPYST]. SRINC is usually a power of 
2 or a sum of two powers of 2, but can be any arbitrary value required. 

\ 
\ 

4-33 



Format 

Description 

Which instructions 
use this register? 

Example 

4-34 

31 o 
··········•·.··· ..• ·.·· .. ·· ... ···.····il 

DPTCH defines the linear difference in the starting memory addresses of adja­
cent rows of a destination array. The TMS34020 uses the value in DPTCH to 
move from row to row through the destination array. DPTCH can have any val­
ue that is a multiple of the current pixel size. Note that XV -to-linear conversion 
is most efficient when DPTCH is a power of 2. 

If you're manually converting an XV address to a linear address, you can use 
the SETCDP instruction. SETCDP uses the DPTCH value to calculate the des­
tination pitch conversion factor and loads the correct value into CONVDP. The 
contents of CONVDP are then available for use by the CVXVL or CVDXVL 
instructions; these instructions perform the conversion. 

Instruction 

CVXYL 

CVDXYL 

DRAV 

FILLs (both) 

FLlNE, LINE 

PFILLXY 

PIXBLTs (all) 

PIXT Rs, * Rd.XY 

PIXT *Rs.XY, *Rd.XV 

SETCDP 

TFILL 

VBLT 

VFILL 

DPTCH .set B3 

DPTCH's format and valid values 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

MOVI 00001000h, DPTCH 
MOVI 00010AFCh, DPTCH 
MOVI 00000180h, DPTCH 

Power of 2 
Arbitrary value 
2 powers of 2 
(128 + 256) 

TMS34020 Registers 



Format 

Description DPYADR is a simple 16-bit read/write location that is included for compatibility 
with the TMS3401 O. The TMS3401 0 used DPYADR as the source of the row 
and column addresses output during screen-refresh cycles. The TMS34020 
uses a different register for this purpose and assigns no function to DPYADR. 

4-35 



DPYCTL 

Format 

Bits 

Description 

.=@-M 
bit 0 

4-36 

3 2 o 

Bits Name Function 

0 HSD Selects the horizontal-sync direction 

VSD Selects the vertical-sync direction 

2 CSD Selects the composite-sync direction 

3 CVD Disables composite video 

6 SSV Enables split-serial-register midline reload 

7 VCE Enables video capture 

11 CST Enables CPU serial-register transfers 

12 SRE Enables screen refreshes 

14 NIL Enables noninterlaced video 

15 ENV Enables video 

4-5 Reserved; do not use 8-10 

DPYCTL contains several parameters that control video timing. 

Horizontal-sync direction 

When HSD = HSYNC is an .• 

o Input 

Output 

The HSD bit controls the direction (input or output) of the HSYNC signal. 

[J When HSD=O, HSYNC is an input. The TMS34020's internal video timing 
logic synchronizes to external pulses applied to HSYNC. Whenever the 
TMS34020 detects the start of an external horizontal-sync pulse on 
HSYNC, it loads HCOUNT from SETHCNT. The internal horizontal- and 
composite-sync intervals begin if they were not already started. 

[J When HSD=1, HSYNC is an output and is controlled according to the val­
ues in the video timing registers. 

TMS34020 Registers 



_'b·. 
bit 1 

• E·. 
bit 2 

Vertical-sync direction 

When VSD = VSYNe is an .. 

a Input 

Output 

VSD controls the direction (input or output) of the VSYNC signal. 

Q When VSD=O, VSYNC is an input. The TMS34020's internal video timing 
logic synchronizes to pulses that an external source applies to VSYNC. 
Whenever the TMS34020 detects the start of an external vertical-sync 
pulse input on VSYNC, the TMS34020 loads VCOUNT from SETVCNT. 
The internal vertical-sync interval begins if it was not already started by the 
internal video timing logic. Enabling non interlaced video (NIL=1) also 
loads HCOUNT from SETHCNT. The internal horizontal- and compos­
ite-sync intervals begin if they were not already started by the internal vid­
eo timing logic. 

:-:=":-=-:-= 
Q When VSD=1, VSYNC is an output and is controlled according to the val-

ues in the video timing registers . 

Composite-sync direction 

eVD eSD Status of eSYNC/HBLNK 

a a CSYNC is an input 

a CSYNC is an output 

a undefined 

1 HBLNK is an output 

CSD controls the direction (input or output) of the CSYNC/HBLNK pin when 
it is configured as CSYNC (CVD=O). 

Q If CVD=1 , the pin is configured as HBLNK, and CSD must be 1. When 
CSD=1, CSYNC (CVD=O) or HBLNK (CVD=1) is an output and is con­
trolled according to values in the video timing registers. 

Q If CSD=O, CSYNC is an input and the TMS34020's internal video timing 
logic synchronizes to external pulses applied to CSYNC. Whenever the 
TMS34020 detects the start of an external composite-sync pulse input on 
CSYNC, the TMS34020 loads HCOUNT from SETHCNT. "The internal 
composite-sync interval begins if it was not already started by the internal 
video timing logic. Normally, the internal horizontal-sync interval also be­
gins if it has not already started. However, in interlaced video (NIL=O), ex­
ternal composite-sync pulses occur every half horizontal scan line during 
the equalization and serration regions of vertical blanking, so the internal 
horizontal-sync interval is started by alternate external composite-sync 
pulses at these times. The first serration pulse input on CSYNC also loads 
VCOUNT from SETVCNT, and the internal vertical-sync interval begins if 
it was not already started by the internal video timing logic. 

4-37 



.. 
bit 3 

8,'"1'-
bit 6 

4-38 

Composite video disable 

Status of CSYNC/HBLNK Status of CBLNKNBLNK 

CVD=O Selects CSYNC Selects CBLNK 

CVD=1 Selects HBLNK Selects VBLNK 

CVD controls the functions of the CSYNC/HBLNK and CBLNKNBLNK pins. 
Because both composite and separate synchronization and blanking signals 
are internal, CVD simply selects which of these functions is visible at the pins. 

Split-serial-register midline reload enable 

SRE SSV Effect 

o 0 Disables split-serial-register midline reload 

o Disables split-serial-register midline reload 

1 0 Disables split-serial-register midline reload 

Enables split-serial-register midline reload 

SSV determines whether or not the TMS34020 performs screen-refresh 
cycles for VRAMs with split-serial registers during the active display time. SSV 
works in conjunction with the screen-refresh enable bit (SRE). If SSV=1 and 
screen refreshes are enabled (SRE=1), the TMS34020 performs an ordinary 
screen-refresh (memory-to-register) cycle during horizontal blanking, which 

Step 1 : reloads an entire row of VRAM memory into the VRAM serial 
registers, 

Step 2: updates the address in SRNX[DPYNXII for the next screen refresh, 
and 

Step 3: reloads the SCOUNT register with the tap point of the current screen­
refresh address, using the mask in the DPYMSK register. 

This is immediately followed by a split register-to-memory cycle, which 

Step 4: . reloads the half serial registers that do not contain the current tap 
point so that they contain data for the next half line to be displayed, 

Step 5: and initializes the VRAM for split-serial-register operation. 

After blanking ends, SCLK starts shifting data from the VRAMs and increments 
SCOUNT (which tracks the VRAM tap point). When SCOUNT overflows from 
a tap point of all 1 s to all Os, this indicates that the VRAMs have switched from 
one half serial register to the other. A split register-to-memory cycle (midline­
reload cycle) is executed, performing Step 4. 

, 

Note: 

You must provide an SCLK pulse to the VRAMs between these two screen­
refresh cycles to ensure that the tap-point address is latched correctly. 

TMS34020 Registers 



.9S+ 
bit 7 

-M-bit 11 

Video capture enable 

VCE Effect 

o Selects memory-to-register screen-refresh cycles 

Selects register-to-memory screen-refresh cycles 

VCE determines whether TMS34020 screen-refresh cycles are memory-to­
register cycles or register-to-memory cycles. VCE affects only those memory 
cycles that are initiated by the TMS34020's video timing logic. 

When VCE=1, screen-refresh cycles initiated by the video timing logic are per­
formed as screen-capture cycles; data shifted into the VRAM serial registers 
is transferred to the specified row of VRAM ready for the next line. 

Do not use midline reload in systems with video capture; clear SSV to O. 
VRAMs support only the transfer of an entire serial register's contents into the 
specified memory row. If you used midline reload to condense the display 
memory into a contiguous region of VRAM, it would be necessary to transfer 
only some of the bits of the serial register into the memory array in order to not 
overwrite previously captured data.This is not possible. 

CPU serial-register transfer enable 

CST Effect 

o Pixel-access cycles occur normally 

Converts pixel-access cycles into VRAM serial-register-transfer cycles 

CST converts an ordinary pixel access into a VRAM serial-register transfer 
cycle. Several of the TMS34020's graphic instructions treat data as pixels. 

By default, CST =0 and accesses of pixel data are normal read and write cycles. 
When CST =1, however, pixel accesses are converted to serial-register-tran­
sfer cycles: 

[J A pixel read cycle becomes a memory-to-register cycle. 
[J A pixel write cycle becomes a register-to-memory cycle. 

This register-transfer cycle is performed under explicit program control, as 
opposed to the screen-refresh cycles enabled by the SRE bit, which are auto­
matically generated at regular intervals. 

CST is useful for bulk initialization of an entire VRAM array. You can clear the 
entire screen to a specified background color in only 256 memory cycles for 
64Kxn VRAMs, or 512 memory cycles for 256Kxn VRAMs (where n is the num­
ber of planes within the VRAM). (Note that the TMS4461 and TMS44251 have 
this capability, but not all VRAMs support this function.) The CST bit affects 
only pixel accesses; it does not affect instruction fetches or nonpixel accesses. 

4-39 



M;'_ 
bit 12 

.. 
bit 14 

--bit 15 

4-40 

Screen-refresh enable 

ENV SRE Effect ENV SRE Effect 

0 0 Disables screen refresh 0 Disables screen refresh, 
but tracks the address 

0 Disables screen refresh Enables screen refresh 

SRE enables automatic screen refreshing. Screen refreshes are performed by 
means of the VRAM memory-to-register cycles, which the TMS34020 per­
forms automatically during each horizontal-blanking interval. DPYST, DINC, 
and DPYCTL control generation of addresses output during these cycles. If 
ENV=1, the TMS34020 continues to generate the screen-refresh address 
internally, even if SRE=O. This allows an external source to insert images into 
the display; during each horizontal-blanking period, the TMS34020 continues 
to track the address of the image hidden beneath the external image. Thus, the 
TMS34020 can restart screen refreshes after inserting the image without 
adjusting the address to account for the undisplayed lines. 

Changing SRE's value affects screen refreshes, starting with the next horizon­
tal-blanking period-or, if SSV=1 and SCLK is running, starting with the next 
time the VRAMs change active half serial registers, whichever comes first. 
Normally, however, SCLK does not shift data to the screen when screen 
refreshes are disabled . 

Noninterlaced video enable 

NIL Effect 

o Selects interlaced video timing 

Selects noninterlaced video timing 

NIL selects between an interlaced or a noninterlaced display. The TMS34020 
modifies its video timing output signals according to NIL's value. Chapter 9 de­
scribes the timing differences between interlaced and noninterlaced video. 

Enable video 

ENV Effect 

o Blanks the entire video screen 

Enables the video display 

ENV enables or disables the video display. 
IJi When ENV=O, the display remains blanked. The signal output at CBLNKI 

VBLNK (and at CSYNC/HBLNK if CVD=1) is forced to remain at active low 
throughout the frame, inhibiting the display interrupt. (DIP[INTPEND] 
can't be set. If DIP is already set when ENV changes from 1 to 0, it remains 
set until you explicitly clear it.) 

IJi When ENV=1, the video display is enabled. The output signals are 
controlled according to the parameters in the video timing registers, and 
DIP is set when VCOUNT becomes equal to DPYINT. 

TMS34020 Registers 



Format 

Description 

15 0 

DPYINT identifies the next scan line (in some cases, the next half scan line) 
at which a display interrupt will be requested. DPYINT helps to coordinate soft­
ware activity with the refreshing of a selected horizontal scan line on the 
screen. 

The video timing logic compares the contents of DPYINT to VCOUNT. This 
usually coincides with the start of the horizontal-blanking interval that marks 
the end of the line designated by the value in DPYINT. If interlaced video is 
enabled (NIL=O), then during the part of the vertical-blanking interval when 
VCOUNT is incremented every half line, DPYINT is compared to VCOUNT just 
before VCOUNT is incremented, at the end and in the center of each horizontal 
scan line. When VCOUNT =DPYINT, a display interrupt is requested and 
DIP[INTPEND] is set to 1. 

For split-screen applications, you can load a new value into the 
SRNX[DPYNX] bits, immediately following detection of the O-to-1 transition 
of DIP. The new SRNX value does not affect the line that follows the current 
horizontal-blanking interval, but affects the next line. A screen-refresh cycle 
will be scheduled to occur at the start of the same horizontal-blanking period 
in which DIP is set. At the end of the screen-refresh memory cycle, the 
screen-refresh address in SRNX is automatically incremented. Requests for 
screen-refresh cycles have a higher priority than CPU requests. Thus, if the 
CPU loads a new value into SRNX immediately after setting the DIP bit, SRNX 
will not actually be modified until after the screen-refresh cycle completes and 
the existing contents are incremented. This new address becomes the address 
used in the next screen refresh. SRNX can change only during the scan line 
under explicit program control. The display interrupt is disabled when 
ENV[DPYCTL] is O. 

4-41 



DPYNX Diselay Next Address Registers 

Format 
DPYNX 

or DPYNXL 

DPYNXH 

Bits 

Description 

i'MIIM 
bits 0-4 

4-42 

Bits Name 

DPYNX (32-bit address): COOO 0220h 
DPYNXL (16-bit address): COOO 0220h 
DPYNXH (16-bit address): COOO 0230h 

Function 

Q--4 YZCNT V-zoom count 

5-31 SRNX Next screen-refresh address 

Note: 

You can access the display next-address registers separately or together by 
using different addresses and different field sizes. 

£1 To access DPYNX as a single 32-bit register, access the 32-bit field at 
address COOO 0220h. 

£1 To access DPYNXL as a 16-bit register, access the 16-bit field at address 
COOO 0220h. 

£1 To access DPYNXH as a 16-bit register, access the 16-bit field at address 
COOO 0230h. 

The DPYNX registers contain two values. One is used for the Y -zoom feature; 
the other is an address that is output during a screen-refresh cycle. 

V-zoom increment value 

The 5-bit YZCNT value determines when the SRNX address can be incre­
mented by SRINC[DINC]. After every local-memory screen-refresh cycle, the 
TMS34020 increments YZCNT by the value of YZINC[DINC]. If YZCNT =0 
before it is incremented, SRNX is incremented at the same time. If YZCNT ",,0, 
SRNX is not incremented, so the next scan line contains the same pixels as 
the current scan line. This allows the image on the screen to be magnified (or 
zoomed) in the Ydirection. The value of YZINC determines how many times 
the scan line is output, and thus determines the zoom factor. 

TMS34020 Registers 



Ell 
bits 

5-31 

YZCNT will equal 0 when 

n x YZINC modulo 32 = 0 

(n is the Y -zoom factor). This occu rsonce every n scan lines. During each verti­
cal-blanking inteNal, YZCNT is reset to YZINC. 

Next screen-refresh address 

The 27 -bit SRNX value represents the long-word address that is output during 
a screen-refresh cycle. When YZCNT =0, the TMS34020 increments SRNX 
(by SRINC[DINC]) after each screen-refresh cycle. 

SRNX consists of a row-address portion and a column-address portion, corre­
sponding to the bits of the address connected to the VRAMs at row- and col­
umn-address times on RCAQ-RCA 12. The column- and row-address fields 
should be contiguous to one another within SRNX. However, you can choose 
where the two fields are placed within the 27 bits of SRNX, provided that all 
ofthe row-address bits are output on RCAO-RCA 12 at row-address time, and 
all the column-address bits are output on RCAQ-RCA 12 at column-address 
time. Section 8.16.2 (page 8-53) details which bits of the logical address are 
output on RCAQ-RCA 12 at row- and column-address times. 

4-43 



Format 

Description 

15 0 

l~i~pl~Ym~~#rjl 

DPYMSK is used when midline-reload screen refreshes are enabled 
(SSV[DPYCTLl]=1). DPYMSK defines which bits of the address in 
SRST[DPYSl] and SRNX[DPYNX] correspond to the tap-point portion ofthe 
address output during screen-refresh cycles. DPYMSK is loaded with a field 
of contiguous 1 s to indicate where the tap point is within SRST and SRNX. This 
information is then used to perform these functions: 

[J Isolate the tap point from the 27-bit, long-word screen-refresh address so 
that it can be loaded into SCOUNT (the counter register that tracks the 
VRAM tap point and schedules midline-reload split-serial-register 
screen-refresh cycles during the active portion of the display). 

[J Determine which bit of the 27-bit, long-word address should be increm­
ented so that the address output during a midline-reload memory cycle is 
the address of the next half-row of VRAM. 

DPYMSK maps to the 16 LSBs of SRST and SRNX, which correspond to bits 
5 to 20 of DPYST and DPYNX, respectively. There are two reasons for this 
skewed mapping: 

Q Bit 5 of DPYNX is the least significant address bit output during screen-re­
fresh memory cycles. 

[J If the mapping were not skewed, a 32-bit DPYMSK register would be re­
quired to determine which bits in DPYNXH and DPYSTH were part of the 
tap point. 

Figure 4-6. How DPYMSK Maps to the Logical Screen-Refresh Address 

4-44 

The tap point's LSB does not have to be in bit 5 of the logical address. This al­
lows for some bank selection bits at the least significant end of the address. 

TMS34020 Registers 



The bits from the logical address identified by DPYMSK to be the tap point are 
automatically shifted right by the number of Os at the least significant end of 
DPYMSK before being loaded into SCOUNT. 

The number of contiguous 1 sin DPYMSK depends on the number of address 
bits needed to specify the tap-point address for the VRAMs. This field is either 
right-justified in DPYMSK, or it is preceded by several Os if there are inter­
leaved banks addressed with bits of the logical address less significant than 
the tap point. The remaining bits at the most significant end of DPYMSK should 
be Os. 

During a midline-reload screen-refresh cycle, the address output by the 
TMS34020 is that of the next half-row of VRAM to be displayed. This address 
has a 0 tap point and is stored in an inaccessible register. This address must 
then be incremented to point to the next half-row after that, as there may be 
multiple midline reloads on anyone horizontal scan line. The address is 
incremented at the next bit position to the left of the leftmost 1 in DPYMSK. The 
most significant 1 in DPYMSK must not be any higher than bit 10 or lower than 
bit 7 of DPYMSK. 

Figure 4-7. The Functions of the Different Fields of DPYMSK 

Because the serial registers in the VRAMs are split into two parts, the tap point 
for each VRAM needs to address only enough bits for half a row. This means, 
for instance, that for a 256Kx4 VRAM (the smallest available with the split-seri­
ai-register), the tap point mask should be 8 contiguous 1 s despite the fact that 
a 256Kx4 VRAM or DRAM requires 9 row- and column-address bits; when con­
sidering the split-serial register, the MSB of the column address is not part of 
the tap point, but selects between the upper and lower serial register halves. 
Similarly, 1 Mxn VRAMs should have a 9-bit tap point mask. 

4-45 



DPYST Dise/ay Start Address Registers 

Format 
DPYST 

or DPYSTL 

DPYSTH 

Bits 

Description 

4-46 

Bits Name 

5-31 SRST 

Note: 

DPYST(32-bit address): COCO 0200h 
DPYSTL (16-bit address): COCO 0200h 
DPYSTH(16-bit address): COOO 0210h 

Function 

Reserved; do not use 

Screen-refresh start address 

You can access the display start address registers separately or together by 
using different addresses and different field sizes. 

IJI To access DPYST as a single 32-bit register, access the 32-bit field at ad­
dress COOO 0200h. 

IJI To access DPYSTL as a 16-bit register, access the 16-bit field at address 
COOO 0200h. 

IJI To access DPYSTH as a 16-bit register, access the 16-bit field at address 
COOO 0210h. 

The 27-bit SRST value represents the address that points to the pixel at the 
left of the first line displayed on the screen. This address is used in calculating 
the screen-refresh address output just before the start of each frame (or field 
in interlaced video). There are a number of cases to consider. 

IJI In non interlaced video, the address output at the beginning of each field 
is simply that contained in SRST, so SRST is copied into SRNX[DPYNX!I 
at the beginning of each vertical-blanking period. 

IJI In interlaced video, 

• At the beginning of the even field, the address of the first pixel 
displayed is that of the pixel half way across the first line. So, 

TMS34020 Registers 



SRINC[DINC]/2 is added to SRST before the address is loaded into 
SRNX[DPYNXll at the start of the vertical-blanking interval. 

• At the beginning of the odd field, the address of the first pixel displayed 
is that of the first pixel on the second line. So, SRST is added to 
SRINC[DINC] before being loaded into SRNX[DPYNXll atthe start of 
the vertical-blanking interval. 

IJ The address output at the beginning of the second line of the even field in 
interlaced video is that of the first pixel on the third line of the display. 
Normally, the address is generated by adding SRINC[DINC] or, in inter­
laced video, 2xSRINC to the value in SRNX[DPYNx]. However, in this 
particular instance ,SRNX contains the address of the pixel half way 
across the first line of the display, and so would need 1.5xSRINC added 
to it to arrive at the correct address. Because of this, the value of SRNX 
generated after the first screen refresh in the even field is generated by 
adding 2xSRINC to SRST. 

The address consists of a row-address portion and a column-address portion, 
corresponding to the bits of the address connected to the VRAMs at row- and 
column-address times, respectively, on the RCAD-RCA 12 bus. The column­
and row-address fields should be contiguous to one another within the 27 bits 
of SRNX. However, you can choose where the two fields are placed within the 
32-bit register, provided that all of the row-address bits are output on 
RCAD-RCA 12 at row-address time, and all the column- address bits are out­
put on RCAO-RCA12 at column-address time. Section 8.16.2 (page 8-53) 
details which bits of the logical address are output on RCAD-RCA 12 at row­
and column-address times. 

4-47 



Format 

Description 

4-48 

15 0 

1··nq.agf!pg~fqQQt'QQfQrI!!MS@4QgQ;1 

DPYSTRT is a simple 16-bit read/write location that is included for compatibili­
tywith the TMS3401 o. The TMS3401 0 used DPYSTRTto indicate the address 
of the first pixel to be displayed in each frame. The TMS34020 uses a different 
register for this purpose and assigns no function to DPYSTRT. 

TMS34020 Registers 



Format 

Description 

15 0 
1·.· .. ·./ii·Li...i\id9t1~fih~(jNriqtlgnfori'M$34QgQr)\· ····.fii.Y··.tl 

DPYTAP is a simple 16-bit read/write location that is included for compatibility 
with the TMS3401 o. The TMS3401 0 used DPYTAP to indicate the VRAM tap 
point used during screen-refresh cycles. The TMS34020 uses a different regis­
ter for this purpose and assigns no function to DPYTAP. 

4-49 



Format 

Description 

Which instructions 
use this register? 

4-50 

DYDX defines the X and Y dimensions of the rectangular destination array for 
PIXBLT and FILL instructions. Both the X and Y dimensions are in pixels; the 
DX value is the number of pixels in the width of the array, and DY is the number 
of rows of pixels in the array. 

When window clipping is selected, the pixel block dimensions for the transfer 
are determined by the relationships between WSTART, WEND, DADDR, and 
DYDX. If either the X or Y dimension is 0, then the entire block is interpreted 
as having a dimension of 0; no transfer is performed. 

The values for DY and DX can range up to the coordinate extent of the display 
(up to 65,535, depending on the display pitch and pixel size selected). For win­
dow operations, the relationship between DYDX, WSTART (at location [Xstart, 
Y startl) , and WEND (at location [Xend, Yend]) is such that DY::; (Yend - Y start 
+ 1) and DX ::; (Xend - Xstart + 1). The value in DYDX is used with WSTART, 
WEND, and DADDR to preclip pixels, lines, and pixel arrays. 

Most graphics instructions do not modify the contents of DYDX. For FILL XV, 
PIXBLT B,XY, PIXBLT L,XY, and PIXBLT XY,XY, with window option 1, howev­
er, DYDX is used with DADDR to perform a common rectangle function. In this 
case, the instruction sets DYDX to the dimensions of the common pixel block 
represented by the intersection of the original destination array and the win­
dow. No drawing is performed. If there is no common rectangle, the V bit is not 
set, and the value of DYDX is indeterminate. 

Instruction 

FILLL 

FILL XV 

FLlNE, LINE 

PIXBLT B, L 

PIXBLT B, XV 

PIXBLT L, L 

PIXBLTL, XV 

PIXBLTXV, L 

DVDX's format and function 

Array dimensions in XV format 

Array dimensions in XV format; special results when W=1 is 
selected, as previously noted 
Dimensions of the rectangle described by the line to be drawn 

Array dimensions in XV format 

Array dimensions in XV format; special results when pick is 
selected, as previously noted 

Array dimensions in XV format 

Array dimensions in XV format; special results when pick is 
selected, as previously noted 
Array dimensions in XV format 

TMS34020 Registers 



Example 

Instruction 

PIXBLT XV, XV 

PIXBLT L, L 

PIXBLT L, XV 

PFILLXV 

VBLT 

VFILL 

Delta Y / Delta X Register DYDX 

DVDX's format and function 

Array dimensions in XV format; special results when pick is 
selected, as previously noted 

Array dimensions in XV format 

Array dimensions in XV format; special results when pick is 
selected, as previously noted 

XV; dimensions of the fill area 

XV; dimensions of the pixel block 

XV; dimensions of the fill area 

This example illustrates the relationship of DYDX to WSTART and WEND by 
setting DYDX to the width and height of the clipping window. 

WSTART .set 
WEND .set 
DYDX .set 

MOVE 
SUBXY 
ADDXYI 

B5 
B6 
B7 

WEND, DYDX 
WSTART, DYDX 
[1, 1] , DYDX 

Put WEND into DYDX 
Generate (WEND-WSTART) 
Increment by 1 in each 
dimension 

4-51 



Format 

Description 

4-52 

15 0 

IU.1§t6iIqQpbt~rf6rh6d£Qnt~l§q~n!lh~$i?1 

HCOUNT is a 16-bit counter used for generating horizontal and composite 
video signals. HCOUNT is incremented on the falling edge of the VCLK, thus 
counting the number of VCLK periods per horizontal scan line. 

[J To generate horizontal sync and blanking signals, the value of HCOUNT 
is compared to the values of HESYNC, HEBLNK, HSBLNK, and HTOTAL. 

Q To generate composite serration and equalization pulses, HCOUNT is 
compared to the value of HESERR and half the value of HESYNC, respec­
tively. 

HCOUNT is reset to 0 on the next VCLK falling edge after HCOUNT = 
HTOTAL, and the HSYNC output is driven low. If CSYNC/HBLNK is configured 
to CSYNC, this pin is also driven low. 

If interlaced composite video is enabled, HCOUNT is also reset to 0 on the next 
VCLK falling edge after HCOUNT =HTOTAU2 during the equalization and ser­
ration regions of vertical blanking. 

In external horizontal or composite-sync video, HCOUNT is reloaded from the 
SETHCNT register on the rising edge of the video input clock. This is 4 VCLK 
cycles after the HSYNC or CSYNC input signals, respectively, are driven low. 

Two separate, asynchronous elements of the TMS34020 logic can access the 
HCOUNT register. 

Q The video timing control logic (which runs synchronously to the VCLK) 
increments, clears, and reloads HCOUNT (from SETHCNT) in generating 
the sync and blanking signals. 

Q The internal processor (which runs synchronously to LCLK1 and LCLK2) 
can access HCOUNT as an I/O register. 

No synchronization between these subsystems is provided. HCOUNT can be 
reliably read from or written to only while VCLK is held at the logic-high level. 
HCOUNT is typically not read from or written to except during chip test. 

TMS34020 Registers 



Format 

Description 

15 

HEBLNK is used for generating the HBLNK or CBLNK signals output to a video 
monitor. The 16-bit HEBLNK value is compared to HCOUNT and defines the 
point at which the horizontal-blanking interval ends. 

For composite video, select the CBLNKlVBLN!< pin as CBLNK. CBLNK out­
puts the logical-OR of the internal horizontal- and vertical-blanking signals; it 
is low if horizontal- or vertical-blanking is active internally. 

Most video monitors require HEBLNK to contain a value that is less than 
HSBLNK but greater than HESYNC. 

4-53 



HESERR Horizontal End Serration Re~;e;;;r ...... ___ """", _______ -= ____ ...... _ .... 

Format 

Description 

4-54 

15 0 

I··· .. ·.•• ............................................; •••.•.••••••• I~tiaQfgqlpQ~i~ ••• $YQQ4yf.iQg~~rr~~'Qhr~giQry·.·.·.· .•.• · .•• ·.··..II.· •••• ·.·.···..iIJ ••••• , 

HESERR is used for generating the composite-serration pulses output to the 
video monitor. You need to program this register only when the CSYNC/ 
HBLNK pin is selected as CSYNC. The 16-bit HESERR value defines the pOint 
at which the composite-sync pulse ends during the serration region of vertical 
blanking (this coincides with the vertical-sync region). When the value in 
HCOUNT =HESERR during this region, the signal output from the CSYNC pin 
is driven inactive high to signal the end of the serration pulse. 

NTSC and similar composite-video standards require HESERR to contain the 
value (HTOTAU2) - HESYNC -1. (Serration pulses occur every half line, and 
in each cycle, the CSYNC signal is inactive high for the same duration as hori­
zontal sync is active low.) 

When external composite sync is enabled, load HESERR with a value that 
ensures that the HCOUNT does not become equal to HESERR before the 
external composite-sync signal goes inactive high, but before CSYNC goes 
active low again. 

TMS34020 Registers 



Format 

Description 

Horizontal End Sync Register HESYNC 

HESYNC is used for generating the horizontal- and composite-sync signals 
output to a video monitor. The 16-bit HESYNC value defines the point at which 
the horizontal-sync pulse ends. If the CSYNC/HBLNK pin is selected as 
CSYNC, HESYNC also determines the point at which the composite- sync 
pulse ends (except during the serration region of vertical blanking). When the 
value in HCOUNT =HESYNC, the signal output from the HSYNC and CSYNC 
pins is driven inactive high to signal the end ofthe horizontal-sync interval. Dur­
ing the equalization regions of vertical sync, the CSYNC pin is driven inactive 
high when HCOUNT = HESYNC/2, indicating the end of the composite-equali­
zation interval. 

Monitors typically require HESYNC to contain a value less than HEBLNK; how­
ever, the TMS34020 does not require this. The minimum value of HESYNC is 
o. 
When external horizontal or composite sync is enabled, you should load 
HESYNC with a value that ensures two things: 

~ that the value in HCOUNT does not reach HESYNC before the external 
horizontal or composite-sync signal goes inactive high 

~ that the value in HCOUNT reaches HESYNC before HSYNC or CSYNC 
goes active low again 

For external composite sync, HCOUNT must not become equal to HESYNC/2 
before the composite-sync equalization pulse goes inactive. 

4-55 



HSTADR Host-Interface Address Registers 

Format 

Format 

4-56 

15 0 

HSTADRH and HSTADRL are simple 16-bit read/write locations that can be 
used to store information passed between the host and the TMS34020. 

TMS34020 Registers 



Format 

Bits 

Description 

'maM 
bit 4 

'''.:1.111.:1' 
bits 5&6 

Bits Name Function 

4 HACK Acknowledges TMS34020 halt 

5-6 HLBO, HLB1 Selects the host byte order 

7 RST Resets the TMS34020 

8 NMI Enables the nonmaskable interrupt 

9 NMIM Selects the mode for the nonmaskable interrupt 

11 HPFW Enables host prefetches after writes 

12 HINC Enables host increment 

14 CF Flushes the cache 

15 HLT Halts TMS34020 processing 

0-3 
Reserved; do not use 

10,13 

HSTCTLH contains10 programmable bits for controlling host interface 
communications. Both the TMS34020 and a host processor can read from or 
write to HSTCTLH; typically, however, only the host alters HSTCTLH. 

Halt acknowledge 

HACK Description 

o The TMS34020 is running 

The TMS34020 is halted 

The TMS34020 sets HACK when the TMS34020 is halted by setting HL T. (Both 
the host processor and the TMS34020 can write to HLT; in either case, the 
TMS34020 sets HACK.) By polling the value of HACK, the host can determine 
when the TMS30420 actually halts. The TMS34020 automatically clears 
HACK when HLT is cleared to release the TMS34020 from halt. 

Host last byte 

HLB1 HLBO Last Byte Accessed HLB1 HLBO Last Byte Accessed 

o o byte 3 o byte 1 

o byte 2 byte 0 

4-57 



.. 
bit 7 

.. 
bit 8 

4-58 

The host processor sets the HLB bits to inform the TMS34020 which byte of 
a 32-bit word the host will access last. The TMS34020's host interface uses 
the HLB value to determine when to prefetch the next 32-bit word in memory. 
If prefetches are enabled, the TMS34020 prefetches the next location from 
memory after the host accesses the last byte. The HPFW bit determines 
whether this access must be a read or a write. The 2-bit HLB code allows for 
all host byte-ordering conventions. 

For an a-bit host, the value of both bits determines after which byte access of 
the appropriate type (read or write) the TMS34020 will prefetch the next 32-bit 
location. For a 16-bit host, the value of HLB1 alone is sufficient to determine 
after which 16-bit word access the TMS34020 will prefetch the next 32-bit loca­
tion. For a 32-bit host, any combination of HLB 1-HLBO causes the TMS34020 
to prefetch the next 32-bit location after each host access of the appropriate 
type . 

Reset 

RST Effect 

o Allows normal operation 

Executes reset 

Setting RST to 1 has the same effect as asserting the RESET pin low-the 
TMS34020 executes a reset. However, when RST is set, only the TMS34020 
is reset; typically, the RESET signal is connected to all devices in the system, 
and asserting it low affects the entire system. 

While the TMS34020 is executing reset internally and the RESET pin is high, 
DRAM CAS-before-RAS refresh cycles are performed, thus preserving the 
contents of the DRAMs in the system. During a hardware reset, the TMS34020 
uses the value of HCS just before the rising edge of RESET to determine 
whether to come up in self-bootstrap or host-present mode. When reset is 
caused by setting RST, however, there is no rising edge on the RESET pin. 
Because of this, the TMS34020 remembers which mode it was brought up in 
the last time a reset was caused by asserting RESET, and it configures itself 
in that mode. 

It is not necessary to clear RST; reset clears it automatically . 

Nonmaskable interrupt, host to TMS34020 

NMI Effect 

o No NMI is requested 

The host is requesting an NMI 

The nonmaskable interrupt allows a host processor to redirect the CPU's 
execution flow to an NMI routine, regardless of the current state of the interrupt 
mask flags. The host writes a 1 to the NMI bit to send a nonmaskable interrupt 

TMS34020 Registers 



.. 
bit 9 

.. 
bit 11 

request to the TMS34020. The interrupt request cannot be disabled, and is 
always executed (unless the TMS34020 is reset before it can complete inter­
rupt execution). The interrupt is initiated immediately when NMI is set (at the 
time the current instruction completes execution, or at the next interruptible 
point in an instruction). Once the interrupt is taken, internal logic automatically 
clears the NMI bit to O. 

You can use NMI to generate a soft reset after the host downloads new code 
into TMS34020 memory. After execution of a nonmaskable interrupt, 
screen-refresh and DRAM-refresh functions continue unaffected. The inter­
rupt does not alter the contents of internal registers except for HSTCTLH (the 
NMI bit), although the NMI service routine may alter them . 

Nonmaskable interrupt mode 

NMI NMIM Effect NMI NMIM Effect 

0 0 No effect 0 NMI, save context on current stack 

0 undefined NMI, discard context 

The NMI mode bit determines whether or not the context (PC and ST) of the 
interrupted program is saved when a nonmaskable interrupt occurs. 

[1 When NMIM=O, the TMS34020 saves the context on the system stack 
before executing the NMI service routine. This is useful for applications 
(single-step instruction execution, for example) that must preserve the 
PC's status between consecutive nonmaskable interrupts. Note that sav­
ing the context may be of no benefit if either 

• control will never be returned to the interrupted program, or 
• the integrity of the stack pointer is suspect. 

[1 When NMIM=1, the TMS34020 discards the context when it executes the 
NMI service routine. You can use a nonmaskable interrupt to simulate a 
hardware reset in software (using the NMI vector). The NMI does not reset 
the 1/0 registers; if you simulate a hardware reset with an NMI, the NMI 
service routine should reset the I/O registers . 

Host prefetch-after-write enable 

HINC HPFW Effect 

o o 
o 

o 

Disables prefetching and incrementing of internal address 

Disables prefetching and incrementing of internal address 

Enables prefetching after last byte read and incrementing of in­
ternal address after any last byte access 

Enables prefetching after last byte write and incrementing of in­
ternal address after any last byte writes 

HPFWworks with the HINC bitto enhance a host processor's access to blocks 
of TMS34020 memory. When host prefetches are enabled (H INC= 1 ), the value 

4-59 



HSTCTLH Host-Interface Control Refl.ist~ Higf!JJ;:,;2" '""""-= 

.. 
bit 12 

4-60 

of HPFW determines whether prefetches are executed after a read to or a write 
from the last byte of a word (identified by the HLB bits). 

~ Selecting HINC=1 and HPFW=O enhances the host processor's ability to 
read contiguous blocks of TMS34020 memory. This tells the TMS34020 
to prepare for the host's next read request by prefetching the next 32-bit 
location in memory after completing the read of the current long word. If 
the host uses implicit addressing to access TMS34020 memory (that is, 
the host provides only the first address of a contiguous block of memory), 
the TMS34020 automatically generates subsequent addresses by incre­
menting the address after each access (regardless of whether the access 
is a read or a write). 

~ Selecting HINC=1 and HPFW=1 enhances the host processor's ability to 
modify contiguous blocks of TMS34020 memory. This tells the TMS34020 
to prepare for the host's next read request by prefetching the next 32-bit 
location in memory after the write to the current word is complete. This pro­
vides an efficient read-modify-write mechanism. If the host uses implicit 
addressing to access a block of TMS34020 memory, the TMS34020 gen­
erates subsequent addresses by incrementing the address after each 
write. 

If the host is not using implicit addressing, prefetching could yield an unwanted 
address; however, the TMS34020 has a built-in mechanism that compares the 
fetched address to the requested address. If the TMS34020 prefetches an un­
wanted location, it makesan additional access to the requested 10cation.This 
ensures that the host always accesses the correct location . 

Host increment 

HINC Effect 

o Disables prefetching, incrementing, and comparison of addresses 

Enables prefetching, incrementing, and comparison of addresses 

Setting HINC enhances the TMS34020's host interface performance by pro­
viding these features. 

~ Address comparison. The TMS34020 compares the address most 
recently read or prefetched by the host with the address currently 
requested by the host on read accesses. This allows prefetching while en­
suring that the correct location is always accessed. If the host requests ac­
cess to a location different from a prefetched location, the TMS34020 de­
tects this and initiates another access to the explicitly requested location. 

Address comparison is also useful if the host is not a 32-bit machine. In this 
case, the host must perform multiple reads to fully read a 32-bit word. The 
address comparison ensures that once data from the address is latched 
into the external host data transceivers, accesses to other bytes of the 
same word do not cause the data to be fetched repeatedly from the 
TMS34020's local memory. 

TMS34020 Registers 



-3-bit 14 

.. 
bit 15 

Q Address prefetch. The TMS34020 supports prefetching, providing the 
host with an efficient method for accessing contiguous blocks of 
TMS34020 memory. 

Q Address increment. A host can use implicit addressing, supplying only 
the first address in the block of words that it will read, write, or modify. The 
TMS34020 automatically increments the address after each last-byte host 
read/write (HPFW=O), or after each last-byte write (HPFW=1). 

Cache flush 

CF Effect 

o No effect 

1 Flushes and disables the cache 

Setting CF to 1 disables the instruction cache and flushes the cache contents. 
While CF=1, all 4 of the cache's P flags are forced to O. The TMS34020 must 
fetch instructions one-at-a-time from local memory. 

Normal cache operation resumes when CF is cleared to 0 (assuming that 
CD [CONTROL] also = 0). When the value of CF changes from 1 to 0, the 
cache begins operation in the same initial state as that which immediately 
follows reset. 

Flushing the cache is useful when the host processor downloads new code to 
TMS34020 local memory. By setting CF to 1 and then to 0, the host forces the 
TMS34020 to load new instructions into the cache from memory rather than 
to continue executing the stale instructions already in the cache . 

Halt TMS34020 program execution 

HLT Effect 

o Allows TMS34020 to run 

Halts TMS34020 instruction execution 

When HLT =1, the TMS34020 suspends instruction processing at the next 
instruction boundary. Once halted, the TMS34020 does not respond to inter­
rupt requests, including NMI. Local-memory-refresh and video-timing func­
tions continue unaffected while the TMS34020 is halted. When HLT is cleared 
to 0, the TMS34020 continues execution. 

The state of HLT immediately after reset is determined by the state of the HCS 
pin at the low-to-high transition of RESET: 

Q If HCS is low, HLT is set to 0 and the TMS34020 can begin executing its 
reset routine. 

Q If HCS is high, HLT is set to 1 and the TMS34020 is halted. 

Both the host processor and the TMS34020 can write to the H LT bit; this means 
the TMS34020 can halt itself by setting HLT to 1. 

4-61 



HSTCTLL Host-Interface Control Register, Low Word 

Format 

Bits 

Description 

MSGOUT 

MSGIN 

INTIN 

INTOUT 

_""Mil' 
bits 0-2 

4-62 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

Bits Name Function 

0-2 MSGIN Buffers an input message 

3 INTIN Sends input interrupt from host to TMS34020 

4-6 MSGOUT Buffers an output message 

7 INTOUT Sends output interrupt from TMS34020 to host 

10 EMR Emulator handshake (request to host) 

11 EMG Emulator handshake (grant from host) 

12 EMIEN Enables emulator inhibit host port interrupt 

13 HRYI Indicates a retry on a host access 

14 HBFI Indicates a bus fault on a host access 

15 HBREN Enables host retry or bus-fault interrupt 

8-9 ~:;II"~;I~;II"~;ill"~::i Reserved; do not use 

HSTCTLL controls host interface communications. Both the TMS34020 and 
the host can read all of HSTCTLL's bits, but these restrictions apply to writes: 

TMS34020 Host Processor 

Can modify Can't modify 

Can't modify Can modify 

Can write a 0; writing a 1 has no effect Can write a 1; writing a 0 has no effect 

Can write a 1; writing a 0 has no effect Can write a 0; writing a 1 has no effect 

Message in-host to TMS34020 

The message-in bits buffer a 3-bit interrupt message to the TMS34020 from 
the host. The host can read from and write to MSGIN, but the TMS34020 can 
only read MSGIN. MSGIN typically contains a command or status code from 
the host, which the TMS34020 reads in response to a host-generated interrupt 
(INTIN=1). The code's meaning depends on your application. 

TMS34020 Registers 



ami 
bit 3 

bits 4-6 

'''.,.Ii., 
bit 7 

bits 10&11 

Interrupt in-host to TMS34020 

INTIN Effect 

o No interrupt request to TMS34020 

1 Host requests a TMS34020 interrupt 

INTIN controls the host's message interruptto the TMS34020. To generate this 
request, the host sets INTIN to 1. The TMS34020 can deactivate the request 
by clearing INTIN. The host cannot clear INTIN; similarly, the TMS34020 can­
not set INTIN. The HIP[INTPEND] bit reflects the status of INTIN. 

Message out-TMS34020 to host 

MSGOUT buffers a 3-bit interrupt message to the host from the TMS34020. 
The TMS34020 can read from and write to MSGOUT, but the host can only 
read MSGOUT. MSGOUT typically contains a command or status code from 
the TMS34020, which the host reads in response to a TMS34020-generated 
interrupt (INTOUT =1). The code's meaning depends on your application. 

Interrupt out-TMS34020 to host 

INTOUT Effect 

o No interrupt request to host 

TMS34020 requests a host interrupt 

The INTOUT bit controls the TMS34020's message interrupt to the host. The 
TMS34020 transmits an interrupt request to the host by driving HINT active 
low. When INTOUT =1, HINT is driven active low; when INTOUT =0, HINT is 
driven inactive high. The TMS34020 activates the interrupt request by setting 
INTOUT to 1; the host deactivates the request by clearing INTOUT. The 
TMS34020 cannot clear INTOUT; similarly, the host cannot set INTOUT. 

Emulator (or debugger) handshake-request to/grant from host 

EMG EMR Interpretation 

o 0 No request, no interrupt 

o Host request from EMU, interrupt if enabled 

o Host released by EMU, interrupt if enabled 

Host grant to EMU, no interrupt 

An in-circuit emulator or software debugger may use EMR and EMG for 
exchanging information and coordinating activity with a host processor. The 
precise meaning of these bits depends on your application, the emulator or 
debugger software, and the host processor. 

If a debugger or an in-circuit emulator needs to start emulation activity with the 
TMS34020, the debugger or emulator may set EMR to make this request to 
the host. If EMIEN=1, setting EMR causes the host to be interrupted via HINT. 
The hostthen sets EMG to acknowledge this, causing HINTto return to its inac-

4-63 



HSTCTLL Host-Interface Control Register, Low Word 

.. 
bit 12 

.. 
bit 13 

.=!:Ip. 
bit 14 

HiI:h!3i' 
bit 15 

4-64 

tive level. The emulator or debugger then clears EMR, signalling the end of the 
activity to the host. Again, if EMIEN=1, clearing EMR causes the host to be in­
terrupted via HINT. The host then clears EMG, completing the transaction and 
causing HINT to return to its inactive level. 

Only an emulator or debugger should modify EMR, and only the host should 
modify EMG. If you are not using this protocol, clear these bits to O . 

Emulator inhibit host port interrupt enable 

EMIEN Effect 

o EMR XOR EMG causes no host interrupt via HINT 

1 EMR XOR EMG causes an interrupt to the host via HINT 

EMIEN controls whether the exclusive-OR of the EMR and EMG bits causes 
the HINT pin to be driven active low, thus interrupting the host. 

Retry on host access interrupt 

HRVI Effect 

o Host access was not retried 

Host access was retried (HINT was set active, if enabled) 

The TMS34020's host interface sets HRYI if a host access returns a retry 
memory cycle completion code. The TMS34020 automatica!!y attempts to 
retry the memory access. If enabled (HBREN= 1), the TMS34020 interrupts the 
host via the HINT pin. The host must ensure that the appropriate action (if any) 
is taken to clear the cause of the retry, and then the host must clear HRYI. 

Bus fault on host access interrupt 

HBFI Effect 

o Host access was not faulted 

Host access was faulted (HINT was set active, if enabled) 

The TMS34020's host interface sets HBFI if a host access returns a bus-fault 
memory cycle completion cpde. The TMS34020 performs no further error 
recovery, but terminates the host request and drives HRDY high as if the cycle 
completed successfully. If enabled (HBREN=1), the TMS34020 interrupts the 
host via the HINT pin. The host must ensure that the appropriate action (if any) 
is taken to clear the cause of the bus fault, and then the host must clear HBFI. 

Host bus-fault or retry interrupt enable 

HBREN Effect 

o No interrupt sent to the host via HINT if HRYI or HBFI is set 

An interrupt is sent to the host via HINT if HRYI or HBFI is set 

HBREN enables or inhibits the TMS34020 from interrupting the host when a 
retry or bus fault occurs on a host access. 

TMS34020 Registers 



Format 

Description 

o 
I 

HSTDATA is a simple 16-bit read/write location that can be used to store infor­
mation passed between the host and the TMS34020. 

4-65 



Format 

Description 

4-66 

15 0 
II ··..i.i·§t~h()fhqrl?qiitiiil~iiir'lki@i··.· .. ·····.·(··········· ............................ ······>}/I 

HSBLNK is used for generating the HBLNK or CBLNK signal output to the vid­
eo monitor. The 16-bit HSBLNK value is compared to HCOUNT and defines 
the point at which the horizontal-blanking interval begins. 

For composite video, select the CBLNKlVBLNK pin as CBLNK. CBLNK out­
puts the logical-OR of the internal horizontal- and vertical-blanking signals; it 
is low if either horizontal- or vertical-blanking is active internally. 

Several internal events coincide with the start of horizontal blanking: 

[J A request for a screen-refresh memory cycle is sent to the TMS34020's 
memory controller. 

[J If a display interrupt is programmed to occur at a particular horizontal scan 
line, the actual interrupt request is generated at this point. 

Monitors typically require that HSBLNK contain a value less than HTOTAL, but 
greater than HEBLNK. 

TMS34020 Registers 



Format 

Description 

15 0 
1..( )i/.j.,qt~Jb9f1io.6t~lsqahlid~$··.\·· . . ... //························il 

HTOTAL is used for generating the horizontal- and composite-sync signals 
outputto the video monitor. The 16-bit HTOTAL value is compared to HCOUNT 
and defines the duration of each horizontal scan line on the screen in terms of 
VCLK periods. 

HTOTAL is compared with the horizontal count in HCOUNT to determine the 
point at which the horizontal- and composite-sync pulses begin. Usually, 
HCOUNT counts from 0 to the value in HTOTAL. When HCOUNT = HTOTAL, 
the HSYNC output is driven active low on the next falling edge of VCLK, and 
HCOUNT is reset to 0 on the same clock edge. If the CSYNC/HBLNK pin is 
selected as CSYNC, then CSYNC is also driven active low. 

In addition, for interlaced composite video, HCOUNT is reset to 0 when 
HCOUNT =HTOTAU2 during the equalization and serration regions. This con­
dition triggers the equalization and serration pulses on the CSYNC pin (which 
occur every half horizontal scan line). During this time, the beginning of hori­
zontal-sync pulses on the HSYNC pin are caused by alternating occurrences 
of HCOUNT = HTOTAU2. 

In interlaced video, HTOTAL should contain an odd number (LSB=1) to 
achieve equal spacing between lines. Equalization and serration pulses are 
then evenly separated by half a scan line. The total number of VCLKs per hori­
zontal scan line is calculated as HTOTAL + 1. 

When external horizontal or composite video is enabled, HTOTAL should con­
tain a value not less than HCOUNT's value at the point at which the external 
sync pulse is expected. If you use SETHCNT to exactly align the internal video 
timing with the external sync, set HTOTAL to exactly match the number of 
VCLKs between external syncs. 

HTOTAL should contain a 16-bit value greater than HSBLNK but less than or 
equal to 65,535 (FFFF16). 

4-67 



Format 

Description 

4-68 

COOO 0380h 
COOO 03AOh 
COOO 03COh 
COOO 03EOh 

~ 0 
liJB~$m1i{1 
t::.IHI§1!igIfII 
I· ... l .•. :.· ... ~.: ... : .•...•. ~ ..... ::.,.· .... : •. : ... : .•..... : .•.•.•. :.:., ... ::., .. ·• ...•. :., .•. t ... ::.,.:.:., ... :.,.:.:MM@#iiWW;;;;···;@(HW .:.r .•. :.i .•. I.·.· .. ·.M.·.·.·.·.·.·.·.·.h.·· ...•.•..•.•..• · .. ··.s: ... ·.•·.· .. ··.·.m ....• • .. · .. ·.· ...•.• · .. ·.: ••.•. S.· ••. ·.· .. ·.:.·.:.:·.· ••. •.·••.• .• ·@il:Xm iX#@W.dk.;mri .•. · .• : ... : .••. ·.·:.i.·.' .•. •• .• • .•. ··.·.:.·.~ .•. ·.:.> ..•.•. :.} .•..•.•. i .. : .... ·.• .. : .•. • •.• .• :.:.··.·· .. · .• · .. 1 • ;:,:;::;::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::~::::::~;:::::~::::::;:;: ::::::::::::::~:;:~::::::;:::~::;:;:;:::;:~~::::::w. ;:;:::::::::::::::;:;:;:;:;:;:;:;:::::::;:;:;::::;:::;:;:::;::::::::::::::::::::::::::::::::::~::::::~ ::::::::::::::::::::::::::;:::~: ~ c • • 

The TMS34020's host interface uses these 32-bit locations for storing the ad­
dresses used in making host-requested reads, writes, and prefetches to 
TMS34020 local memory. These locations are included in the I/O register 
memory space for purposes of chip test only. You cannot write to these loca­
tions. The data read from these locations is generally not o. 

TMS34020 Registers 



Format 

Bits 

Description 

Bits Name Function 

X1E Enables external interrupt 1 

2 X2E Enables external interrupt 2 

9 HIE Enables the host interrupt 

10 DIE Enables the display interrupt 

11 WVE Enables the window violation interrupt 

0 
3-8 Reserved; do not use 
12-15 

INTENB contains an interrupt mask that selectively enables 3 internally gener­
ated and 2 externally generated interrupt requests. 

X1 & X2 external interrupts 1 and 2. Generated by active-low signals on the 
L1NT1 and L1NT2 input pins, respectively. 

HI host interrupt. Generated when the host processor sets 
INTIN[HSTCTLL] to 1. 

01 display interrupt. Generated when the vertical count in the VCOUNT 
register reaches the value of DPYINT. 

WV window-violation interrupt. Caused by an attempt to write a pixel in­
side or outside the current window limits (depending on the selected 
window-checking mode). 

The status register contains a global interrupt enable bit (IE). The INTENB reg­
ister contains individual interrupt enable bits associated with each of the 5 in­
terrupts described above. Interrupts are enabled through a 2-step process: 

Step 1: Set the IE bit to 1. 

Step 2: Set the appropriate bits in INTENB to 1. 

Setting IE to 0 disables all of these interrupts, regardless of the value in 
INTENB. When IE=1, each interrupt is enabled according to the appropriate 
value in INTENB (1 enables the interrupt, 0 disables it). 

4-69 



Format 

Bits 

Description 

4-70 

Bits Name Function 

X1P Identifies a pending external interrupt 1 

2 X2P Identifies a pending external interrupt 2 

9 HIP Identifies a pending host interrupt 

10 DIP Identifies a pending display interrupt 

11 WVP Identifies a pending window violation interrupt 

0,3-8 
Reserved; do not use 

12-15 

INTPEND indicates which interrupt requests are currently pending (for a de­
scription of these interrupts, refer to the discussion of the INTENB register). 
The individual pending bits in the INTPEND register reflect the status of inter­
rupt requests. The interrupt is requested if the corresponding pending bit is 1 ; 
there is no request if the pending bit is O. INTPEND reflects the status of each 
interrupt request, regardless of whether the interrupt is enabled or not; this 
allows the TMS34020 to poll interrupts. 

X1 P and X2P are read-only bits that reflect the input levels on LlNT1 and 
LlNT2; they are not affected when INTPEND is written to. LlNT1 and LlNT2 
are asynchronous inputs, but signals to these pins are synchronized internally 
so that you can always reliably read X1 P and X2P.lf an external interrupt is dis­
abled, the TMS34020 ignores the interrupt request, even if the corresponding 
pending flag is set. The TMS34020 takes the interrupt only if the external re­
quest is maintained at the request pin, until the interrupt is again enabled. 

DIP and WVP reflect the status of interrupt requests generated internally. 
These 2 bits are implemented as latches. Once set, DIP or WVP remain set 
until a 0 is written to the appropriate bit (or until the TMS34020 is reset). Writing 
a 1 to either of these bits has no effect at any time.While an internal interrupt 
isdisabled, the interrupt request is ignored, even if the corresponding pending 
flag is set. If the interrupt is then enabled while the interrupt-pending flag is set 
(because of a prior interrupt request), the TMS34020 takes the interrupt. 

HIP is a read-only bit that always displays the current contents of INTIN. Writ­
ing to the INTPEND register does not affect HIP. A host interrupt request is gen­
erated when the host processor writes a 1 to INTIN. The TMS34020 clears the 
interrupt request by writing a 0 to INTIN[HSTCTLL]. 

TMS34020 Registers 



Format 

Description 

Which instructions 
use this register? 

Example 

31 

MADDR contains the mask array address for PIXBLT L,M,L. MADDR usually 
points to the mask bit with the lowest address in the mask array. When the 
selected starting corner is not the upper left corner, you must manually adjust 
MADDR to point to the mask array's starting corner. 

MADDR always contains a linear address. When the PIXBLT L,M,L completes, 
MADDR points to the starting location of the row that follows the last row in the 
array. If PIXBLT L,M,L is interrupted, MADDR points to the next word of pixels 
to be read. 

Instruction 

SETCMP 

PIXBLT L, M, L 

MADDR .set BIO 

MAD DR's format 

Linear; any value 

Linear; any value 

MOVI OOOlOAFCh, MADDR Move linear 
value lOAFCh 
into BIO 

4-71 



MPTCH Mask Pitch Register 

Format 

Description 

Which instructions 
use this register? 

Example 

4-72 

31 0 
I···.·· •• · ••••••••.•••••••••••• ·.• •• · .••••••• • •••••••• • ••• ilI..1. • ....•..••••..••..•..••••.•••••••••••••••••.•••.•••.•• ·.lio~I·.~!i~a~[~$$ •••••••• ·•· ••••••• • •• ·· •••.••••••• ·{, ........•.•.•.•.•.•..................................... , ••· .•. I·.· •. ·.· •••••••••••• ·•·•· •• ·.·•··•· •••••• I 

M PTCH defines the linear difference in the starting memory addresses of adja­
cent rows of the mask array for PIXBLT L,M,L. The TMS34020 uses the value 
in MPTCH to move from row to row through the mask array. MPTCH can have 
any value. 

If you're manually converting an XY address to a linear address, you can use 
the SETCMP instruction; SETCMP uses the MPTCH value to calculate the 
mask pitch conversion factor and loads the correct value into CONVMP. You 
can then use CVMXYL to perform the conversion. 

Instruction 

CVMXYL 

FLINE. LINE 

FPIXEQ, FPIXNE 

PIXBLT L. M, L 

SETCMP 

MPTCH .set Bll 

MPTCH's format 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

MaVI 0OOOO100h, MPTCH 
MaVI OOOA03DOh, MPTCH 
MaVI 0OOOO220h, MPTCH 

Power of 2 
Arbitrary value 
2 powers of 2 
(512 + 32) 

TMS34020 Registers 



Format 

Description 

Which instructions 
use this register? 

Example 

OFFSET contains the linear address of the first pixel in the XY coordinate 
space for instructions using XY addressing. This address corresponds to the 
linear address of the XY origin (X=O,Y=O). The TMS34020 uses this value as 
the memory base for performing XY -to-linear address conversions. 

OFFSET always contains a linear address. The offset address may be at any 
position in the TMS34020 linear address space. For proper XY address con­
versions, transparency, pixel processing, and plane masking, OFFSET should 
contain a pixel-aligned value. Instructions that use OFFSET as an implied 
operand do not modify the register's contents. 

Instruction 

CVXVL 

DRAV 

FILL XV 

LINE 

PFILL XV 

PIXBLT B, XV 

PIXBLTL, XV 

PIXBLTXV, L 

PIXBLT XV, XV 

PIXBLT L, M, L 

PIXT Rs, *Rd.XV 

PIXT*Rs.XY, Rd 

PIXT *Rs.XY, *Rd.XY 

TFILL 

OFFSET .set B4 

OFFSET's function 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

Linear address of XV origin 

MOVI 00042000h, OFFSET Linear value on 
pixel boundary 

4-73 



PATTERN Pixel Pa~~1) Register 

Format 

Description 

Which instructions 
use this register? 

4-74 

~ 0 

1}.;r~pl!q~t~~pix~!V~lg~rl 

PATTERN uses the information in COLORa and COLOR1 to define a pixel pat­
tern. COLORa defines the replacement color for a bits in the pattern; COLOR1 
provides the replacement color for a bits in the pattern. 

Note: 

If the PATTERN value is less than 32 bits, you must replicate the pattern 
throughout all 32 bits of the PATTERN register. 

Instruction 

FLlNE, LINE 

PFILLXY 

PATTERN's function 

Line pattern 

Array pattern. If PATTERN contains all 1 s, PFILL uses 
COLOR1 to produce a solid fill. If PATTERN contains all Os, 
PFILL uses the COLORO value to produce a solid fill. 

TMS34020 Registers 



Format 

or 

Description 

31 

15 

15 

Note: 

PMASK (32-bit address): COOO 0160h 
PMASKL (16-bit address): COOO 0160h 
PMASKH(16-bit address): COOO 0170h 

o 

o 

o 

You can access the plane mask registers separately or together by using dif­
ferent addresses and different field sizes. 

Q To access PMASK as a single 32-bit register, access the 32-bit field at 
address COOO 0i60h. 

Q To access PMASKL as a i6-bit register, access the i6-bit field at address 
COOO 0i60h. 

Q To access PMASKH as a i6-bit register, access the i6-bit field at address 
COOO 0i70h. 

The PMASK registers selectively enable or disable various planes in the bit­
map of a multiple-bit-per-pixel display system. Together, PMASKL and 
PMASKH (referred to as PMASK) contain a 32-bit value that determines which 
bits of each pixel can be modified during execution of a graphics instruction. 
The PMASK registers enable you to identify which bits in each pixel are 
protected (mask bit=i) or not protected (mask bit=O) from modification. 

Q During a pixel write, Os in the plane mask identify destination bit positions 
that can be modified. The 1 s in the plane mask represent bit positions with­
in the destination that are protected from modification. 

Q During a pixel read, Os in the plane mask identify readable bits within a 
pixel; bits corresponding to 1 s in the mask are always read as Os. 

Display memory organization can be described in terms of bit planes. If the pix­
el size is 4 bits, for example, and the bits in each pixel are numbered from 0 
to 3, the display memory is composed of 4 bit planes, numbered 0 to 3. Plane 
o contains all the bits numbered 0 from all the pixels, plane 1 contains all the 
bits numbered 1 from all the pixels, and so on. A 4-bit mask is constructed so 
that bit 0 of the mask enables or disables writes to the bits in plane 0, mask bit 
1 enables or disables writes to plane 1, etc. 

4-75 



PMASK Pla[l,~"Mask!J!U!!!!=rs=-=-__ =-=-__ 

The plane-mask value for a 4-bit pixel is a 4-bit value; the plane mask for an 
8-bit pixel is an 8-bit value, etc. You must replicate the plane mask throughout 
the 32 bits of the PMASK registers. For example, when PSIZE=8, you must 
load the PMASK registers with 4 identical copies of the 8-bit plane-mask value, 
as Figure 4-8 shows. In general, all 32 bits of the registers are used, and a 
mask for a pixel size of less than 32 bits must be duplicated n times (where n 
is 32 divided by the pixel size). 

Figure 4-8. Replicating the Mask Value for an 8-Bit Pixel 

~~gii!ig~Il$1§·I§7·o 

I ....... 8-bit mask ........... 1 .... 8-bit mas~ ................... J. 8-bit~~~k ............... I. 8-bit:;:;}jl; 

Which instructions 
use this register? 

4-76 

The individual bits of the PMASK registers are associated with corresponding 
bits of the 32-bit LAD bus (data are multiplexed over the same LADo-LAD31 
pins as the address). PMASK register bit 0 corresponds to bit 0 of the data bus 
(the bit transferred on LADO), PMASK bit 1 is associated with bit 1 of the data 
bus, etc. In general, if PMASK bit n is a 0, the mask enables bit n of the data 
bus; if PMASK bit n is a 1, the mask disables bit n. 

You can effectively disable plane masking by loading all Os into the PMASK 
registers; this allows all bits of each pixel to be modified. This is the default state 
of the PMASK registers following reset. 

If your system's VRAMs can store a copy of the plane mask internally {the 
TMS44251 can do this),then you should set VEN[CONFIG]. The TMS34020 
automatically detects when thePMASK registers are modified. It subsequently 
performs a specialload-write-mask memory cycle to copy the 1 s complement 
of the PMASK contents into the VRAMs' internal write-mask. (The PMASK is 
inverted because the meaning of the bits in a VRAM's write mask is opposite 
to the meaning of the bits in the PMASK.) The TMS34020 can use the VRAM 
copy of the plane mask to perform plane-masked writes without performing 
read-modify-write cycles. 

Instruction 

DRAV 

FILLs (both) 

FLlNE, LINE 

FPIXEQ, FPIXNE 

PIXBLTs (all) 

PIXT Rs, * Rd and * Rs, * Rd.XV 

TFILL 

VBLT 

VFILL 

PMASK's function 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

Plane-mask value for graphics operations 

TMS34020 Registers 



Format 

Description 

Which instructions 
use this register? 

address: COOO 0150h 

15 o 
I /pi~et$Ize 

PSIZE defines the pixel size in bits. If the pixel size is 4, load PSIZE with the 
value 4; if the pixel size is 8, load PSIZE with 8, etc. All 16 bits of the PSIZE 
register can be written to or read. Legal pixel sizes are 1, 2, 4, 8, 16, and 32 
bits; any other value of PSIZE is undefined. 

PSIZE = 0001 h 
PSIZE = 0002h 
PSIZE = 0004h 
PSIZE = 0008h 
PSIZE = 0010h 
PSIZE = 0020h 

Instruction 

CVXYL 

CVDXYL 

CVMXYL 

CVSXYL 

DRAV 

FILLs (both) 

FLlNE, LINE 

FPIXEQ, FPIXNE 

PIXBLTs (all) 

PIXT Rs, *Rd 

PIXT *Rs, *Rd 

PIXT Rs, *Rd.XY 

PIXT*Rs.XY, *Rd 

PIXT*Rs.XY, *Rd.XY 

RPIX 

TFILL 

VBLT 

VFILL 

Pixel size = 1 
Pixel size = 2 
Pixel size = 4 
Pixel size = 8 
Pixel size = 16 
Pixel size = 32 

PSIZE's function 

bit per pixel 
bits per pixel 
bits per pixel 
bits per pixel 
bits per pixel 
bits per pixel 

X shift amount for XY-to-linear conversion 

X shift amount for XY-to-linear conversion 

X shift amount for XY-to-linear conversion 

X shift amount for XY-to-linear conversion 

Pixel size for, graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

Field size for replication 

Pixel size for graphics operations 

Pixel size for graphics operations 

Pixel size for graphics operations 

4-77 



Format 

Description 

4-78 

REFADR contains the address output during DRAM-refresh cycles. DRAMs 
require periodic refreshing to retain their data. The TMS34020 automatically 
generates CAS-before-RAS cycles that refresh the DRAMs at regular inter­
vals. You can select the interval between refresh cycles by loading an appropri­
ate value into RRO-RR2[CONFIG]. This determines how often, if at all, 
DRAM refreshes should be performed. 

REFADR forms a contiguous binary counter. Each time a DRAM refresh is per­
formed, the address in REFADR is output on both LAD16-LAD31 and 
RCAO-RCA12. RCMO-RCM1 [CONFIG] determines which bits of the 
logical address appear on RCAO-RCA 12 at row-address time. During a 
DRAM-refresh cycle, the address is valid on both LAD16-LAD31 and 
RCAO-RCA 12 throughoutthe memory cycle. This memory cycle is 3 machine 
states long, allowing plenty of time for the external decode logic to detect the 
refresh (from the status code output on LAD3-LADO) and then to enable the 
appropriate banks of memory for refresh. The refresh pseudo-address is in­
cremented after each DRAM-refresh cycle that completes normally (that is, 
does not return the retry completion code on the LRDY and BUSFLT pins). If 
a refresh cycle does return a retry condition, the refresh cycle is automatically 
rescheduled and the same address is output. 

You can use the refresh pseudo-address to determine which banks of memory 
will be refreshed. Or, you can use it as the refresh address required by DRAMs 
that support RAS-only refresh. The TMS34020 does not directly support RAS­
only refresh; if you use RAS-only refresh, you must use external hardware to 
prevent activation of the CAS strobes. 

Reset clears the REFADR register to 0; no refreshes are performed while the 
RESET pin is held active low. However, if the RESET pin is held high while the 
TMS34020 is still executing reset internally, DRAM refreshes are performed. 
After RESET is taken high, no CPU-initiated memory cycles occur until 8 
DRAM-refresh cycles are completed. This ensures that the DRAMs and 
VRAMs in the system are initialized correctly. 

TMS34020 Registers 



Format 

or 

Description 

Which instructions 
use this register? 

Example 

···.Iiri@r ~it addr§ss i. .../ •. .•.... .. 

SADDR contains the source array address for PIXBLTs. SADDR usually points 
to the pixel with the lowest address in the source array. When the selected 
starting corner is not the upper left corner, the TMS34020 automatically adjusts 
SADDR to point to the selected starting corner of the source array. This feature 
allows you to handle overlapping arrays. (For PIXBLT L,L and PIXBLT L,M,L, 
however, you must manually adjust SADDR to point to the starting corner.) 

The TMS34020 treats the address in SADDR as an XV address or a linear 
address, depending on the instruction using it. 

During PIXBLT operations, SADDR is maintained in linear format. When the 
PIXBLT completes, SADDR points to the starting location of the row that 
follows the last row in the array. If a PIXBLT is interrupted, SADDR points to 
the next word of pixels to be read. 

Instruction 

BLMOVE 

FLINE, LINE 

PIXBLT B, L 
PIXBLT B, XY 

PIXBLT L, L 
PIXBLT L,M,L 

PIXBLT L, XY 

PIXBLTXY, L 
PIXBLT XY,XY 

TFILL 

VBLT 

SADDR's format and function 

Linear; points to the beginning of the source array 

Decision variable d = 2b - a, used for the line draw 

Linear; points to the beginning of the binary source array 

Linear with special requirements when PBH = 1 or PBV=1 ; re­
fer to the PIXBLT L,L discussion for a description of its unique 
requirements 

Linear; points to the beginning of the source array 

XV; points to the beginning of the source array 

XV; points to the first pixel in the line 

Linear; points to the beginning of the source array 

SADDR .set BO 

MOVI [OSh, 015h], SADDR 

MOVI OOOOAAAAh, SADDR 

Move XY value 
I5h,Sh into BO 
Move linear value 
AAAAh into BO 

4-79 



Format 

Description 

4-80 

15 0 
lii)··r./I..$GQQNIT.i.?Y... .•...••....•.•.. ..... . .............. ·fi.i·.· .• ·•· .•.• • •.. ···\1 

During horizontal-blanking screen-refresh cycles, the video timing logic auto­
matically loads SCOUNTwith the VRAM tap point (determined using the value 
in DPYMSK). The tap point is automatically right-justified before it is loaded 
into SCOUNT. SCOUNT is incremented by the rising edge of a pulse on the 
SCLK pin. You should connect SCLK to the VRAM's serial clock signal so that 
SCOUNT is incremented each time a bit of data is shifted out of the VRAM's 
serial register. This means that SCOUNT always contains the tap point of the 
bit most recently shifted. When the VRAMs shiftthe last bit out of one half serial 
register and start shifting bits from the other half serial register, SCOUNT over­
flows from all 1 s to 0 and schedules a midline-reload screen refresh to transfer 
the next half-row of VRAM into the half serial register not being shifted out. 

Hold the SCLK pin at the inactive-low level throughout horizontal and vertical 
blanking, when the VRAM serial registers are not shifting data. 

Two separate asynchronous elements of the TMS34020 internal logic can 
access SCOUNT: 

Q The midline-reload timing control logic, which runs synchronously to 
SCLK, increments SCOUNT during the active regions of the screen (when 
neither vertical nor horizontal blanking is active). 

Q The internal processor, which runs synchronously to the local clocks 
LCLK1 and LCLK2, can access SCOUNT as an 1/0 register and can load 
it with the VRAM tap point during horizontal blanking. 

No synchronization between these subsystems is provided. SCOUNT can be 
reliably read or written only while SCLK is held at the logic-low level. SCOUNT 
is not typically read or written except during chip test. 

TMS34020 Registers 



Format 

Description 

15 

If external horizontal or composite video is enabled (by clearing the HSD or 
CSD bit, respectively, in DPYCTL), the video timing logic loads the value of 
SETHCNT into HCOUNT when 

Q the logic detects an external horizontal-sync pulse on HSYNC, or 

Q the logic detects an external composite-sync pulse on CSYNC. 

Setting HCOUNT to a programmable value rather than clearing it counteracts 
delays inherent in the synchronization of external sync pulses and other exter­
nal system delays. 

It takes 4 VCLK cycles from the time an external sync is detected at the appro­
priate sync input pin until its effects propagate to the video output pins. If 
SETHCNT contains the value 4, then HCOUNT is set to 4 at the beginning of 
the fifth VCLK cycle (that is, 4 whole VCLK cycles) after the external sync pulse 
is detected at the pins. This has the same effect as if HCOUNT were cleared 
to 0 in the same VCLK cycle that the external sync signal went active low. If 
the HTOTAL value matches the parameters of the external video source, then 
HCOUNT =HTOTAL coincides with the beginning of the next external sync 
pulse. This condition causes HCOUNT to be loaded with 0, and the internal 
horizontal- and composite-sync pulses begin. As a result, any sync pins confi­
gured as outputs go active low on the same VCLK cycle as the external sync 
signal, and internally generated video signals are synchronous to and aligned 
with the external video signals. 

This is especially useful if the TMS34020 is performing sync conversion. By 
programming all the video timing registers to match the parameters of the 
external video source, an external composite sync can be used to generate 
horizontal- and vertical-sync outputs, or external horizontal and composite 
syncs can be used to generate a composite-sync output. 

Programming SETHCNT to a value greater than 4 causes the sync pins confi­
gured as outputs to change SETHCNT-4 VCLK cycles before the external 
sync (or syncs) changes. This is useful if the system contains external clock 
skews. Similarly, programming SETHCNT to a value less than 4 causes the 
sync pins configured as outputs to change after the external sync (or syncs). 
Do not set SETHCNT to a value less than o. 

4-81 



Format 

Desc;;ption 

4-82 

15 0 

Ipr9gr{i.mm{i.~j~Y~ll·l~f9rM9~\QNillII 

If external vertical or composite video is enabled (by clearing the VSD or CSD 
bit, respectively, in DPYCTL), the video timing logic loads the value of 
SETVCNT into VCOUNT when 

[J the logic detects an external vertical-sync pulse on VSYNC, or 

[J the logic detects the first serration pulse in the external composite-sync 
signal on CSYNC. 

SETVCNT provides symmetry with the SETHCNT register. If you are using 
interlaced video, program SETVCNT to O. If you do not, the TMS34020 will not 
be able to distinguish between external odd and even fields and may not 
correctly synchronize to the external source. 

For noninterlaced video, you can set SETVCNT to nonzero values. This 
causes the internal vertical-blanking signal (visible externally on CBLNKI 
VBLNK) and the internal vertical-sync signal (visible externally on VSYNC if 
it is an output) to start and end an integral number of scan lines ahead of the 
external vertical sync and blanking signals. Programming SETVCNT to n 
causes the internal signals to be n scan lines in advance of the external signals. 

TMS34020 Registers 



Format 

Description 

Example 

o 

SPTCH defines the linear difference between the starting addresses of adja­
cent rows of a source array. The TMS34020 uses the value in SPTCH to move 
from row to row through the source array. SPTCH can have any value that is 
a multiple of the current pixel size. Note that XY -to-linear conversion is most 
efficient when SPTCH is a power of 2. 

If you're manually converting an XY address to a linear address, you can use 
the SETCSP instruction; SETCSP uses the SPTCH value to calculate the 
source pitch conversion factor and loads the correct value into CONVSP. You 
can then use CVSXYL to perform the conversion. 

Instruction 

CVSXYL 

PIXBLTs (all) 

PIXT *Rs.XY, Rd 

PIXT*Rs.XY, *Rd.XY 

SETCSP 

SPTCH .set B1 

SPTCH's format 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

Linear; any value 

MOVI 00001000h, SPTCH 
MOVI 00000900h, SPTCH 
MOVI 00010AFCh, SPTCH 

Power of 2 
2 powers of 2 
Arbitrary value 

4-83 



VCOUNT Vertical Count Register 

Format 

Description 

4-84 

15 0 

VCOUNT counts the horizontal lines in the display, and is used for generating 
vertical and composite sync and blanking signals. VCOUNT increments on the 
clock edge that resets HCOUNT; in interlaced video, VCOUNT also increments 
on the clock edge after HCOUNT =HTOTAU2. This causes VSYNC's falling 
and rising edges to coincide with the falling edge of CSYNC or HSYNC (in inter­
laced video, some VSYNC transitions occur halfway between two HSYNC 
pulses). If CBLNKNBLNK is selected as VBLNK, this also applies to VBLNK. 

To generate vertical sync and blanking signals, the video timing logic compares 
VCOUNT to the values of VEBLNK, VSBLNK, VTOTAL, and VESYNC/2. In 
interlaced composite video (when CSYNC/HBLNK is selected as CSYNC), the 
full value of VESYNC is used to determine the end of the second equalization 
region. When HCOUNT =HTOTAL (or HCOUNT = HTOTAU2 in interlaced vid­
eo) and VCOUNT =VTOTAL simultaneously, VCOUNT is resetto 0 on the next 
falling edge and VSYNC is driven active low. I n external vertical- or composite­
sync video, VCOUNT is reloaded from SETVCNT when a falling edge is 
detected on VSYNC, or when the first serration pulse is detected on CSYNC. 

When CSYNC/HBLNK is selected as CSYNC, VCOUNT determines the type 
of pulse output on this pin. If VESYNC<VCOUNT::; VSBLNK, then CSYNC out­
puts ordinary horizontal-sync pulses that coincide with HSYNC. In interlaced 
video, if VSBLNK<VCOUNT ::;VTOTAL or VESYNC/2<VCOUNT::; VESYNC, 
equalization pulses are generated on CSYNC. Equalization pulses appear ev­
ery half line and are half the width of the pulses on HSYNC. Every other pulse 
begins coincident with a pulse on HSYNC. 

If VTOTALsVESYNC/2, CSYNC generates serration pulses. HESERR defines 
the length of these pulses. In noninterlaced video, they always begin coinci­
dent with a pulse on HESYNC. In interlaced video, they occur every half line, 
so every other pulse begins coincident with a pulse on HSYNC. 

A display interrupt is generated when VCOUNT =DPYINT. You can use this to 
coordinate software activity with the refreshing of selected lines on the screen. 

Two separate, asynchronous elements of the TMS34020 internal logic can 
access VCOUNT: 

[Ji The video timing control logic (which runs synchronously to VCLK) incre­
ments and clears or reloads VCOUNTwhile generating sync and blanking 
signals. 

TMS34020 Registers 



[J The internal processor (which runs synchronously to LCLK1 and LCLK2) 
can access VCOUNT as an I/O register. 

The TMS34020 provides no synchronization between these subsystems. 
VCOUNT can be reliably read or written only while VCLK is held atthe logic-low 
level. VCOUNT is not typically read or written except during chip test. 

4-85 



VEBLNK Vertical End Blanking RefJ.!ster 

Format 

Description 

4-86 

15 0 

Ij;!j!i jjj[ll,·;;,:;'lii1;;mIll;·,;!]jj,!::;;;!Iltl!!@;pgl§lliyea!Bb!~p~lQg!l!mj:m[;;I~IIll[:j!:i;lIEiM;ml;;!;1 

VEBLNK is compared to VCOUNT to determine when the vertical-blanking 
interval ends. The vertical-blanking interval ends when VCOUNT =VEBLNK 
and either of these conditions is satisfied: 

o HCOUNT =HTOTAL or 

o HCOUNT =HTOTAU2 in the interlaced even field. 

In separate sync, the vertical-blanking signal is output on the CBLNKNBLNK 
pin, which is selected as VBLNK. In composite sync, CBLNKNBLNK is 
selected as CBLNK; in this case, CBLNK outputs the logical-OR of the internal 
horizontal- and vertical-blanking signals. CBLNK is low if either horizontal- or 
vertical-blanking is active internally. 

Monitors typically require VEBLNK to contain a value less than VSBLNK and 
greater than VESYNC/2. 

TMS34020 Registers 



Format 

Description VESYNC is compared to VCOUNT to determine when the vertical-sync pulse 
ends and, in interlaced composite video, when the second equalization region 
ends. The sync pulse ends when VCOUNT = VESYNC/2 and either of these 
conditions is satisfied: 

Q HCOUNT =HTOTAL or 

Q HCOUNT =HTOTAU2 in interlaced video. 

The VSYNC output is driven inactive high to signal the end of the vertical-sync 
interval. 

In interlaced video, the second serration region ends if both of these conditions 
are satisfied: 

Q VCOUNT =VESYNC and 

Q HCOUNT =HTOTAU2. 

Monitors typically require VESYNC/2 to contain a value less than VEBLNK; 
VESYNC's minimum value is O. 

In external vertical or composite video, you should load VESYNC with a value 
such that the internal vertical-sync pulse ends before or at the same time as 
the end of the external vertical-sync pulse or the end of the external serration 
region. If the external vertical-sync pulse or the external serration region is still 
active when the internal vertical-sync pulse ends, it causes VCOUNT to be 
reloaded from SETVCNT, and the internal vertical-sync interval starts again. 

4-87 



Format 

Description 

4-88 

15 o 
I ••••• • •• · •••• ··· •••••• ·././u·· •. ·>.····.····· ·.····· .• · .... i.· •. ·\iii............§tg~gf·.y~~ig~! •• ~!~h~jngi······························· 
VSBLNK is compared to VCOUNT to determine when the vertical-blanking 
interval starts. Vertical blanking starts when VCOUNT =VSBLNK and either of 
these conditions is satisfied: 

Q HCOUNT =HTOTAL or 

IJI HCOUNT =HTOTAU2 in the interlaced odd field. 

Additionally, vertical blanking will start if the video timing logic detects an exter­
nal composite-sync pulse (when CSYNC is an input) or a horizontal-sync pulse 
(when HSYNC is an input). 

In separate sync, the vertical-blanking signal is output on the CBLNKNBLNK 
pin, which is selected as VBLNK. In composite sync, CBLNKNBLNK is 
selected as CBLNK; in this case, CBLNK outputs the logical-OR of the internal 
horizontal- and vertical-blanking signals. CBLNK is low if either horizontal- or 
vertical-blanking is active internally. 

Monitors typically require VSBLNK to contain a value less than VTOTAL and 
greater than VEBLNK. 

TMS34020 Registers 



Format 

Description 

15 o 

VTOTAL defines the time at which the vertical-sync pulse begins. The video 
timing logic compares VTOTAL to VCOUNT to determine when to start the ver­
tical-sync pulse. The vertical-sync pulse starts and VCOUNT is resetto 0 when 
VCOUNT =VTOTAL and either of these conditions is satisfied: 

Q HCOUNT =HTOTAL or 

Q HCOUNT =HTOTAU2 in the interlaced video. 

The internal vertical-sync pulse begins (if it was not already caused to do so 
by either of the conditions above) when 

Q the video timing logic detects an external vertical-sync pulse (when 
VSYNC is an input) or 

Q the video timing logic detects the first external composite serration pulse 
(when CSYNC is an input). 

When this happens, VCOUNT is reloaded from the SETVCNT register. 

The VSYNC output is driven low to signal the start of the vertical-sync interval. 
The falling and rising edges of VSYNC coincide with the falling edge of CSYNC 
or HSYNC (in interlaced video, some transitions of VSYNC occur halfway 
between 2 HSYNC pulses). 

Set VTOTAL to a value greater than VSBLNK. VTOTAL's maximum value is 
65,535. 

4-89 



Format 

Description 

Which instructions 
use this register? 

Example 

4-90 

WEND defines the XY address of the most significant pixel within the rectangu­
lar destination clipping window. WEND must be valid for instructions that use 
an XY destination address and a nonzero window option. The most significant 
pixel is the pixel with the highest address within the window. For a screen with 
the origin in the top left corner of the pixel array, this address corresponds to 
the pixel in the lower right corner. 

The X and Y portions of the address are signed values; WEND can be at any 
position in any quadrant of the XY address space. It describes an inclusive pix­
el; that is, the pixel at the XY location in WEND is included in the window.The 
value in WEND is used with WSTART, DADDR, and DYDX to preclip pixels, 
lines, and pixel arrays. WEND is not modified by instruction execution. 

Instruction 

CPW 

DRAV 

FILLXY 

FLlNE, LINE 

PIXBLTB, XY 

PIXBLTL, XY 

PIXBLT XV, XY 

PIXT Rs, Rd.XY 

PIXT Rs.XY, Rd.XY 

TFILL 

WEND .set B6 

WEND's function 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

XY address of most significant window corner 

MOVI [040h, OlOOh], WEND XY value (256,64) 
stored in WEND 

TMS34020 Registers 



Format 

Description 

Which instructions 
use this register? 

Example 

WSTART defines the XY address of the least significant pixel within the rectan­
gular destination clipping window. WSTART must be valid for instructions that 
use an XY destination address and a nonzero window option. The least signifi­
cant pixel is the pixel with the lowest address in the array. For a screen with 
the origin in the top left corner of the pixel array, this address corresponds to 
the pixel in the upper left corner. 

The X and Y portions of the address are signed values; WSTART can be at any 
position in any quadrant of the XY address space. It describes an inclusive pix­
el; that is, the pixel at the XY location in WSTART is included in the window. 
The value in WSTART is used with WEND, DADDR, and DYDX to preclip pix­
els, lines, and pixel arrays. WSTART is not modified by instruction execution. 

Instruction 

CPW 

DRAV 

FILL XV 

FLlNE, LINE 

PIXBLT B, XV 

PIXBLTL, XV 

PIXBLT XV, XV 

PIXT Rs, Rd.XV 

PIXT Rs.XV, Rd.XV 

TFILL 

WSTART .set B5 

WSTART's function 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

XV address of least significant window corner 

MOVI [040h, OlOOh], WSTART XY value (256,64) 
stored in WSTART 

4-91 



4-92 TMS34020 Registers 



Chapter 5 

Instruction Cache and Internal Parallelism 
:c::mm::CClC l:::m~:tI :m:::mmmmm:m:I:::::::::::::::::::::mmmm:m::::m::::::::::::::::::::::mmmmmmm::::::m:mmm::::::::::::::::mm::::::::: m :m::::::::::::::::::::::::::::m:::::::m:::::::::~::::m::m::::::::::m:::::::::::::::m::mmm: 

Most program execution time is spent on repeatedly executing a few main 
procedures or loops. Program execution can be speeded up by placing these 
often-used code segments into a fast memory. The TMS34020 uses a 
512-byte, on-chip instruction cache for this purpose. 

To further enhance execution speed, the TMS34020 can access several areas 
of memory, including the cache, in parallel. Although the TMS34020 stores 
code and data in a single memory space, the TMS34020's internal parallelism 
provides benefits that are often found in processors thatuse separate code and 
data spaces. 

This chapter includes the following topics: 

Section Page 

cache information describes the 5.1 
architecture and operation of the 5.2 

instruction cache. 5.3 

5.4 

Cache Architecture ....•.•.............. 

Cache Replacement Algorithm ....••...... 

5-2 

5-4 
Cache Operation .....•....•...••...... 5-5 

Performance with Cache Enabled 
vs. Cache Disabled •................... 5-9 

Internal parallelism describes how 5.5 Internal Parallelism . . . . . . . . . . . . . . . . . . . .. 5-10 
the TMS34020's ability to 

simultaneously access various 
memory areas improves system 

performance. 

5-1 



Cache Architecture 

5.1 Cache Architecture 

Figure 5-1 illustrates cache organization. 

Figure 5-1. TMS34020 Instruction Cache 

5-2 Instruction Cache and Internal Parallelism 



Cache Architecture 

Only instruction words (memory words that the PC points to) can be accessed 
from the cache. This includes 

Q Opcodes 
Q Immediate operands 
Q Displacements 
Q Absolute addresses 

Instructions and data can reside in the same area of memory; therefore, data 
may occasionally be copied into the instruction cache along with instruction 
words. However, the TMS34020 cannot access data from the cache; all reads 
and writes of data in memory bypass the cache. 

The instruction cache contains 512 bytes of RAM for storing up to 128 long 
(32-bit) words (this is equivalentto 256 6-bit instruction words). Each instruc­
tion word in cache is aligned on an even long-word boundary. 

As Figure 5-1 shows, the cache is divided into four 64-word segments. Each 
cache segment may contain up to 64 instruction words of a 64-word segment 
from memory. This memory segment is a block of 64 contiguous instruction 
words, beginning at an even 64-word boundary in memory. 

Each cache segment is further divided into 8 subsegments; each subsegment 
contains 4 long-words (up to 8 instruction words). Dividing each segment into 
subsegments reduces the number of word fetches required from memory 
when fewer than 64 words of a memory segment are used. 

Each of the 4 cache segments is associated with a segment start address 
(SSA) register. Figure 5-2 shows how a long-word is partitioned into the com­
ponents used by the cache-control algorithm. 

Figure 5-2. Segment Start Address 

The 22 bits of the SSA register correspond to the 22 MSBs of the segment's 
memory address. These 22 MSBs are common to all 8 subsegments within a 
segment. The next three bits (bits 6-8) identify one of the 8 subsegments. Bits 
4, 5, and 6 identify one of the 8 instruction words within a subsegment. The 4 
LSBs are always Os because instructions are aligned on word boundaries. 

5-3 





Cache Operation 
::;~$~~~!'::::~~Z~:::'::::X;;::;;::::$'~"!--:;:::::;::::X;XXX~hX;;~,;;;;;;:::;::::;;;;:.m;;;;-,;;;;;:;;;mW~~':.-::;;;;:::;;;~:;Z::::~~:::';;$::::;;;;::::;;;;~::::::;;~':I';.O;:;;;;;~~:::::X:;::;;::::;;:;;;:;;;;;~-:;~,;;::::;;::::::-;::::;;;:::;;~~~;;~~;;~~x::r~:::-;::::::::;;:~~~;;;:~::-~~;;;::::::::::;:::~;:::;;::::::::::~:::::::::::::~;:::::~;:::;:;-;~::-~"X::~-:;::::::::::;;::::::::::::::::::: :::-.:::~~:::::::::::::::::::::::::::::::::::::::: ::::::::::::;;::::::::::::::::::::::::::::::~'}~:::::.::-,:::::::::;: 

5.3 Cache Operation 

5.3.1 Cache Hits 

When the TMS34020 requests an instruction word, it checks to see if the cache 
contains the word. First, the processor compares the 22 MSBs of the instruc­
tion address to the 4 SSA registers. If the TMS34020 fins a match, it searches 
for the appropriate subsegment. A present (P) flag, associated with each 
subsegment, indicates the presence of a particular subsegment within a cache 
segment: 

Q P=1 indicates that the requested instruction word is in cache. This is called 
a cache hit. 

Q If there is no match, or if there is a match and P=O, the instruction word is 
not in cache. This is called a cache miss. 

A cache hit means that the cache contains the requested instruction word. In 
this case, the TMS34020 performs the following actions: 

1} Performs a short (one machine state) access cycle to read the instruction 
word from cache. 

2} Moves the segment number to the top of the LRU stack, pushing the other 
three segment numbers toward the bottom ofthe stack (assuming that this 
segment was not the most recently used segment). 

Because of pipelining, instruction fetches from the cache overlap completion 
of preceding instructions. Thus, the overhead due to instruction fetches is 
effectively O. 

5.3.2 Cache Misses 

A cache miss means that the cache does not contain the instruction word. 
There are two types of cache miss-subsegment miss and segment miss. 

Q Subsegment miss 

The 22 MSBs of the instruction-word address match one of the 4 SSA 
registers' 22 MSBs; that is, the appropriate segment is in the cache. How­
ever, the P flag for the requested subsegment is not set. The TMS34020 
performs these actions: 

1} Reads into cache the 8-instruction-word subsegment that contains the 
requested instruction word. 

2} Moves the segment number to the top of the LRU stack, pushing the 
other three segment numbers toward the bottom of the stack (assum­
ing that this segment was not the most recently used segment). 

5-5 



Cache 

3) Sets the subsegment's P flag to 1. 

4) Reads the instruction word from the cache. 

Q Segment miss 

The instruction word address does not match any of the SSA registers. The 
TMS34020 performs the following actions: 

1) Selects the least-recently-used segment for replacement; clears the P 
flags of all 8 subsegments. 

2) Loads the SSA register for the selected segment with the 22 MSBs of 
the address of the requested instruction word. 

3) Reads into cache the 8-instruction-word subsegment in memory that 
contains the requested instruction word. This word is placed in the 
appropriate subsegment of the least-recently-used segment. The 
TMS34020 sets the subsegment's P flag to 1. 

4) Adjusts the LRU stack by moving the number of the new segmentfrom 
the bottom (indicating that it is least recently used) to the top (indicat­
ing that it is most recently used). This pushes the other three segment 
numbers in the stack down one position. 

5) Reads the instruction word from the cache. 

5.3.3 Fetching Data into the Cache Following a Cache Miss 

Following either type of cache miss, the TMS34020 loads 4 long-words into a 
cache subsegment. The order in which the TMS34020 fetches these 
long-words is determined by the position, within the 4 long-words, of the 
opcode or immediate data that caused the cache miss. 

Example 5-1. Code Without Branches or Immediate Data 

Consider code that starts at address 0 and continues to a high address (such as 010000h). 
Assume that this code contains no loops or immediate data. When the TMS34020 begins to ex­
ecutethis code, it jumps to the first opcode (at address 0) and finds that the opcode is not in cache. 
So, it fills the first subsegment with the 8 opcodes that are in the first 4 long-words in memory. The 
TMS34020 reads the data in this order: 

1st read: 32 bits at address 020h (opcodes 2&3) 
3rd read: 32 bits at address 060h (opcodes 6&7) 

2nd read: 32 bits at address 040h (ops 4&5) 
4th read: 32 bits at address OOOh (ops 0&1) 

5-6 

Note that the TMS34020 does not read the words in the expected cyclic order-it reads the 
long-word with the first opcode last, not first. This is the general case. 

Instruction Cache and Internal Parallelism 



Cache Operation 

Example 5-2. Code with Branches 

As another example, consider the following code segment. 

0001 00000000 5600 clr aO 
0002 00000010 5684 clr a4 
0003 00000020 56a5 clr a5 
0004 00000030 56c6 clr a6 
0005 00000040 cOOO jruc next_subseg+48 

00000050 0005 
0006 00000060 0300 nop 
0007 00000070 0300 nop 
0008 00000080 next_subseg: 
0009 00000080 0300 nop 
0010 00000090 0300 nop 
0011 OOOOOOaO 0300 nop 
0012 OOOOOObO 5673 clr b3 
0013 OOOOOOcO 5694 clr b4 
0014 OOOOOOdO 56b5 clr b5 
0015 OOOOOOeO 56d6 clr b6 
0016 OOOOOOfO 56f7 clr b7 
0017 00000100 loop: 
0018 00000100 cOff jruc loop 

This example jumps from the middle of the first subsegment to the middle of the second subseg­
ment. The first subsegment is loaded into cache as described in Example 5-1. The code executes 
until the TMS34020 encounters the jump on line 5. At this point, control passes to the opcode at 
address OBOh. This opcode is not in cache, so the TMS34020 loads the next subsegment. The 
4 long-words are loaded in cyclic order; the long-word containing the opcode at address OBOh is 
read last. The order of memory accesses is 

1st read: 32 bits at address OCOh 
3rd read: 32 bits at address 080h 

2nd read: 32 bits at address OEOh 
4th read: 32 bits at address OAOh 

Even though the code jumps over the long-word at address 080h, this word is loaded into cache. 

Example 5-3. Code with Immediate Data 

Some instructions have immediate data; for example, 

movi OABCDABCDh,AO 

move @OFFFFFF20h,@OEEEEEEOO,0 

(32 bits of 
immediate data) 
(64 bits of 
immediate data) 

Immediate data follows the opcode in the object code. If an opcode with immediate data is near 
the end of a subsegment, the TMS34020 may encounter a cache miss when it attempts to access 
the immediate data. The next subsegment is loaded with 4 long-words, in cyclic order, so that the 
long-word containing the immediate data that caused the first cache miss is loaded in last. 

5-7 



Cache Operation 

5.3.4 Self-Modifying Code 

Avoid using self-modifying code; it can cause unpredictable results. When a 
program modifies its own instructions, only the copy of the instruction that 
resides in external memory is affected. Copies of the instructions that reside 
in cache are not modified, and the TMS34020 doesn't attempt to detect this. 

5.3.5 Flushing the Cache 

Flushing the cache sets it to an initial state, identical to the state of the cache 
following reset: The cache is empty and all 32 P flags are cleared to O. 

You can flush the cache by setting the CF (cache flush) bit in the HSTCTLH 
registerto 1. The CF bit retains the last value loaded until a new value is loaded 
or until the TMS34020 is reset. The contents of the cache remain flushed as 
long as the CF bit equals 1. All instruction fetches bypass the cache and are 
accessed directly from memory. 

Unless the cache is disabled, normal cache operation resumes when the CF 
bit is cleared to o. 
One use for flushing the cache is to facilitate downloading new code from a host 
processor to TMS34020 local memory. The host typically halts the TMS34020 
during downloading by writing a 1 to HLT[HSTCTLH]. Before allowing the 
TMS34020 to execute downloaded code, the host should flush the cache to 
purge it of stale instructions. 

For performance reasons, CF[ CONTROL] should not remain set to 1 for long 
periods. While CF=1 , only 1 word is fetched at a time. 

5.3.6 Disabling the Cache 

5-8 

Disabling the cache facilitates program debugging and emulation. The cache 
is disabled by setting CD [CONTROL] to 1. While the cache is disabled, the 
TMS34020 bypasses the cache and fetches all instructions from external 
memory. 

Setting CD t01 is similar to setting CF to 1. However, when CD=1 and CF=O, 
data already in the cache is protected from change. When the CD bit is cleared 
to 0, the prior state of the cache (before CD was set to 1) is restored. The 
instructions in the cache are once again available for execution. If the cache 
contents become invalid while CD=1, they can be flushed by setting CF to 1. 

For faster execution in some time-critical applications, you may wish to manip­
ulate the CD bit to preserve code in the cache. For example, if an inner loop 
just exceeds 512 bytes, most of the loop, but not all of it, can fit in the cache. 
During execution of the few instructions that are not in the cache, you can set 
the CD bit to 1 to prevent the TMS34020 from replacing the code in the cache. 
In this instance, the loop's execution speed is improved by eliminating the 
thrashing of cache contents. Use this technique carefully; in some cases, it can 
negatively affect execution speed. 

Instruction Cache and Internal Parallelism 



Performance with Cache Enabled vs. Cache Disabled 

5.4 Performance with Cache Enabled vs. Cache Disabled 

When the instruction cache is disabled, the TMS34020 fetches instruction 
words from external memory. Assuming no wait states are necessary, each 
instruction fetch from external memory adds 3 machine cycles to the access 
time. This is considerably slowerthan a program that uses the cache efficiently 
(when each word in cache is used several times before it is replaced). 

A less efficient use of cache occurs when words in cache are used only once 
before they are replaced. This produces a cache miss every eighth word (even 
in this case, operation is usually much better than operation when the cache 
is disabled). With the cache enabled, the time penalty due to cache misses in 
this case is .75 machine states per single-word instruction (compare this to 3 
states when the cache is disabled), which is calculated as follows: 

r:i 5 machine cycles are required to load 4 long-words (8 instruction words) 
into cache from memory (in page mode). 

r:i 1 additional machine state is required to begin processing the instruction. 

r:i Dividing the total of 6 machine states by 8 instruction words yields an aver-
age of .75 machine states per instruction word. 

Performance with the cache enabled is nearly always better than performance 
with the cache disabled. There are two exceptions: 

r:i If the code contains many jumps, only a portion of each subsegment may 
be executed before control is transferred to another subsegment. 

r:i If an inner loop is larger than the cache, only a portion of the instructions 
in the inner loop can be contained in the cache at any time. In this situation, 
you can improve performance by manipulating the CD bit as described in 
Section 5.3.6. 

While the cache is disabled, the TMS34020's internal memory controller 
fetches each instruction word from memory only as it is requested by the cpu. 
This differs from operation with the cache enabled, in which case a cache miss 
causes the entire 8-instruction-word subsegment containing the requested 
instruction word to be loaded into the cache at once. 

5-9 



Internal Parallelism 

5.5 Internal Parallelism 

Figure 5-3 illustrates the internal data paths associated with TMS34020 
processor functions. The TMS34020 uses a single, logical memory space for 
storing both data and instructions. However, internal parallelism provides the 
TMS34020 with the benefits found in architectures that use separate data and 
instruction storage (sometimes referred to as Harvard architectures). The abil­
ity to fetch instructions from cache in parallel with accessing data from memory 
greatly enhances execution speed. Hardware parallelism allows the 
TMS34020 to access these three storage areas simultaneously: 

Q Instruction cache 
Q Dual-ported, general-purpose register files A and B 
Q External memory 

Figure 5-3. Internal Data Paths 

5-10 

The TMS34020 can access each storage area independently of the other two. 
This allows the TMS34020 to perform the following actions in parallel during 
a pair of machine states: 

Q 1 external memory cycle 
Q 2 instruction fetches from cache 
Q 4 reads and 2 writes to the general-purpose register files 

The need to schedule conflicting internal operations can limit the TMS34020's 
ability to perform these actions in parallel. For example, an instruction that 
requires the memory controller to perform a read must finish executing before 
the next instruction can be executed. Figure 5-4 illustrates an example of inter­
nal parallelism. 

Instruction Cache and Internal Parallelism 



Internal Parallelism 

Figure 5-4. Parallel Operation of Cache, Execution Unit, and Memory Interface 

(a) Code 

(b) Result 

Figure 5-4 (a) shows the inner loop of a graphics routine; Figure 5-4 (b) repre­
sents execution of the code in (a). Figure 5-4 (b) shows three activities occur­
ring in parallel: 

Q Instructions are fetched from cache. 

Q Instructions are executed through the general-purpose registers and the 
ALU. 

Q The local memory interface controller performs memory accesses. 

The memory controller accesses pixels while the ALU fetches instructions from 
cache. The memory controller completes a write cycle while execution begins 
on the next instruction. 

5-11 



5-12 Instruction Cache and Internal Parallelism 



Chapter 6 

Interrupts, Traps, and Reset 
:;;w::::~::~~::::~:::::m:~~~:::::::m~m:mr::~~:~:~~~:::::::::$t.:~::~m::::::mx~::m:~::::::;::::::::~Z'~::::?i[::m:::::-im:m:::~~:(:~::::::m::::::::x:::m:::~:::::::;::$:~::::::::::::::::~::::::~:::::::(:~:::::::::~~:::~$.:::::::::::m$:~:::;:;::;::::;:;:;:~::::::::::::::~::;:;:::::::(::;::(:~::;~::::::::::m::::::~~~:;:::::::::::r::::::t.::m::::::::~:~(:::::x:::::::::::::::::::~:::::::::::::::(:~~::::::::::::::::$(::i:::::~:::::::::::::::::::;::::::::::::~:::::::::~:::m~: 

The TMS34020 supports 10 interrupts, including reset, and up to 65,536 soft­
ware traps. These interrupts and traps use a set of 32-bit vector addresses that 
point to appropriate service routines. The TMS34020 also supports bus-fault 
conditions and single-step execution through these vectors. 

You'll find these topics on the following pages: 

Section Page 

Basic information includes a 6.1 Related Signals ....................... 6-2 
summary of related signals and 6.2 Related Registers. . . . . . . . . . . . . . . . . . . . .. 6-2 

registers, information about 6 3 E bl' d D' bl' Itt 6 6 
:mabling & disabling interrupts, a list' na mg an Isa mg n errup s ......... -

of interrupt priorities, and a map of 6.4 Interrupt Priorities and Vector Addresses . . .. 6-7 
the vector addresses. 6.5 Interrupt Processing . . . . . . . . . . . . . . . . . . .. 6-9 

6.6 Interrupting Instruction Execution. . . . . . . . .. 6-13 

Specific information describes the 6.7 External Interrupts 1 and 2 . . . . . . . . . . . . . .. 6-15 
various types of interrupts and an 6.8 I t I Itt 6 16 n erna n errup s . . . . . . . . . . . . . . . . . . . . . . -

application for the si~gle-step 69Th 8 F I I 
mterrupt.' e us- au t nterrupt ................. 6-19 

6.10 Interrupting a Host Processor ............ 6-21 

6.11 Traps ............................... 6-21 

6.12 Reset ............................... 6-22 
6.13 An Application for Interrupts: 

Debugging Code ...................... 6-28 

6-1 



,Related Signals / Related Registers ... 

6.1 Related Signals 
Several of the TMS34020's pins request interrupts. Chapter 2 describes the 
interrupt signals in detail; they are summarized below for your convenience. 

Signals 

BUSFLT 

RESET 

Descriptions 1/0 

is a bus-fault signal that tells the local-memory 
controller that an error (or fau/~ occurred on the 
current bus cycle. BUSFLT operates in conjunc­
tion with the LRDY signal; if both BUSFLT and 
LRDY are sampled high during a local-memory 
cycle, a bus-fault interrupt is generated. 

is the interrupt signal that allows the TMS34020 to 0 
send an interrupt request to a host processor. This 
interrupt is activated by setting bits in the 
HSTCTLL register. 

are level-sensitive, active-low inputs. They allow 
external devices to interrupt the TMS34020. 

is the system reset signal. During normal opera­
tion, RESET is driven low to reset the TMS34020. 

6.2 Related Registers 

6-2 

Several of the TMS34020's I/O registers provide you with control over inter­
rupts. (Chapter 4 provides detailed descriptions of all the I/O registers.) Some 
registers contain bits that you must set to enable certain interrupts; others con­
tain bits that the TMS34020 or another device sets to identify an interrupt re­
quest. 

These registers control interrupt functions: 

o The status register contains a bit that globally controls interrupts; it also 
reflects the status of certain interrupts. 

o The INTENB register is the interrupt-enable register. 

o The INTPEND register is the interrupt-pending register. 

o The HSTCTLL register is a host-interface register that provides control 
over general TMS34020-to-host and host-to-TMS34020 interrupts. 

o The HSTCTLH register is a host-interface register that provides control 
over the nonmaskable interrupt, halt, and reset. 

Note: 

You can access I/O registers in the same manner as any other TMS34020 
memory locations. You can access the status register with the GETST and 

, PUTST instructions. 

Interrupts, Traps, and Reset 



r""s;atus Register (ST) 

31 

Related 

The remainderofthis section describes these registers and tells you which bits 
are associated with the interrupts. In the pictures ofthe registers, shaded areas 
indicate bits that have no interrupt functions. 

o 

Note: For a complete illustration and description of ST, see Section 4.1, page 4-2. 

_ Setting IE (global interrupt enable) to 1 allows you to globally enable the inter-
bit 21 rupts that are controlled by the INTENB register. If IE = 0, then interrupts are 

globally disabled; in this case, the values in the INTENB register have no effect. 

.. Setting SS (single-step enable) to 1 causes a special interrupt to be generated 
bit 22 after each instruction is executed. This allows you to single-step through a 

program. 

_ The TMS34020 sets IX (interruptible instruction executing) when it takes an 
bit 25 interrupt at an interruptible point in an instruction. The TMS34020 uses IX to 

ensure that instruction execution resumes correctly after returning from the in­
terrupt. 

.. The TMS34020 sets BF (bus fault) when it takes a bus-fault interrupt. The 
bit 26 TMS34020 uses this bit to ensure that instruction execution resumes correctly 

after returning from a bus fault. 

INTENB register 
15 

.. 
bit 11 

bit 10 

The INTENB register allows you to selectively enable or disable interrupts 
(when IE=1) . 

Setting WVE (window-violation interrupt enable) to 1 enables the window­
violation interrupt. 

Setting DIE (display interrupt enable) to 1 enables the display interrupt. 

MI". Setting HIE (host interrupt enable) to 1 enables the host interrupt. 
bit 9 

.. Setting X2E (external interrupt 2 enable) to 1 enables external interrupt 2. 
bit 2 

... Setting X1 E (external interrupt 1 enable) to 1 enables external interrupt 1. 
bit 1 

6-3 





Related HPI'1I.C:7'pr.c: 

Note: For a complete illustration and description of HSTCTLL, see Chapter 4, 

Ell 
BitsQ-2 .. 

Bit3 

lED 
Bits 4-6 

mmg 
Bit 7 .. 

Bit 13 .. 
Bit 14 

.. 
Bit 15 

The MSGIN (message in) field buffers a 3-bit interrupt message from the host 
processor to the TMS34020. 

The host processor can set the INTIN (input interrupt) bit to 1 to generate an 
interrupt request to the TMS34020. 

The MSGOUT (message out) field buffers a 3-bit interrupt message from the 
TMS34020 to the host. 

The TMS34020 can setthe INTOUT (output interrupt) field to send an interrupt 
request to the host processor. 

The TMS34020 sets the H RYI (host retry interrupt) bit if a retry occurs on a host 
access. If HBREN=1, setting HRYI sends an interrupt request (via HINT) to the 
host processor . 

The TMS34020 sets the HBFI (host bus-fault interrupt) bit if a bus fault occurs 
on a host access. If HBREN=1, setting HBFI sends an interrupt request (via 
HINT) to the host processor . 

When the HBREN (host bus-fault/retry interrupt enable) bit is set, setting HRYI 
or HBFI causes an interrupt request to be sent to the host processor. 

6-5 



Enabling and Disabling Interrupts 

6.3 Enabling and Disabling Interrupts 

The TMS34020 supports 10 interrupts; 6 of the interrupts must be enabled 
before the TMS34020 can recognize them. These interrupts include 

Q Single-step interrupt 
Q External interrupt one 
Q External interrupt two 
Q Host interrupt 
Q Display interrupt 
Q Window-violation interrupt 

Note that only these 6 interrupts can be enabled or disabled; reset, bus fault, 
NMI, and ILLOP cannot be disabled. 

Enabling an interrupt ----------------------­

To enable the single-step interrupt, set the SS status bit to 1. The single-step 
interrupt operates independently of the IE status bit. 

To enable any of the other interrupts listed above (excluding the single-step 
interrupt), follow these steps: 

Step 1: Set the IE status bit to 1 (you can do this by executing an EINT 
instruction). 

Step 2: Set the appropriate bit in the INTENB register to 1: 

To enable this interrupt: 

external interrupt 1 

external interrupt 2 

host interrupt 

display interrupt 

window-violation interrupt 

Set this INTENB bit: 

X1E (bit 1) 

X2E (bit 2) 

HIE (bit 9) 

DIE (bit 10) 

WVE (bit 11) 

Disabling an interrupt ----------------------­

To disable the single-step interrupt, clear the SS status bit to O. The IE status 
bit does not affect this interrupt. 

6-6 

To disable any of these other interrupts (excluding the single-step interrupt), 
you can do one of two things: 

Q If the IE bit = 1, clear the appropriate bit in the INTENB register. 

Q Clear the IE bit to 0 (You can do this by executing a DINT instruction). This 
disables all five of these interrupts, regardless of the values in the INTENB 
register. 

Interrupts, Traps, and Reset 



Inr<"rrll"r Priorities and Vector Addresses 

6.4 Interrupt Priorities and Vector Addresses 

Table 6-1 lists the TMS34020 interrupts by priority. Figure 6-1 shows the 
interrupts' vector addresses. 

Table 6-1. Interrupt Priorities 

Interrupt Priority Source Description 

RESET 1 external! Device reset. Taken when the RESET input signal is asserted low or when 
the RSTlIHSTCTU-ill bit is set. 

BF 2 

NMI 3 

HI 4 

01 5 

wv 6 

INT1 7 

INT2 8 

SS 9 

internal 

external Bus-fault interrupt. External logic generates a bus-fault interrupt by 
asserting the BUSFLT signal high; LROY must also be high. 

internal Nonmaskable interrupt. Setting NMIffi--lSTCTLH]generates a nonmask­
able interrupt. 

internal Host interrupt. The host generates this interrupt by setting INTIN 
[HSTCTLL]. 

internal Display interrupt. The TMS34020's video timing hardware generates the 
display interrupt. 

internal Window-violation interrupt. The TMS34020's CPU generates a win­
dow-violation interrupt when a pixel lies either inside a window (windowing 
mode 1) or outside a window (windowing mode 2). 

external External interrupt 1. Asserting LlNT1 low generates this interrupt. 

external External interrupt 2. Asserting LlNT2 low generates this interrupt. 

internal Single-step interrupt. When the SS status bit is set, this interrupt is gener­
ated after each instruction execution. 

ILLOP 10 internal lIIegal-opcode interrupt. The TMS34020 generates this interrupt when it 
encounters an illegal opcode. 

Notes: 1) In orderfor the TMS34020 to recognize interrupts with priorities 4 through 8, you must set the IE status 
bit. 

2) Because only the host can set INTIN [HSTCTLL], HI could be considered an external interrupt. Howev­
er, HI is not generated directly from an input pin; in keeping with the other interrupts, it is listed as inter­
nal. 

As Table 6-1 shows, RESET has the highest priority. If 2 interrupts are 
requested at the same time, the highest priority interrupt is serviced first 
(assuming it is enabled). The bus-fault condition is considered to be in the inter­
rupt priority chain, although it behaves differently from other interrupts. 

6-7 



Interrupt Priorities and Vector Addresses 

Figure 6-1. Vector Address Map 

6-8 

Trap Number 

-32768 

Address 

OOOF FFEOh 

Name Description 

Application defined 
-1 0000 OOOOh 

- -0--- - FFFF FFEOh Reset 

1 FFFF FFCOh t--~~---t External interrupt 1 

2 FFFF FFAOh 

3 FFFF FF80h 

4 FFFF FF60h 

5 FFFF FF40h 

6 FFFF FF20h 

7 FFFF FFOOh 

8 FFFF FEEOh 

9 FFFF FECOh 

10 FFFF FEAOh 

11 FFFF FE80h 

12 FFFF FE60h 

13 FFFF FE40h 

14 FFFF FE20h 

15 FFFF FEOOh 

16 FFFF FDEOh 

29 FFFF FC40h 

30 FFFF FC20h 

31 FFFF FCOOh 

32 FFFF FBEOh 

33 FFFF FBCOh 

34 FFFF FBAOh 

External interrupt 2 

Reserved for future 
hardware or on-chip 
interrupts 

t--....;..;.;.;.;.;....---t Nonmaskable interrupt 

t-------t 

t-------t 

Host interrupt 

Display interrupt 

Window-violation interrupt 

Reserved for future 
hardware or on-chip 
interrupts 

Application defined 

lIIegal-opcode interrupt 

Application defined 

Single-step/Emulator 
t----:::-:::-----t Bus fault 

Application defined 
32767 FFFO OOOOh 

Notes: 1) Traps -1 through -32,768 use the memory at the bottom of the address 
space for vector addresses. Traps 0 through 32,767 use the memory at the 
top of the address space. 

2) Traps 0 through 31 may be accessed by either a TRAP or TRAPL instruc­
tion. 

3) Traps -1 through -32,768 and 32 through 32,767 are accessed only by 
TRAPL. 

4) Traps 3 through 7 and 12 through 15 are reserved for future interrupts. 

Interrupts, Traps, and Reset 



Interrupt Processing 
;a:;::--..x:;.smm~m:::,.::::::::x~~~:::;~(.~::::~x~~xw.:::;~~xx:::;x~~::.::w.::~x~w,.::0X'/"::X~XX::::X:;:::;XX::~':;X~~$~~~XX::X::~~~~~W..X::::$$~Xr.:;~.:::;~':;~$XX::.X:::;~:::::;;:.X:;:;:;:;;;;;:~:$:;:;:::;::$$~~..:::;x:;:;-,..x:;~m$W.6ZXr.':;':;$mmm$mw..:;w.x$$::-;$XW·$$$w/"::$~.:;;;m:;:;xxx:::;mxx::::M::::$:;~~$$::::, 

6.5 Interrupt Processing 

When an interrupt has been requested but has not yet been processed, it is 
called a pending interrupt. If a pending interrupt is enabled (and no interrupt 
with a higher priority is also pending), the TMS34020 accepts the interrupt at 
the end of the current instruction cycle (or at the next interruptible point within 
instruction execution). Figure 6-2 lists the actions that the TMS34020 takes 
when an interrupt occurs. 

Figure 6-2. Actions Performed When the TMS34020 Takes an Interrupt 

1) If necessary, the TMS34020 pushes onto the stack any temporary registers that the current 
instruction is using. This allows the instruction to resume execution correctly upon return from 
the interrupt. 

a) If the interrupt is taken part-way through an interruptible instruction, the TMS34020 pushes 
twenty-four 32-bit words. (If the SP is not word aligned when the interrupt is taken, the 
TMS34020 may push another long word on as padding.) 

b) If the interrupt is caused by a bus fault, the TMS34020 pushes thirty-one 32-bit words. 

2) The TMS34020 pushes the PC onto the stack. 

3) If necessary, the TMS34020 modifies the ST so that instruction execution can resume correctly 
after returning from the interrupt. 

a) Ifthe interrupt is taken part-way through an interruptible instruction, the TMS34020 sets the 
IX bit. 

b) If the interrupt is caused by a bus fault, the TMS34020 sets the SF bit. 

4) The TMS34020 pushes the ST onto the stack. 

5) The TMS34020 modifies the contents of the ST as follows: 

F F 
E FSO E FS1 
1 0 

000 0 000 000000010000 

6) The TMS34020 fetches the interrupt vector from external memory and places it into the PC. 

7) The TMS34020 begins executing the instruction pointed to by the new PC value. 

When the first instruction of the service routine begins execution, the new 
status register contents imply the following conditions: 

[J All interrupts (except SF, NMI, and reset) are disabled. 
[J Field 0 is 16 bits long and zero-extended. 
[J Field 1 is 32 bits long and zero-extended. 
[J Single-stepping is disabled. 

6-9 



Interrupt Processing 

If a graphics instruction is interrupted, the TMS34020 does not save the B-file 
registers used as implied operands (it doesn't push them onto the stack). If your 
interrupt service routine needs to use these registers, the routine should first 
push them onto the stack, then pop them from the stack before returning. 

You may usually want an interrupt service routine to complete before allowing 
any more interrupts. However, if you want to be able to interrupt a service 
routine, the routine should 

Step 1: Set the I E status bit to 1. 

Step 2: Set the appropriate bits in the INTENB register. 

The service routine can also load new field sizes, if required. 

If you want to single-step through the interrupt service routine, you can do so 
by setting the SS status bit. 

6.5.1 Returning from an interrupt Service Routine 

Interrupt service routines should not assume anything about the state of the 
stack except that the stack contains the PC, the ST, and possibly some extra 
words (as outlined in Figure 6-2, item 1). The interrupt service routine must 
return using a RETI or RETM instruction. Only these instructions pop the PC, 
ST, and any extra words from the stack to their correct internal locations, there­
by enabling instruction execution to proceed from the point at which the inter­
rupt occurred. Note that RETS cannot be used, because it pops only the PC. 

Figure 6-3. Actions Performed When the TMS34020 Executes a RETI or RETM Instruction 

1) The TMS34020 pops the value of the ST from the stack. 

2) The TMS34020 pops the value of the PC from the stack. 

3) If necessary (as indicated by the IX and BF bits of the restored STvalue), any extra words that 
were pushed onto the stack are popped from it. 

4) If the restored IE bit is 1, the TMS34020 takes one of the following actions, depending on the 
instruction used: 

6-10 

Q RETI does not alter the restored value of IE. If another interrupt is pending, it is taken as 
soon as RETI completes, before the TMS34020 can resume execution of the interrupted 
program. 

Q RETM masks IE during the last machine state ofthe return. This has the effect of not enab­
ling interrupts until one machine state after RETM completes, which means that even if 
another interrupt is pending, the TMS34020 resumes execution of the interrupted pro­
gram. The interrupt is then taken at the next interruptible point within the program. RETM is 
used primarily with the single-step interrupt (see Section 6.13, page 6-28). 

Interrupts, Traps, and Reset 



Interrupt Processing 
~~~::m::::r..:::;.u~ ..... sx» "* ................. ~m~mmm ~::mw~~m~:::·:"m~:"' .... '~~~·m:"·::;':" .... :":":":"':::·:":":" ............ :':"~ .... :'mm ........ ~~*'':=~..;l'; .... :w''~ 

The RETI and RETM instructions perform the actions described in Figure 6-3.
Provided the interrupt routine has not changed any of the values on the stack,
this restores the CPU to its state immediately priorto taking the interrupt. Under
no circumstances should you change the value of any of the additional words
that may have been pushed onto the stack.

If the cause of an interrupt remains when the TMS34020 completes execution
of RETI or RETM, the interrupt is taken again. When necessary, the interrupt
service routine should take the appropriate steps to clear the cause of the inter­
rupt. Consideration is given to this in Sections 6.7 to 6.9, which discuss each
of the interrupts in detail.

6.5.2 Interrupt Latency

The delay between when an interrupt request is made and when the
TMS34020 begins servicing the interrupt depends primarily on what activity
the TMS34020 is performing at the time. The delay can be broken down into
a number of smaller delays, which fall into four categories. These are listed
below.

Q Delay 1 : Interrupt request recognition. This is the period between the
time the interrupt is requested and the time the interrupt is recognized. This
is one maqhine state for interrupts generated synchronous to the
TMS34020 (such as HI, NMI, and WV), and one to two machine states for
interrupts generated asynchronously to the TMS34020 (such as INT1,
INT2, and DI).

Q Delay 2: CPU response time. This is the time required for an instruction
that was already executing when the interrupt was recognized either to
complete or to reach the next interruptible point. This depends on the
instruction. The instruction timings in Chapter 15 provides details of the
delay possible for each instruction.

Q Delay 3: Interrupt context switch. This is the time required to push the
PC, ST, and any extra words required onto the stack (as detailed in
Figure 6-2), and read the appropriate interrupt vector from memory.

Q Delay 4: Local memory traffic. Any other memory controller activity that
occurs while the CPU is completing the current instruction or performing
the context switch has an adverse effect on Delay 3, and affects Delay 2
if the executing instruction (such as a PIXBLT or FILL) performs many
local-memory cycles. You should determine what percentage of
local-memory bus bandwidth is taken up with screen refresh, DRAM
refresh, and host local-memory cycles, then increase the delay produced
by Delay 2 + Delay 3 by this amount.

6-11

Interrupt Processing

Table 6-2 summarizes these delays and gives some best- and worst-case
figures. Because the local-memory interface is typically the limiting factor in the
calculations, two worst-case conditions are described; one with 32-bit page­
mode memory, and the other with 16-bit non-page-mode memory. These
figures are intended only to give you some idea of the delay involved in servic­
ing an interrupt. Obviously, other factors not discussed here could further delay
the interrupt: for instance, if another interrupt, which maintained IE=O through­
out its service routine (disabling other interrupts), was being serviced at the
time the interrupt being considered here occurred. Inserting wait states into the
local-memory cycles also increase the delays. The precise effect of this is diffi­
cult to estimate, because not all the delays are determined by local-memory
interface performance.

Table 6-2. Sources of Interrupt Delay

6-12

OelayType

Interrupt recognition

CPU response time (note 3)

Interrupt context switch

Q Interruptible instruction

Q Bus-fault interrupt

Local memory traffic

Q Per screen refresh

Q Per DRAM refresh

Q Per host access

Minimum

0

12

0

Latency (in states)

Maximum A Maximum B

2 2

32 80

48 129

55 157

2 2

3 3

2 4

Notes: 1) Maximum A assumes 32-bit wide memory, which supports page mode.

2) Maximum B assumes 16-bit wide memory, which does not support page
mode, with no wait states.

3) This is for the worst-case instruction (PIXBLT XY,XY). Other instructions
are less. See Chapter 13, Assembly-Language Instruction Set, for more
details.

4) If both the host and the CPU request accesses as frequently as they can,
the memory controller priorities are arranged so that they each receive al­
ternative local-memory cycles.

Interrupts, Traps, and Reset

Interrupting Instruction Execution

6.6 Interrupting Instruction Execution

When an instruction is interrupted, instruction execution is suspended until the
interrupt routine completes. At this point, the instruction resumes an finishes
executing.

While an instruction is executing, the state of the instruction is stored in inac­
cessible internal registers. When an interrupt occurs, the contents of these
registers must be moved to memory before the TMS34020 begins executing
the interrupt routine, so that the instruction state can be restored when the in­
terrupt routine completes.

The following events take place when an instruction is interrupted.

Step 1: The IX[Sl] (interruptible instruction executing) bit is set to 1. This
indicates that the interrupt occurred while an instruction was execut-
ing. .

Step 2: The contents of any internal temporary registers are pushed onto the
stack.

Step 3: The PC and ST are also pushed onto the stack.

Step 4: Control branches to your TRAP routine, which should use the MMTM
instruction to stack any register values that need to be preserved for
later use outside the trap routine.

Step 5: Atthe end ofthe TRAP routine, you should use the MMFM instruction
to restore the stacked register file values and execute a RETI instruc­
tion. (RETI marks the end of the TRAP routine.) Executing RETI
returns control to the interrupted program, popping the ST and PC
from the stack. When the IX bit is detected, the internal register val­
ues are also popped from the stack, and the interrupted instruction
resumes execution. RETI clears IX.

Note that the graphics instructions described in Chapter 12 may take several
thousand machine cycles to execute, depending on the size of the lines and
arrays involved. These instructions check for interrupts at regular intervals,
preventing delays to high-priority interrupts from becoming prohibitively long.

6-13

Interrupting Instruction Execution

6-14

Note:

1) IX is not set to 1 when a PIXBLT or FILL instruction is aborted as a result
of a window violation. In this case, returning from an interrupt routine
causes the TMS34020 to execute the instruction that follows the inter­
rupted instruction.

2) If a graphics instruction is executing when a bus fault occurs, the steps
described on page 6-13 take place. In addition, BF[ST] is set to 1. In this
case, executing RETI at the end of the bus-fault TRAP routine also clears
BF.

3) If the SP is not long-word aligned when an instruction is interrupted, then
the TMS34020 aligns the stack to expedite the interrupt sequence. RETI
always restores the SP to its original alignment.

4) The FPIXEQ and FPIXNE instructions are exceptions. These two instruc­
tions follow the same basic operation when interrupted, but they do not
preserve the contents of temporary registers (skipping step 2, listed on
page 6-13). Instead, these instructions reset their operands so that they
can resume execution when control returns from the interrupt.

Interrupts, Traps, and Reset

External 1 and2

6.7 External Interrupts 1 and 2

The TMS34020 supports two general-purpose interrupts that allow external
devices to interrupt the TMS34020. This is achieved by driving LlNT1 or LlNT2
low. The interrupts generated by requests to LlNT1 and LlNT2 are called INTi
and INT2. Table 6-3 lists these interrupts, the signals that generate them, and
the interrupt trap vectors.

Table 6-3. External Interrupt Vectors

Name Input Pin Vector Address

INT1 FFFF FFCOh
INT2 FFFF FFAOh

Each signal is dedicated to an individual interrupt, allowing 2 separate and
distinct external-interrupt requests. INTi has a higher priority than INT2; if
LlNTi and LlNT2 become active at the same time and both external interrupts
are enabled, INTi is serviced first.

Xi P[INTPEND] and X2P[INTPEND] reflect the current state of the LlNTi
and LlNT2 inputs. A bit equals 1 if the corresponding request is active, 0 if it
is not. You can poll these bits to detect transitions at the interrupt inputs.

Once an external devices request an interrupt, the device should continue to
drive the interrupt signal low until the TMS34020 has started to execute the
interrupt service routine.

Q If the device permits the interrupt pin to go inactive high before the routine
recognizes the interrupt, the request may be missed.

Q If the active level is maintained after the interrupt service routine com-
pletes, the interrupt is taken again.

How you ensure that the interrupt pin is held active until after the beginning of
the service routine depends on the application. However, two possibilities are

Q The interrupt service routine writes to an external location to cause the
appropriate interrupt pin to be deactivated.

Q External hardware decodes the vector fetch for the interrupt from the
status code and vector address output on the LAD bus.

The TMS34020 assumes that signals input to LlNTi and LlNT2 are asynchro­
nous to the TMS34020 local clocks; the TMS34020 synchronizes the signals
before it processes them. The TMS34020 samples the state of the LlNT1 and
LlNT2 inputs at each high-to-Iow transition of LCLKi and updates the Xi P and
X2P bits accordingly. The delay from the transition at the input to the corre­
sponding change in the Xi P or X2P bit is from 1 to 2 states, depending on the
transition's phase relationship to LCLKi.

6-15

Internal Interrupts

6.8 Internal Interrupts

Table 6-4 summarizes the internal interrupts.

Table 6-4. Interrupts That are Associated with Internal Events

Name Function Trap # Vector Location

NMI Nonmaskable interrupt 8 FFFF FEEOh

HI Host interrupt 9 FFFF FECOh

01 Display interrupt 10 FFFF FEAOh

WV Window-violation interrupt 11 FFFF FE80h

SS Single-step interrupt 32 FFFF FBEOh

ILLOP IIlegal-opcode interrupt 30 FFFF FC20h

If more than one interrupt is pending, the interrupts are serviced according to
the priorities listed in Table 6-1 (page 6-7).

6.8.1 The Nonmaskable Interrupt (NMI)

The nonmaskable interrupt occurs when a 1 is written to NMI [HSTCTLH] (this
is normally done by a host processor). This interrupt cannot be disabled and
always occurs as soon as possible following the request. The NMI is delayed
only for completion of an instruction already in progress, or until the next inter­
ruptible point of an interruptible instruction (such as a PIXBLT) is reached.

NMIM[HSTCTLH] (NMI mode bit) determines whether context information is
saved on the stack when a nonmaskable interrupt occurs:

(J If NMIM = 0, the PC and ST are pushed on the stack before servicing the
interrupt.

(J If NMIM = 1, nothing is saved on the stack before servicing the interrupt.

The TMS34020 automatically clears the NMI bit when it takes the interrupt, so
there is no need for the interrupt service routine to do this.

6.8.2 The Host Interrupt (HI)

6-16

The host interrupt occurs when a 1 is written to INTIN[HSTCTLL], providing
that HI is enabled (HIE=1). Only the host processor can do this; the CPU
cannot write a 1 to INTIN. The host interrupt is serviced as soon as possible
following the request.

The MSGIN[HSTCTLL] bits provide a mechanism for specifying the action
taken by the host interrupt; by checking the value of MSGIN at the beginning
of the interrupt routine, you can branch into one of up to eight different proce­
dures. The host can write to MSG IN when it sets INTIN. Only the host can write
to these bits; a write by the CPU has no effect.

Interrupts, Traps, and Reset

Internal

Before returning from the interrupt, the service routine must clear INTIN. This
is the only way INTIN can be cleared, because the host cannot write a 0 to
INTIN. Clearing HIP[INTPEND] does not clear the interrupt.

6.8.3 The Display Interrupt (01)

The display interrupt coordinates processing activity with display refreshes.
The display-interrupt request becomes active when a particular display line,
specified in the DPYINT register, has been output to the monitor screen. At the
start of each horizontal blanking period, the VCOUNT register is compared to
the DPYINT register. When the vertical-count value in VCOUNT has reached
the value in DPYINT, the TMS34020 generates a display interrupt request. If
enabled, the interrupt is taken.

Before returning, the display interrupt service routine should clear
DIP[INTPEND] so that the interrupt isn't taken again.

6.8.4 Window-Violation Interrupt (WV)

The window-violation interrupt may occur when the TMS34020 is executing a
graphics operation and windowing option 1 or 2 is selected. W[CONTROL]
defines the window-checking option. WVP[INTPEND] is set if

W=1 and an attempt is made to write a pixel inside the specified window, or

W=2 and an attempt is made to write a pixel outside the specified window.

Before returning, the window-violation interrupt service routine should clear
WVP[INTPEND] so that the interrupt is not taken again.

6.8.5 The Single-Step Interrupt

The single-step interrupt provides a mechanism for executing instructions one
at a time. This is useful when developing and debugging new programs. While
SS= 1, an interrupt is generated after each instruction is executed. Unlike other
interrupts, the single-step interrupt is not taken at interruptible points within an
instruction, only on instruction boundaries.

The single-step interrupt service routine should use the RETM instruction to
return. This allows the next instruction to be executed before the interrupt is
taken again. If RETI is used, the single-step interrupt is taken again as soon
as the RETI completes, and the program is not executed at all; only the inter­
rupt service routine is executed.

Because SS is contained in ST, and ST is saved on the stack before servicing
the interrupt routine, and then restored afterwards, the only methods for clear­
ing the SS bit are

Q To modify the value of the ST on the stack during the single-step service
routine, so that when the ST is restored by RETM, SS is cleared.

Q To single-step a PUTST instruction within the program which clears SS.

6-17

Internal Interrupts

Note:

All interrupts clear the SS bit so that interrupt service routines execute normal­
ly (the instructions in the routine aren't single-stepped). If you want to single­
step through an interrupt service routine, one of the routine's first instructions
should set the SS bit.

6.8.6 lIIegal-Opcode Interrupts

6-18

The TMS34020 recognizes several reserved opcodes as illegal. If the
TMS34020 encounters one of these opcodes, it traps to vector number 30
(located at memory address FFFF FC20h). An illegal opcode is similar in effect
to a TRAP 30 instruction. The iIIegal-opcode interrupt cannot be disabled.

For testing purposes, opcodes OOOOh and FFFFh are reserved as illegal
opcodes on all TMS340 family devices. Other currently illegal opcodes may be
used for special functions on future TMS340 devices.

A typical cause of an illegal-opcode interrupt is that the program being
executed is corrupted (perhaps because insufficient stack space was
allocated). If you wish to resume execution ofthe program, the interrupt service
routine should take whatever steps are necessary to remove the illegal opcode
from the program, and then flush the cache before resuming. If the cache is
not flushed, the illegal opcode is executed again, because it is still present in
the cache.

Interrupts, Traps, and Reset

The Bus-Fault Interrupt
~,z::.)~"*,,,==~m.."'~~_=>~Mf~~~~:;..~==;::~n~'>l'.;f=';~~-===~·~:;~=:;::::";;;;;~;'l>.I:;"i'~==~_~=,~~~~=~

6.9 The Bus-Fault Interrupt

The bus-fault interrupt provides a mechanism by which the TMS34020 can be
interrupted by its local memory system. This allows correction of an error that
occurred during an access to a particular location. The precise locations (or
groups of locations) within the local-memory cycle that can generate a bus fault
depend entirely on the application. Here are some examples of the use of the
bus-fault mechanism:

Q It can indicate that the TMS34020 is attempting to access invalid areas of
memory.

Q It can indicate that the TMS34020 is attempting to access protected
devices.

Q It can indicate that the TMS34020 is attempting to access an area of
memory implemented as virtual memory space that is not currently
mapped into the physical memory.

A bus fault may be generated as one of the options for ending a local-memory
cycle. Asserting the BUSFLT and LRDY pins high at the rising edge of LCLK2
during the data subcycle causes a bus fault to occur. This is discussed in detail
in Section 8.6, Ending a Local-Memory Cycle (page 8-12). Bus faults can be
generated on virtually all types of local-memory cycle. However, a bus-fault in­
terrupt is generated only if the local-memory cycle was initiated by the CPU.

6.9.1 Activity During a Bus-Fault Interrupt

Unlike any other interrupt, a bus fault does not occur at an instruction boundary
or at an interruptible point within an instruction. By definition, it occurs during
an instruction and must be serviced before program execution can continue.
However, the pipelining of data between the CPU and the memory controller
means that when a bus fault occurs on a memory cycle, the CPU may already
be requesting the next memory operation. If this is the case, the CPU will have
discarded the information relevant to the bus-faulted memory cycle. Because
of this, the CPU cannot stack information relating to the bus-faulted access,
and so the memory controller must save its own state at the time of the
bus-faulted access. This means that the sequence of events when a bus fault
occurs is slightly different from other interrupts:

1) The memory controller saves the value ofthe LAD bus from the bus-faulted
cycle in the 32-bit BSFLTD register.

2) The memory controller saves its own state in BSFLTST.

3) The memory controller generates a bus-fault interrupt to the CPU.

4) The CPU responds to this interruptimmediately (within one machine state)
and proceeds to push its state onto the stack as outlined in Figure 6-2.

6-19

The Bus-Fault Interrupt

The bus-fault service routine should start from the address stored at the
bus-fault vector (address FFFF FBCOh). The interrupt service routine should
take the action necessary to clear the cause of the bus fault. Upon returning
from the bus-fault routine, the following actions occur:

1) The CPU restores its state from the stack as outlined in Figure 6-3.

2) The CPU signals the memory controller to resume normal execution.

3) The memory controller restores its state to that of the bus-faulted access
from the BSFLTST register.

4) The memory controller restarts the faulted access. If the access was a
write, the data stored in the BSFLTD register is driven out on the LAD bus
during the cycle.

If you do not want to restart the memory cycle that was originally bus-faulted,
your interrupt service routine should write FFFFh to the BSFLTST register.
This causes the memory controller to restore its inert state (no local-memory
accesses pending). Do not, under any circumstances, modify the BSFLTST
register to any other value; doing so causes unreliable operation.

6.9.2 Bus Fault System Considerations

6-20

Because the memory controller saves the state of the bus-faulted memory
access in the BSFLTD and BSFLTST 110 registers, and not on a stack, you
should ensure that bus faults cannot be generated when accessing the system
stack. If a bus fault occurs while the CPU is pushing its state onto the stack
before servicing the bus-fault interrupt (or popping its state off the stack after
returning from the bus-fault interrupt), the state of the original bus-faulted
memory cycle is lost.

If it is possible for a bus fault to occur while you are executing the bus-fault
service routine, you should ensure that one of the first operations performed
by the service routine is to push the BSFLTD and BSFLTST registers onto the
stack. These should be restored before returning from the bus fault. Care
should be taken to ensure that any other interrupts which could occur before
the service routine has stacked these registers (such as an NMI) cannot
access locations that"could generate a bus fault.

Interrupts, Traps, and Reset

Reset

6.12 Reset

Reset is the highest priority interrupt; it puts the TMS34020 into a known initial
state. There are two ways to invoke reset.

Q Assert an active-low level on the RESET pin. At power-up, RESET
should always be asserted for a minimum of forty local clock periods after
power levels have become stable. At other times, you may reset the
TMS34020 by asserting RESET for a minimum of four local clock periods.

Q Write a 1 to RST[HSTCTLH]. This achieves the same result as asserting
the RESET pin, but without affecting any other devices in the system to
which the RESET pin may be wired. Reset should not be invoked in this
way at power-up.

Unlike other interrupts and software traps, reset does not save the previous ST
and PC values on the stack. The value of the stack pointer just before a reset
may be invalid. Saving these values on the stack could corrupt valid memory
locations.

6.12.1 Activity During Reset

When reset is initiated, the TMS34020 takes 34 local clock periods to
completely initialize itself (40 cycles must be allowed at power-up because the
TMS34020 may be in an illegal state not achievable during normal operation).
Most of this time is spent clearing the I/O registers, which are cleared at the
rate oftwo 16-bit registers per machine state. While the RESET pin is asserted,
the local-memory control signals are in the states shown in Table 6-5.

Table 6-5. Initial State of Output Pins while RESET and GI are Low

6-22

Outputs Driven
to High Level

RAS
CAS3-CASO
WE
TRioE
DDOUT
ALTCH

.HINT
R1
HOE
HDST
RCA12-RCAO
SF

Outputs Driven
to Low Level

HRDY
CBLNKNBLNK
DDIN
RO

Bidirectional Pins
Driven to

High-Impedance

VSYNC
HSYNC
CSYNC/HBLNK
LAD31-LADO

Note: When GI is high, all GI-controlled pins are driven to high impedance. GI-con­
trolled pins include RAS, CASQ-CAS3, WE, TRlQE, DDOUT, DDIN, ALTCH,
HOE, HDST, RCAo-RCA12, LADo-LAD31, and SF.

The specifications for certain DRAM and VRAM devices require that at
power-up the RAS signal be driven inactive-high for 1 millisecond after power
becomes stable. As long as RESET is maintained active, the TMS34020 drives
its RAS and CAS signals inactive-high. In general, holding RESET low for t
microseconds ensures that RAS remains high initially for t-(1 O-tq} microsec­
onds, where tq is one quarter of the local clock period.

Interrupts, Traps, and Reset

Reset

At times other than power-up, the TMS34020 may be in the process of reset­
ting itself while RESET is high. This is the case if reset was initiated by setting
the RST bit or by asserting RESET for less than 34 LCLK periods. If RESET
is high and the TMS34020 is internally resetting itself, the memory controller
performs consecutive DRAM-refresh cycles. This ensures that the DRAM
contents are maintained while the TMS34020 is reset.

The value of the HEFADR register is output as a pseudo-address during each
DRAM-refresh cycle. REFADR is incremented after each DRAM refresh cycle.
However, if the DRAM refreshes start before REFADR is cleared, the address
output reverts to zero when this occurs, and then starts incrementing again.

6.12.2 Initial State Following Reset

The TMS34020 completes its reset procedure when RESET is deactivated, or
thirty-four local clock periods after the high-to-Iow transition of the RESET pin,
which ever occurs last. Immediately following reset, the TMS34020 is in the
following state:

[J Registers

• All 1/0 registers are cleared to OOOOh. The only possible exceptions to
this are HLT[HSTCTLH] (see Section 6.12.4), REFADR (which will
have incremented if DRAM refreshes were performed during reset),
and SCOUNT (if SCLK is oscillating during reset).

• The general-purpose register files A and Bare uninitialized.

• The ST is set to 0000 0010h.

• The PC is uninitialized.

[J Cache

• The cache SSA (segment start address) registers are uninitialized.

• The cache LRU (least recently used) stack is set to the sequence 0, 1,
2,3. This indicates that segment 0 is the most recently used, and seg­
ment 3 is the least recently used.

• All cache P (present) flags are cleared. This indicates that the cache is
empty.

[J The DRAM refresh-pending counter is set to 9.

6-23

Reset

6.12.3 Activity Following Reset

6-24

Immediately following reset, the memory controller begins normal operation.
At this time, the refresh-pending counter is set to 9. Four or more DRAM
refreshes take priority over any CPU memory request, so the memory control­
ler performs DRAM refreshes continuously until the pending counter counts
down to 3. At this point, any pending CPU memory request (in this case the
reset-vector fetch) is performed. Because reset sets the TMS34020 to incre­
tnent the refresh-pending counter every 8 machine states, additional DRAM
refreshes are requested before the 9 counts down to 3. This results in a total
of 9 consecutive DRAM refreshes, which occur before any CPU-initiated
memory requests are performed. The remaining refreshes are performed
using the normal memory controller priority scheme.

This fulfills most. DRAMNRAM requirements that the DRAMNRAM's RAS
pins (after being held inactive for 1 ms) are cycled a minimum of 8 times after
power-up before any memory accesses are made. This ensures that the
DRAMsNRAMs are initialized for correct operation.

Note, however, that if a host requests access before the 8 DRAM refreshes
complete, the host request are performed. Thus, at power-up, the host should
not make any requests to DRAM memory until the 8 initialization cycles have
had time to complete.

If at other times, reset is initiated by setting RST[HSTCTLH] or by asserting
RESET in a manner that maintains the data in the DRAMs. There is no need
for the host to delay making a memory request, because the DRAMs will
already be initialized.

If you initiate reset by asserting RESET, the memory will be maintained if
RESET is not held low for longer than the maximum refresh interval less the
time taken for the TMS34020 to refresh the memories.

After reset completes and the 8 DRAM-refresh cycles are performed, the
TMS34020 either

IJI begins executing instructions (self-bootstrap mode), or
IJI halts until the host clears HLT[HSTCTLH].

The level on the HCS pin just before RESET's low-to-high transition selects
between these two modes. The TMS34020 remembers this information, so
that if reset is initiated via RST[HSTCTLH], the CPU is configured in the mode
indicated at the most recent rising edge of RESET.

Interrupts, Traps, and Reset

Reset

6.12.3.1 Self-Bootstrap Mode

In self-bootstrap mode, the TMS34020 begins executing instructions immedi­
ately following reset. This mode is typically used in a system in which the reset
vector and reset service routine are contained in nonvolatile memory (such as
a bootstrap ROM). This type of system does not necessarily require a host
processor, and the TMS34020 may be responsible for performing host-proces­
sor functions for the system.

The TMS34020 is configured in self-bootstrap mode when the HCS pin is low
just before RESET's low-to-high transition. The low level on HCS does not alter
the HLT bit, which was cleared to 0 during reset. Immediately following the end
of reset and the 9 DRAM-refresh cycles, the TMS34020 fetches the level-O
vector address (from address FFFF FFEOh) and begins executing the reset
interrupt routine.

Transitions of the HCS and RESET signals are assumed to be asynchronous
with respect to the TMS34020 local clock. HCS and RESET are internally syn­
chronized to the local clock by being held in latches for at least 1 clock period
before the TMS34020 uses them. The delay through the synchronizer latch is
from 1 to 2 local clock periods, depending on the phase of the signal transitions
relative to the clock. TMS34020 on-chip logic delays the HCS low-to-high
transition to ensure that it is detected after RESET's low-to-high transition. The
level of the delayed HCS signal at this time determines the value of the HLT
bit. In systems without a host processor, this allows HCS and RESET to be
wired together without the need for any external logic to delay the transition on
the HCS pin.

6.12.3.2 Host-Present Mode

Host-present mode assumes that a host processor is connected to the
TMS34020's host-interface pins. In this mode, the TMS34020 local memory
can be composed entirely of RAM. Following reset, the host processor may
download the initial program code, interrupt vectors, etc., before allowing the
TMS34020 to begin executing instructions.

Here's how the TMS34020 is configured in host-present mode. The HCS input
is sampled on the trailing edge of RESET. If HCS is inactive high, internal logic
forces the HLT bit to a 1. In this fashion, the TMS34020 is automatically halted
following reset, and does not begin executing its reset service routine until the
host processor clears HLT to o. In the meantime, the host processor can load
the memory and I/O registers with the appropriate initial values before the
TMS34020 begins executing instructions. This may, for example, include
writing the reset vector and reset service routine into the TMS34020's memory.

No additional external logic is required to force HCS high before RESET's
low-to-high transition. External decode logic is typically used to drive the HCS
input active low only when the TMS34020 is addressed by the host processor.
Assuming that the host processor is not actively chip-selecting the TMS34020
at the end of reset, HCS is high.

6-25

6.12.4 System Configuration Following Reset

6-26

Before any memory locations can be accessed, or instructions executed, the
TMS34020 must be configured in the correct addressing mode. Two different
aspects must be considered:

Q Little-endian or big-endian addressing. This determines which bit within a
word is addressed as the least significant (see Chapter 3 more details).

Q The base array size of the DRAMs and VRAMs in the system. This deter­
mines how logical address bits are mapped to the RCA bus to form the row
and column addresses used by DRAMs and VRAMs in the system (see
Section 8.16.2, page 8-51, for details).

The mode bits that determine these configurations are BEN[CONFIG]
(big-endian enable) and RCMO-RCM1 [CONFIG] (RCA mode).

The TMS34020 provides a mechanism for ensuring that these bits are set
correctly following reset.

Reset normally clears BEN and RCMO-RCM1 , configuring the TMS34020 to
little-end ian operation with a DRAM base array size of 64Kxn. Before these bits
are set correctly, the only memory locations that can be reliably accessed are
those with a row address of all 1 s or all Os and are long-word-aligned, 32-bit
words (locations with a bit address of zero, and a field size of 32). The reset
vector fulfills these characteristics. This is the first location accessed after reset
completes (assuming that the TMS34020 is configured in self-bootstrap
mode).

The reset vector contains the address of the first instruction to be executed.
The reset vector's 4 LSBs are not required to specify this address because
instructions must be aligned to 16-bit word boundaries in memory. The
TMS34020 takes advantage of this fact. You should write the values you
choose for BEN and RCMO-RCM 1 in bits 0-3 of the reset vector. When the
reset vector is fetched, the TMS34020 automatically copies these bits into
CONFIG and then sets the 4 LSBs of the PC to zero.

Bit 3 of CON FIG is the CBP (configuration byte protect) bit. When a 1 is written
to this bit, CONFIG's LSbyte is write-protected until the next time the
TMS34020 is reset. You can write the value ofthis bitto bit3 of the reset vector;
it is also copied into CONFIG with the BEN and RCMO-RCM1 bits. By setting
bit 3 of the reset vector to 1 , you can ensure that this is the only time BEN and
RCMO-RCM1 are modified.

If the TMS34020 completes reset in host-present mode, the host must write
to BEN and RCMO-RCM1 directly before accessing the TMS34020's local
memory (unless the system configuration requires these bits to remain 0). After
the host writes to these bits, it must not access the local memory during the
machine state immediately following the write, because of the latency required

Interrupts, Traps, and Reset

Reset

to set the bits. There must be a single machine state between the write to
CONFIG and an access to local memory. If the host is capable of requesting
an access immediatelyfollowing the write to CONFIG, you should ensure that
the host makes adummy request (such as readingCONFIG) before attempt­
ing to write to memory.

If the TMS34020's I/O registers are shadowed in external memory, the initial
write to CON FIG to set BEN, RCMO-RCM1, and CBP (either by the
TMS34020 or the host) may not be duplicated in external memory because the
logical address bitmapping may be incorrect.

6.12.5 RESET and Multiprocessor Synchronization

You can use RESET to synchronize multiple TMS34020s that share a local
memory. (Systems that use the TMS34020's multiprocessor interface to
control memory access must synchronize the processors.) Synchronization is
achieved by taking RESET high within a specific interval relative to ClKIN.
TMS34020s to be synchronized should use the same ClKIN and RESET
inputs; use ClKIN to clock the RESET. All of the local-memory and bus-control
signals should be connected in parallel (without buffers) between the proces­
sors. After power-up, the processors may not all be executing the same
machine state quarter cycle at the same time, because each machine state
consists of 4 ClKIN cycles. When the low-to-high transition of RESET occurs,
the TMS34020 could be in anyone of the 4 quarter cycles. The TMS34020
stretches the first quarter phase (signified by lClK1 high and lClK210w), until
the eleventh ClKIN cycle after the rising edge of RESET. This ensures that
all TMS34020s in the system are exactly synchronized. Section 11.3.2, page
11-3, discusses this in more detail.

The setup and hold times of RESET relative to ClKIN's low-to-high transition
(specified in the TMS34020 Data Sheet) must be met only to guarantee that
a RESET transition is detected at a particular clock edge. In a system with a
single TMS34020, the RESET input signal can be asynchronous.

6.12.6 State of VCLK During Reset

In many systems, the VClK pin continues to be clocked during reset. However,
a system in which VClK is not clocked during reset should maintain VClK at
the logic-high level. This is necessary to ensure that the video counters are
reset properly. (In fact, VClK should be held at the logic-high level when it is
not being clocked, regardless of whether the device is being reset.) While
VClK is low, storage nodes in the VCOUNT and HCOUNT registers rely on
their internal capacitance to maintain their state. If VClK remains low for a suf­
ficiently long period, charge leakage may cause bit errors in these registers.

6-27

An Application for Interrupts: Debugging Code

6.13 An Application for Interrupts: Debugging Code
The single-step interrupt causes the TMS34020 to interrupt execution after
each instruction; this can be especially useful if you're developing and debug­
ging new programs. This section describes this application.

6.13.1 How a Debugger Works

A debugger typically runs as code on the TMS34020 and code on a host sys­
tem. If you decide to inspect a TMS34020 register or memory location, one of
two situations may arise:

a If you're inspecting an 110 register or a local-memory location, the host­
system portion of the debugger can perform a host read to directly access
the information.

a If you're inspecting an internal register (general-purpose, ST, or PC), the
host-system portion of the debugger must send a request to the
TMS34020 portion of the debugger. The TMS34020 can put the required
information into an agreed place in memory where the host software can
access it through the host interface.

6.13.2 Using a Debugger

A debugger is usually used for loading and running development software
under controlled conditions. Such conditions allow you to stop the software at
any point and examine or change the state of the TMS34020 before continuing
program execution.

If you want to examine the state of the TMS34020 after each instruction, you
can do one of two things:

a Insert breakpoints into your code; that is, insert instructions that force the
TMS34020 to take a software interrupt. Any of these instructions can act
as a breakpoint:

TRAP TRAPL
EMU any illegal opcode

Inserting breakpoints requires the debugger to replace opcodes in the
development software. This can be difficult because the debugger must be
able to spot potential branches within the code and place breakpoints at all
the addresses that could be branched to.

a Use single-step mode. Single-step mode requires no changes to the
development software and is much simpler to manage.

6.13.3 Entering Single-Step Mode

6-28

In single-step mode, the TMS34020 executes one instruction at a time. This
happens regardless of how many machine cycles the instruction consumes
and regardless of the amount of immediate data required. After executing an
instruction, the TMS34020 saves the PC and ST values on the stack and

Interrupts, Traps, and Reset

An Application for Interrupts: Debugging Code
~~...z:w:::::;xr~ ~~:;:;~...x~~~"':;:''Z:;:;~Z:"4="-==_-=-==,,,,~~~m_,s:::;:;x==m_

register value that will be put into the ST so that SS is set to 1. Similarly, if the
next instruction is a POPST, the debugger can alter the stack value that will be
put into the ST so that SS is set to 1.

Interrupts during execution of development code ------------­

When the TMS34020 takes an interrupt, it stacks the PC and ST1, then clears
the ST to 0000001 Oh. The TMS34020 then reads the appropriate trap vector
and branches to an interrupt routine.

6-30

If single-step mode is enabled when an interrupt occurs, the SS bit is cleared
(because the interrupt sets the ST to 0000001 Oh); thus, the interrupt code will
not execute in single-step mode. Interrupts that may cause this include

reset
host interrupt
window-violation interrupt

nonmaskable interrupt
display interrupt
external interrupts 1 & 2

Executing one of the following instructions may also cause this:

TRAP TRAPL
TRAP 0 TRAPL 0
EMU (with a single-step code) any illegal opcode

As an example, assume that the TMS34020 is single-stepping through this
development code:

clr aD
xor a7
movi D12345678h,a9

Assume that an interrupt occurs while the TMS34020 is executing the XOR
instruction. The following events occur while the TMS34020 is executing this
development code:

1) The CLR instruction executes.

2) A single-step trap returns control to the debugger (single-step routine).

3) The RETM instruction at the end of the single-step routine returns control
to the development software.

4) The XOR executes.

5) The interrupt occurs. The TMS34020 stacks the current PC and ST values,
sets the ST to 0000001 Oh, and passes control to the interrupt routine. The
interrupt routine executes normally (it does not execute in single-step
mode).

1 The folJowing interrupts do not stack the PC or 8T: reset, NMI (when NMIM =
1), TRAP 0, and TRAPL o.

Interrupts, Traps, and Reset

6) The RETI that terminates the interrupt routine restores the old PC and ST
values (with SS set).

7) Control immediately passes to the single-step routine.

8) The RETM instruction that terminates the single-step routine returns
control to the development code.

9) The MOVI executes.

10) The development code continues execution, taking the single-step routine
after each instruction.

11) An RETM instruction terminates the single-step routine.

Here's another look at this sequence:

Notice that the flow of development code and single-step routines is unbroken
by the interrupt. The non-single-step interrupt is essentially transparent to the
development code.

Single-stepping interrupts --------------------­

If you want to single-step through an interrupt, then you should place a break­
point at the start of all relevant interrupt routines. This breakpoint should be

£l an EMU instruction (with the associated single-step code),
£l a trap instruction, or
£l any illegal opcode.

6-31

An Application for Interrupts: Debugging Code
~ :::::::; ~~.m::::w.(.z~~~~~9"'!':s~hWhW-:-;~~::::~~::;~~~..::::x~~:::::W%w.~m::.-:x:::;~::::::~.::m

6-32

When the development code single-steps to the interrupt point, it takes the
interrupt. The first instruction in the interrupt routine causes yet another inter­
rupt, this time set up by the debugger to take the actions necessary to ensure
that SS is set when control returns to the initial interrupt routine. As an example,
this sequence of events might be

1) Single-step through the development code.

2) Encounter interrupt#1 (this is a non-single-step interrupt such as the
display interrupt). The TMS34020 then automatically

a) Stacks PC#1 and ST#1.
b) Sets ST to 00000001 Oh (the SS bit is now cleared).
c) Branches to the first instruction of the interrupt routine (IR#1).

3) The debugger should have changed I R#1 so that its first instruction causes
interrupt#2 (that is, I R#1 's first instruction could be an illegal opcode). Now,
the TMS34020 automatically

a) Stacks PC#2 and ST#2.
b) Sets ST to 00000001 Oh (the SS bit is still clear).
c) Branches to the first instruction of the iIIegal-opcode trap routine

(IR#2).

4) IR#2 is installed by the debugger and could change the stacked value
ST#2, setting ST#2's SS bit to 1. Finally, IR#2 should execute a RETM,
after which the TMS34020 automatically pops the new ST#2 and PC#2
values before returning to IR#1. In IR#1, the TMS34020 passes control to
the single-step trap routine before executing the instruction following the
breakpoint.

5) The RETM that terminates the single-step causes control to pass back to
IR#1 ,where the instruction following the breakpoint can execute. This and
subsequent instructions in IR#1 execute in single-step mode.

6) Finally, at the end of IR#1, the terminating RETI executes, causing the
TMS34020to

a) Pop ST#1 (which already has the SS bit set) and PC#1, and
b) Resume single-stepping through the development code.

Q Differences between RETI and RETM. The main difference between
these two instructions is that RETM allows the TMS34020 to execute one
instruction before returning to single-step instruction.

Interrupts, Traps, and Reset

Chapter 7

Communicating with a Host Processor
IWiIO ~imail'fW]'ji, l;;mm;m;m~ ;Wi;;~ =j;~imim~l' ~'~imimml~
::o;ww;~~mm'W:~SKmm~·~:~{~::~~i~~'m::;~n~=:::fm~";¢~;;zmm::;-$i'~:?~ ;::= '~1m
:l:::mmmClC::::::: ::::::::m:m:m:m : m m I::: :::::::::::::::::::::::::::::::1:1:::::: :: :: : ::I:m:m mc:::m::::::::::m:m::: ::::::::::::::::::::::::::::m:m Il: :::::::II:::::::::::::mm::::I:::::::::::::::::::::: :::::::::::m::::m::

A host processor can communicate with a TMS34020 through the
TMS34020's host interface. The. host interface allows you to map the
TMS34020's local memory into a host's memory address space so that you
can transfer data, commands, and status information between the host proces­
sor and the TMS34020's local memory.

This chapter describes host-interface operation.

Section Page

Basic information includes a 7.1
review of TMS34020 signals and 7.2

registers that affect the host 7 3
interface; a system block .

diagram; and general information
about how a host processor 7.4

communicates with the TMS34020.

Advanced information describes 7.5
specific TMS34020Hhost

communication features. For 7.6
example, you can take advantage 7 7

of features that improve the .
efficiency of block accesses. 7.8

7.9

Related Signals 7-2

Related Registers. . . • • 7-3

A Basic Block Diagram
for the Host Interface .•...........•..... 7-6

Basic Communication: How a Host Processor
Reads from and Writes to Local Memory 7-7

Features That Improve Performance of
the Host Interface 7-10

Completing Host Accesses 7-16

Timing Examples•...... 7-18

Halting TMS34020 Execution and
Downloading New Code. 7-32

Hpst Interface Data Throughput (Bandwidth). 7-34

7.1 0 Delays to Host Accesses •.... • 7-37

System-specific information for 7.11 Systems with Multiple TMS34020s 7-40

systems using 16-bit memory, 7.12 Systems with 16-Bit Memory Devices 7-42
multiple TMS34020s, or S . h B' E d' Add' 7 44
big-endian addressing. 7.13 ystems Wit Ig- n Ian resslng. . . . • . -

7-1

Related Signals
S1« :I'm

7.1 Related Signals

7-2

Many of the TMS34020's pins are devoted to host-interface functions; the
TMS34020 provides a 27 -bit address bus, 4 byte-select signals, and 7 control
lines. Chapter 2 describes the host-interface signals in detail; the signals are
summarized below for your convenience.

Signals

HA5-HA31

HBSO-HBS3

HOST

HRDY

HREAD

HWRITE

Descriptions
is the 27 -bit host address input bus. The host uses this
bus to identify the address of a word in local memory
that it requires access to.

are the 4 host byte-select inputs. The host uses the
HBS signals in conjunction with HA5-HA31 to access
specific bytes in a selected word.

is the host chip-select signal. Driving this signal active
low allows the host processor to access the
TMS34020's local memory or 110 registers.

I/O

is the host data-strobe signal, driven low by the a
TMS34020 during host read accesses. Data is strobed
into the transceivers on HDST's rising (trailing) edge.

is the interrupt signal that allows the TMS34020 to a
send interrupt requests to the host processor.

is the host output-enable signal. The TMS34020 drives a
this signal active low to allow the transceivers to output
data onto the TMS34020's local address/data bus
(LADO-LAD31) during host writes.

is the host ready signal that informs the host processor a
when the TMS34020 is ready to complete a host-ini­
tiated access cycle.

is the host read signal. Driving this signal active low
allows the host processor to read the contents of a
selected location in the TMS34020's local memory or
110 registers. The TMS34020 latches the requested
data into the transceivers.

is the host write signal. Driving this signal active low
allows the host processor to write the contents of the
transceivers to the selected location in the
TMS34020's local memory or 110 registers.

Communicating with a Host Processor

Related HP/'J/,c::r'pr,c::

7.2 Related Registers

Several of the TMS34020's I/O registers provide you with control over various
aspects of the host interface. (Chapter 4 provides detailed descriptions of all
the 110 registers.)

Note:

The TMS34010 interface accessed certain I/O registers over its HAD bus.
The TMS34020 does not access I/O registers this way. You must access an
I/O register by its defined memory address within the TMS34020's
local-memory space. For details, refer to Section 7.4 on page 7-7.

Five I/O registers are associated with the host interface:

Q HSTCTLL and HSTCTLH control host-interface functions.

Q HSTADRH, HSTADRL, and HSTDATA provide compatibility with the
TMS34010.

The remainder of this section describes these registers, identifying the bits that
are associated with host-interface functions. In the pictures of the registers,
shaded areas identify bits that have no host-interface functions.

address: COOO 0100h
4 0

Note: For a complete illustration and description of HSTCTLH, see Chapter 4.

bit4 .'":. bit 5 & 6

+;ti+
bit 7 ."M.
bitS

IUMM-
bit 9

'II'M
bit 10

When the TMS34020 is halted, it sets the HACK (halt acknowledge) bit.

The HLB (host last byte) bits form a 2-bit code. This code informs the
TMS34020 which byte of a word the host accesses last.

Setting the RST (reset) bit causes the TMS34020 to execute a reset.

The host processor can set the NMI (nonmaskable interrupt) bit to interrupt
TMS34020 execution, causing the TMS34020 to execute an NMI routine.

When the NMIM (NMI mode) bit equals 0 and an NMI occurs, the TMS34020
saves the context of the interrupted program. If NMIM=1, the TMS34020 does
not save the context when an NMI occurs.

When HINC=1, the HPFW (host prefetch after write) bit controls whether the
TMS34020 prefetches (prereads) the next word in memory after a host read
or write.

7-3

Related Registers

..
bit 12 ..
bit 14 ..
bit 15

Setting the HINC (host increment) bit enhances the host's ability to access
blocks of TMS34020 memory; when HINC=1, the TMS34020 increments a
host-supplied address and prefetches the contents from this new location .

Setting the CF (cache flush) bit flushes the contents of the TMS34020 instruc­
tion cache. The host processor can force the TMS34020 to execute new, down­
loaded code by flushing old instructions out of the cache .

The host processor can halt the TMS34020's CPU by setting the HLT (halt
TMS34020 program execution) bit.

Note: For a complete illustration and description of HSTCTLL, see Chapter 4.

II1II
bits 0-2

lIB
bit 3

1&11
bits 4-6 ..

bit 7

bits 10 & 11

Im!!D
bit 12

7-4

The MSGIN (message in) bits buffer a 3-bit interrupt message from the 110st
processor to the TMS34020.

The host processor can set the INTIN (input interrupt) bit to 1 to generate an
interrupt request to the TMS34020.

The MSGOUT (message out) bits buffer a 3-bit interrupt message from the
TMS34020 to the host.

The TMS34020 can set the INTOUT (output interrupt) bit to send an interrupt
request to the host processor.

An in-circuit emulator can use the EMR (emulator request) and EMG (emulator
grant) bits as a mechanism for changing information and coordinating activity
with the host processor. The information that these bits provide depends on the
application, the host processor, and the software executed by the emulator.
The emulator can set EMR to signal the host that an activity is beginning. The
host can then set the EMG bit to acknowledge this. When the activity ends, the
emulator signals the host by clearing EMR; the host then clears EMG. Only the
emulator should modify EMR, and only the host should modify EMG. If you are
not using this protocol with your emulator, these bits should always = O.

If you are using an in-circuit emulator, setting the EMIEN (emulator host inter­
rupt enable) causes the exclusive-OR of EMR and EMG to interrupt the host
by asserting a low level on the HINT pin.

Note:

If you are not using an in-circuit emulator, clear the EMG, EMR, and EMIEN
bits to o.

Communicating with a Host Processor

.:1;0.
bit 13

+":,,.
bit 14

..
bit 15

The TMS34020 sets the H RYI (host retry interrupt) bit if a retry occurs on a host
access. If HBREN=1, setting HRYI sends an interrupt request (via HINT) to the
host processor.

The TMS34020 sets the HBFI (host bus-fault interrupt) bit if a bus fault occurs
on a host access. If HBREN=1, setting HBFI sends an interrupt request (via
HINT) to the host processor .

When the HBREN (host bus-fault/retry interrupt enable) bit is set, setting HRYI
or HBFI causes an interrupt request to be sent to the host processor.

The TMS3401 a's host interface used the HSTADRH, HSTADRL, and HSTDA­
TA registers for transferring address and data information.The TMS34020's
host interface does not use these registers. The TMS34020 maintains
these registers in the 1/0 register map to provide compatibility with TMS3401 a
software that uses these registers for passing information to the host interface.
Because the TMS34020's host interface does not use HSTADRH, HSTADRL,
or HSTDATA, any additional characteristics (such as autoincrementing) pres­
ent for the TMS3401 a are not implemented for the TMS34020. For more infor­
mation about the TMS34020's treatment of these registers, refer to Section
1.6, Compatibility Between the TMS34020 and the TMS3401 0, on page 1-16.

7-5

A Basic Block Diagram for the Host Interface
::'~~~;~W$'~-W' .:.rw..:xx.::..:P'*''M:"':"·:::·:"''~::XX:~~XZ:;X:;:::::::::::;:;-'::;X~:"~S:;:;:;:::;ZZ::::X:::::":::::;::::~~~~::XX::::~.::r..::!::::::::::::;:;~~~::;:;:::,-::-;

7.3 A Basic Block Diagram for the Host Interface

In orderforthe TMS34020 to share data with a host processor, you must place
bidirectional latching transceivers (such as the 74ALS652) between the
TMS34020's local address/data bus and the host's data bus.

Figure 7-1. Block Diagram with a Host System, a TMS34020, and External Transceivers

7-6

Note:

Throughout this chapter, all references to transceivers refer to the external,
bidirectional, latching, bus transceivers shown in Figure 7-1.

Communicating with a Host Processor

Basic Communication Between the Host Processor and the TMS34020

7.4 Basic Communication: How a Host Processor Reads from
and Writes to TMS34020 Local Memory

The host processor initiates reads and writes through the TMS34020's host
interface. The host controls the read and write cycles through a 2-step process:

Step 1: Provide address and byte information.

o Identify a long (32-bit) word address on the HA5-HA31 bus.

o Activate the appropriate HBS signal(s) to identify a specific byte
(or bytes) within the selected word. A host processor accesses
data in groups of 1 to 4 bytes. The host byte-select signals tell
the TMS34020 two things:

.. How many bytes to access in the selected word and
• Which bytes to access.

Figure 7-2 (page 7-8) shows several examples of how HBSO­
HBS3 determine which bytes of a long-word are accessed.

Step 2: Set the HCS, HREAD, and HWRITE control signals.

Q If the host wants to read from an address, it asserts both HCS
and HREAD active low.

o If the host wants to write to an address, it asserts both HCS and
HWRITE active low.

The host can assert or deassert the HCS, HREAD, and HWRITE
control signals in any order. The last control signal that becomes
active begins the access; the first control signal that becomes inac­
tive ends the access. The control signal that begins or ends an
access is referred to as the strobe for the access.

The address and byte selection information becomes valid on the falling edge
of HCS.

Note:

HREAD and HWRITE should not be active low simultaneously if HCS is also
active low or if all 4 HBS signals are active. Having both signals low under
these conditions could cause unpredictable host-interface behavior.

7-7

Basic Communication Between the Host Processor and the TMS34020

Rgure 7-2. How a Host Processor Uses the Host Byte-Select Signals
to Access Data in TMS34020 Memory

Word Selected on HA5-HA31:

. 32 bits _ I-r~~-·-----...,-r-_-_-...,;a::.:c:.rce::.,:s:..s ---r-&~
I

Select the 32 bits starting at byte 0 by
driving these HBS lines:

\ ,

Select the 16 bits starting at byte 0 by
driving these HBS lines:

Select the 16 bits starting at byte 2 by
driving these HBS lines:

Select the 8 bits starting at byte 0 by
driving these HBS lines:

Select the 8 bits starting at byte 1 by
driving these HBS lines:

Select the 8 bits starting at byte 2 by
driving these HBS lines:

Select the 8 bits starting at byte 3 by
driving these HBS lines:

Note: All other combinations of HBSG-HBS3 are valid as well.

7.4.1 How a Host Processor Requests a Read Cycle

7-8

When a host processor wants to read data from a TMS34020 memory location,
the host must

1) Provide address and byte-select information over HA5-HA31 and
HBSQ-HBS3, then

2) Assert HCS and HREAD (in either order).

The host must keep HREAD and HCS active until the HRDY signal becomes
active; when HRDY becomes active, the host can terminate the access and
read the data from the transceivers.

The host must provide the transceivers with an output-enable signal that tells
the transceivers to transfer their information to the host's data bus. No matter
what size bus the host processor has, the transceivers must be capable of han­
dling 32-bit information (for example, you could use four 8-bit transceivers).

Communicating with a Host Processor

Basic Communication Between the Host Processor and the TMS34020 ===_""''''''' _______ ===~-::m=::::g=m~=~:::':m~::xmmm~:::'ms~mmsmm:::':::':::'f~f

Regardless of how many bytes the host requests, the TMS34020 latches the
entire 32 bits of data into the transceivers; the host's controls must enable the
appropriate transceivers to select the desired bytes.

7.4.2 How a Host Processor Requests a Write Cycle

When a host processor wants to write data to a TMS34020 memory location,
the host must

1) Provide address and byte-select information over HA5-HA31 and
HBSQ-HBS3, then

2) Assert HCS and HWRITE (in either order).

The host must keep HWRITE and HCS active until the HRDY signal becomes
active. When HRDY becomes active, the host can terminate the request and
latch the data-to-be-written into the transceivers.

The TMS34020 uses a byte-write feature that ensures that the host modifies
only the selected bytes. The host must correctly align the data in the trans­
ceivers. The TMS34020 ignores the transceiver contents of unselected bytes.

7.4.3 Local-Memory Faults and Retries

It is possible, in some applications, that the host may request access to loca­
tions in the TMS34020's local memory, which may cause a retry or bus fault.
During the local-memory access initiated in response to a host request, a retry
or bus-fault completion code could occur on the LRDY or BUSFLT pins,
respectively.

I;;i If a host access causes the local memory to generate a retry, the
TMS34020 automatically reschedules the access. The HRDY signal is not
asserted until the TMS34020 successfully completes the access. In addi­
tion, the TMS34020 sets HRYI [HSTCTLH] to indicate to the host that the
retry occurred. No further host accesses can be made until the retried
access completes successfully.

I;;i If a host access causes the local memory to generate a bus fault, the
TMS34020 sets HBFI[HSTCTLH] to indicate to the host that the bus fault
occurred; the TMS34020 takes no further action. HRDY is asserted as if
the access terminated normally. It is then the host's responsibility to take
the appropriate action (if any) to clear the cause of the bus fault. (The
appropriate action depends on your application.)

Once HRYI or HBFI is set, it remains set until the host or the TMS34020 explIC­
itly clears it.

Setting HBREN [HSTCTLH] to 1 causes the TMS34020 to assert the HINT pin
active low if either HRYI or HBFI is set. This allows a retry or bus fault on a host
access to directly interrupt the host.

7-9

Features That Improve Performance of the Host Interface

7.5 Features That Improve Performance of the Host Interface

This section describes several features that increase the performance and effi­
ciency of the host interface.

7.5.1 Prefetching Data from the TMS34020's Local Memory

Prefetching (or prereading) information is an optional feature that can speed
up the transfer of information. Instead of waiting for the host's next request, the
TMS34020 fetches data from the next consecutive long-word address. The
new data is fetched as soon as the current access completes and is placed in
the transceivers in anticipation of the host's next request. Prefetching is benefi­
cial for both reads and read(modify}writes:

Q After reads, prefetching enables efficient reads of contiguous memory
locations.

Id After writes, prefetching enables efficient read(modify}writes of contigu-
ous memory locations.

You can enable the prefetching feature by setting H INC [HSTCTLH] to 1. Once
this is done, you must choose to prefetch information after reads or after writes.
You control this by setting or clearing HPFW[HSTCTLH]. Figure 7-3 shows
how different combinations of HINC and HPFW values affect prefetching.

Figure 7-3. How the Values of HINC/[HSTCTLH]] and HPffl/[HSTCTLH]] Affect Prefetching

~~~~~~ ____ -L ____ ~~~~~~~~~~~ Prefetch after reads 

The TMS34020 has an address-comparison feature that ensures the host 
interface always accesses the correct location. Figure 7-4 shows how you can 
enable the address-comparison feature .. 

Figure 7-4. How the Value of HINC/[ HSTCTLH]] Affects Address Comparison 

7-10 

No address 
comparison 

Enables address 
comparison 

Communicating with a Host Processor 





Features That Improve Performance of the Host Interface 

Although a non-32-bit host must make multiple read requests, the TMS34020 
reads the location only once-on the first access (or aftet the designated last 
byte of the previous access). From this single read, the TMS34020 stores all 
32 bits of data from the requested long-word address into the transceivers. 
Subsequent host accesses to read the remaining bytes within the word do not 
. generate local-memory accesses because the requested data is already in the 
transceivers. Only after the designated last byte is accessed is a local-memory 
access initiated; this copies the data from the next 32-bit location, preparing 
for the next host access. The TMS34020's single-read feature minimizes the 
extra time required by a non-32-bit host to read an entire long-word. 

, 

Note: 

The TMS34020 ensures that the host always reads the current contents of a 
memory location. Each read that follows a host-initiated write requests a local­
memory cycle to explicitly copy the location's contents into the transceivers. 
This happens even if a previous read copied this address into the transceiv­
ers. Thus, while using prefetch-after-write (HINC=1, HPFW=1) with a 
non-32-bit host, each write causes a prefetch, regardless of whether or not 
the write was to a designated last byte. If the write was not to the designated 
last byte, the same location is prefetched again. Only after the last byte is writ­
ten is the address incremented and the next location prefetched. 

If prefetches and address-comparison are disabled, each host read request 
initiates a local-memory read cycle. This cycle copies the contents of the 
requested address into the transceivers, even if the data from that location is 
already stored in the transceivers. 

7.5.2 Autoincreme.nting (Implicit Addressing) 

7-12 

The TMS34020's autoincrementing feature allows a host processor to address 
a contiguous block of local memory by specifying the address of only the first 
word in a block. The TMS34020 automatically generates all subsequent ad­
dresses and byte selects. A host can access contiguous blocks of words 16 
bits or 32 bits at a time. 

To use autoincrementing, the host asserts HCS active low at the beginning of 
the first access, providing the address and byte selects just as it does for a reg­
ular access. The host must maintain HCS active low throughout; the 
TMS34020 enables autoincrementing when it detects that HCS remains low 
between the end of the previous access and the beginning of the current 
access. The host then uses HREAD or HWRITE as a strobe to request access 
to subsequent addresses. 

When auto incrementing is detected, the host interface uses the value of 
HBSQ-HBS3 to determine whether the host is accessing the block 16 bits or 
32 bits at time. If all 4 byte selects are active, the TMS34020 assumes that the 
host needs only 1 access to completely read or write a 32-bit location. If only 

Communicating with a Host Processor 



Features That Improve Performance of the Host Interface """""""''''''''''''''''' ... ==, .. w· ... -=·.wzw=''" ... ·WPW==w'''''·'w"''' ...... ·w==='''''w,,"' """""""""""""'"'"'""~~ rut'm1 .N#$:"«W.SW~$$~t::;-t"·t' ............ :Z:W::X:Z:X~ 

2 byte selects are active (HBSO and HBS1, or HBS2 and HBS3), the 
TMS34020 assumes that the host requires 2 accesses to completely read or 
write a 32-bit location. Figure 7-6 shows valid byte-select combinations. 

Figure 7-6. Legal Host Byte-Select Combinations for Autoincrementing 
Word Selected on HA5-HA31 : 

. 32 bits _ I-r .. ~::::::::::::::::~::::::::=..::a:::cc"e:::s:::..s~~~~~.:.&--1~ I 

Select 32-bit autoincrementing by driving 
these HBS lines: 

Select 16-bit autoincrementing, starting 
at byte D, by driving these HBS lines: 

Select 16-bit autoincrementing, starting 
at byte 2, by driving these HBS lines: 

Note: All other combinations of HBSQ-HBS3 are invalid for auto incrementing 

The TMS34020 latches the value of HBSO-HBS3 at the falling edge of HCS. 
If the next access will be made to the subsequent 16-bit or 32-bit location, the 
TMS34020 automatically generates the byte selects for the access by swap­
ping its internal copy of the byte selects after each access. Thus, if the latched 
value of HBSO-HBS3 is 00112, then the internal copy is swapped to 11002 
at the beginning of the next access. This in turn is swapped back to 00112 at 
the beginning of the following access, and so on. Similarly, if the value of 
HBSO-HBS3 latched at the falling edge of HCS is 11002, it is swapped to 
00112 at the beginning of the next access. In this way, the internalcopy of the 
byte selects alternates between selecting one 16-bit word and the other. 
Obviously, if HBSO-HBS3 is 11112, swapping produces the sarrie value. 

Just as for regular accesses, the TMS34020 uses the HLB code to determine 
when the host has completely accessed a 32-bit word. It does this by compar­
ing the internal copy ofthe byte selects with the HLB bits. The TMS34020 incre­
ments the address only after the host accesses the designated last 16-bitword. 

Figure 7-7 shows how HINC[HSTCTLH] and HPFW[HSTCTLH] control how 
the address is incremented and when the byte selects are swapped. 

Figure 7-7. How the Values of HINCf[ HSTCTLH]] and HPfII1if[ HSTCTLH]] Affect Autoincrementing 

No autoincrementing 

Address incremented after each access to the last 
16-bit word. Byte selects swapped after each access. 

Address incremented after each write to the last 16-bit 
word. Byte selects swapped after each write. 

7-13 



Features That Improve Performance of the Host Interface 

7-14 

The following list describes the byte-swapping operation for different cases. 

[Ji Autoincrementing for reads and writes. 

HINC=1 HPFW=O Host can read & write contiguous locations 

The TMS34020 swaps the internal copy of the byte selects after each ac­
cess. After each access to the designated last 16-bit word, the TMS34020 
swaps the the byte selects, then increments the address. If the access is a 
read, the next 32-bit location is prefetched into the transceivers. In this 
mode of operation, all autoincrementing accesses to a contiguous block of 
addresses should be of the same type-either reads or writes, but not a 
mixture of the two. 

[Ji Autoincrementing after writes only. 

HINC=1 HPFW=1 Host can read-modify-write contiguous locations 

The TMS34020 swaps the internal copy of the byte selects only after 
writes. After each write to the designated last 16-bit word, the address is 
incremented, and the next 32-bit location is prefetched into the transceiv­
ers. No modifications to the address or the byte selects are made after 
reads, so the host writes back to the same location. In this mode of opera­
tion, the host should perform read and write requests alternately; the first 
access can be either a read or a write. Note that in 16-bit autoincrement 
mode, a location is read only once. Because the sequence of reads and 
writes is predefined, there is no need to reread the 32-bit location after the 
first write. 

[Ji No autoincrementing. 

HINC=O HPFW=don't care Host can't autoinerement 

It is not anticipated that this mode of operation will be very useful. However, 
for completeness, the response to autoincrement accesses while HI NC=O 
is described below. 

• For writes, the TMS34020 accesses the same 32-bit address on 
each host request. If 16-bit auto incrementing is selected, the byte 
selects are still swapped, so successive accesses oscillate between 
the two 16-bit words within the specified 32-bit location. 

• For reads, the TMS34020 copies all 32 bits of data from the specified 
location into the transceivers during the first access. On subsequent 
reads in autoincrement mode, no new data is transferred into the 
transceivers. 

In this mode, all accesses should be of the same type-either reads or 
writes, but not a mixture of the two. 

Communicating with a Host Processor 



Features That Improve Performance of the Host Interface 
:::~~:::-"",,,,,u .... ' m ............ " ................... a::-«.;: .... m;;;;r. .... :::::::-~~::..-:::::~¢".$"'& .... " ............ ·:::~~;:::::-.:::::x::x:;~.;:~:;::::::~~~::::::xf.;;:;:;:~;:;:;:;:;.-::: .... m:;;; .... f.:;~ .... ~f.f.f.~~~~~~~~~~~~~~~ .... ::~f.f.~~::::~~::~~:::u:::::;~~::::::f.::xr.f.:::.::;.';:~::::~~..x::x:.'X:::.:::::xz::x:::::!!"~::::::::;:;f.:::;:::-~~:x:~mx:::;:;:;:;~,~::;.~:f.:~;:;:;;;x;.-:;:;:::;:!:::;:;:;:~ 

If the host wants to access an address that is not contiguous with the block, 
it must deassert HCS and provide a new address just as it would for a regular 
access. 

When autoincrementing, the actual local-memory cycles performed by the 
TMS34020 in response to host requests do not differ from those performed 
when not autoincrementing. Autoincrement accesses offer no throughput ad­
vantage compared to similar non-autoincrement accesses. 

7.5.3 The TMS34020's Default Memory Cycle 

When no other memory requests are pending, the TMS34020's memory con­
troller executes a state similar to the address subcycle of a host-initiated 
local-memory cycle. This is known as the host-default state. The only differ­
ence between the host-default state and the address subcycle is that ALTCH 
and RAS do not go active. If a host request is synchronized while a host-default 
state is being executed, the host-default state is converted into a regular host 
access by internal control logic, which causes ALTCH and RAS to go active. 
This action reduces the cycle time required for host-initiated memory cycles 
by one LCLK cycle because it allows the first half of the host access to occur 
in parallel with synchronization of the request. 

The address output on LADO-LAD31 and RCAO-RCA 12 during a host­
default cycle is the contents of the internal register used for storing the address 
presented by the host. If the host-default cycle is converted into a real host-initi­
ated memory cycle, then the synchronization delays inherent in the host-inter­
face logic ensure that the address output is the correct one for the access. 
However, at other times (when the host-default memory cycle is not converted 
into a real host access) the address output on LADO-LAD31 and 
RCAO-RCA 12 is not valid. Because ALTCH and RAS do not go active in this 
case, this should not matter. 

7-15 



Completing Host Accesses 
s $S·;$$Mm~~~~.q;mw..::~..::~m~~~,«;xx::x::xxxm::x::~~::z::m::::::,..x~~~~::::m:;m~~::::?".a:::;::::::s::~::x::m:;:;.;~m::::::m:.~..:::: 

7.6 Completing Host Accesses 

When the TMS34020 is ready to complete a host-initiated access, it asserts 
HRDY active high. The host must not deassert its request strobe until HRDY 
becomes active. By default, the TMS34020 maintains HRDY in an inactive-low 
state. After the host terminates a request, HRDY becomes inactive low again. 

Various conditions govern when HRDY can become active-high. These are 
described in the following sections. 

7.6.1 Activating HRDV for Host Reads 

When prefetches are disabled and the host requests a read to any address, 
or when prefetches are enabled and the host requests a read to a location other 
than the one currently copied into the transceivers, the TMS34020 fetches the 
data and places it in the transceivers. 

The leading edge of this type of host request triggers the TMS34020 to access 
the requested address. During the last machine state of the memory access, 
HRDY becomes active. This happens while the data is being transferred into 
the transceivers from the local memory and HDST is active low. The data is 
not guaranteed valid in the transceivers until HDST becomes high. The host 
can deassert the read-request strobe as soon as HRDY goes active, but must 
not read the data from the transceivers while HDST is low. HRDY is asserted 
before the data is valid so that it is possible for the host to make requests suffi­
ciently close together that the maximum throughput of the TMS34020's 
local-memory interface can be used. This is discussed in more detail in Section 
7.9.2. 

7.6.2 Activating HRDV for Host Writes 

7-16 

When the host requests a write, the TMS34020 asserts HRDY when it is ready 
for the host to deassert its write-request strobe. This trailing edge of the host 
write-request triggers the local-memory cycle required to perform the write, 
which therefore occurs after the host terminates its request. The data for the 
write must be latched into the transceivers and valid before HOE becomes 
active low. This could be as few as 1.25 LCLK cycles after the host write-re­
quest strobe is deasserted. 

If the host requests another write, the actions taken depend on whether any 
access previously initiated by the host is still pending: 

1:;;1 If no incomplete memory accesses are pending or in progress from the 
previous host write, HRDY immediately becomes active and the host can 
latch new data into the transceivers. 

1:;;1 If the previous host write is not finished, HRDY remains low until the last 
machine state of the memory access that writes the contents of the trans­
ceivers to the requested memory location. HRDY becomes active while 

Communicating with a Host Processor 



Completing Host Accesses 
;(.~~~.x~m)~~~::::::::::::~:<~)::~~::::~~::::~X:::::::::;~~f'::::::X::X)::::::~'::~~~~~)~~.:''::*'ili::::f.x:;--..::;m:;::~::x::::::::~~~~~~~~~,;:;~~::x~~::::::::::~:::::::~::~-::~~::::~.:'.::~::::::~~::::::::)~mf~:~~::::::::-;::::~f.:"'::::::::::~)~~::::~)::~::::~~::f';;~~~::::~)))::~~~~)~N~~~~~::::f«'::::::~::~::~~~~::::::::~~~~::::::::::::f~:~~:;;;~::~:::::~:::::::~:;::~~::::~:::::~;~~~~~~~~~~~~:;::::f~;~::::~::~):::::;::::~::::::~:::;:;)::: 

HOE is still active low, enabling the contents of the transceivers onto 
LADQ-LAD31. The host can deassert the write-request strobe as soon 
as HRDY goes active, but must not latch new data into the transceivers 
while HOE is low. HRDY is asserted while the previous data is still being 
written so that it is possible for the host to make requests sufficiently close 
together that the maximum throughput of the TMS34020's local-memory 
interface can be used. This is discussed in more detail in Section 7.9.2. 

7.6.3 Activating HRDY for Host Reads and Writes after Prefetches 

When prefetching is enabled (HINC=1), the trailing edge of the host's read­
request strobe (if HPFW=O) or write-request strobe (if HPFW=1) on an access 
to the designated last byte of the current location automatically initiates a pre­
fetch of the next location. If the host makes a request while a local-memory 
cycle to prefetch data into the transceivers is in progress, HRDY cannot 
become active high until that memory cycle is almost complete. It is likely, if 
you are trying to use the maximum throughput of the TMS34020's 
local-memory interface, that the prefetch memory cycle will not have com­
pleted when the host makes its next read or write request. 

Here are the rules that govern when HRDY becomes active. 

Q Writes. If a prefetch is pending or in progress when the host requests an 
access, HRDY remains inactive until the last machine state ofthe prefetch. 

Q Reads. The address to be read is compared with the address of the loca­
tion that is currently copied into the transceivers. The action taken depends 
on whether the addresses match and whether the prefetch has completed: 

• Addresses· match, prefetch complete. HRDY immediately 
becomes active. Because the requested data is already in the trans­
ceivers and HDST is already inactive-high, the data is valid immedi­
ately. 

• Addresses match, prefetch in progress. HRDY becomes active in 
the last machine state of the prefetch while HDST-is still low. The data 
is valid in the transceivers as soon as HDST becomes high. 

• Addresses do not match, prefetch complete. The host initiates 
another read to the required location before HRDY becomes active. 

• Addresses do not match, prefetch in progress. The host interface 
waits forthe prefetch access to complete. Then it initiates another read 
to the required location before HRDY becomes active. 

In the second, third, and fourth cases described above, HRDY becomes 
active while HDST is low. HRDY is asserted before the data is valid. This 
allows the host to make requests quickly enough to use the TMS34020's 
maximum local-memory bandwidth. This is discussed in more detail in 
Section 7.9.2 (page 7-35). 

7-17 



Timing Examples 

7.7 Timing Examples 

7-18 

This section contains timing diagrams that illustrate the host interface's 
response to various host requests. Each host-access request to a new 32-bit 
location in the TMS34020's local memory or 110 registers generates a 
local-memory cycle. The prefetch mechanisms described in Section 7.5.1 
(page 7-10) also generate local-memory accesses. 

Each diagram shows the host interface signals at the top. The buses marked 
DATA (in) and DATA(out) indicate the validity of the data in the transceivers for 
host writes and reads, respectively. 

Below the host signals, a scale marks each quarter phase of a TMS34020 
machine state (01-04). Below this scale are the local-memory buses and 
control signals. This illustrates the relationship between the host requests and 
the resulting local-memory cycles. 

All the diagrams assume that: 

~ The local-memory interface is always immediately available to the host. 

I:l There are no wait states (unless otherwise noted). 

With the exception of HRDY, no timing relationships are implied between the 
host-interface signals above the scale and the local-memory signals below it. 
However, in order to achieve optimum performance, the synchronization time 
between the host interface and the local-memory interface should be mini­
mized. The local-memory access can be initiated in the next machine state 
only if the host request strobe that initiates the local-memory access occurs 
before the fourth quarter phase (04) of the current machine state. If the strobe 
occurs after the beginning of 04 of the current machine state, the earliest that 
the access can begin is two machine states later. The timing diagrams illustrate 
this synchronization (Section 7.9, page 7-34, discusses this in more detail). 

Some of the timing diagrams show HCS being asserted (or deasserted) before 
HREAD or HWRITE; some show HREAD or HWRITE being asserted (or deas­
serted) before HCS. This emphasizes that any assertion order is allowed and 
implies no relationship between the assertion order required for the request 
and the nature of the request. The signal that begins (or ends) an access and 
that initializes a local-memory cycle for the host is referred to as the host 
request strobe for the access. 

Communicating with a Host Processor 



Timing Examples 
:XXili~X~~~~~~xx~.&zx>z~~~~z~~zz~>~>~>zz~>~>~>~»»»>zzzz>>~;;:;;;:;»mzzP''&:~»»ili»Z»»»x»»mW'';:»iliZXZZZ»»»»»»ili>z>z»>:.,::»»»»»»zzm»r,,;:zz-;»Z>-;»>-;>~;>$»»»ZZZ>@"z.,:.,:m»»>::-;x,,:,,:z,,:,,:,,:,,:»»,>X»>":":":":":":":":":":":$:.'X":ilim.,:}'V,.;;.,:.,:.,:.,:.,:xX: 

Figure 7-8. Single Host Read Cycle; HCS Used as Strobe 

HNHBS~ 

HCS ~~ ______________ ~;--

HREAD """'\ r= 

HRDY ____________________ r-\... 

D~A -------------·--~d-------~ (out) __________ -'"OWIJreWv'QIII/,IJsiU,reWja .... _______ 1\........YWlII 

HDST 

LAD 

CAMD 

RCA 

SF 

TRlQE 

DDIN 

LRDY 

BUSERR 

RO 

~Local-Memory Host Read Cycle~ 

i I I I I I I I I I i 
~41~1~IOOI~I~I~IOOI~I~1 

I I I I I I I I I I 
17 1 I I I I I I I~ 

I I I I 1\: I I I I 

~ +-~-~-~~ 

t-r-+--I--+-I----,-I ~ I I r+-l 
I I I I· I I 
I I 11/ I~ 

L..lo.--i----i-~Ir--+-I ---r---fi I --rJ 
I II I I F-j 

I I 
I 

I~ Wi 
I 1 I 

I T I 

I 
II 

I 

Notes: 1) Prefetch after read is disabled (HPFW = 1 or HINC = 0). 
2) This figure refers to host reads of TMS34020 local memory and does not include host reads of 

TMS34020 I/O registers_ 

Figure 7-8 shows a simple read cycle; the host is accessing a location in local memory_ The leading edge (high-to­
low transition) of the host request strobe initializes the local-memory cycle. 

7-19 



Timing Examples 

Figure 7-9. Single Host Read from I/O Registers; HREAD Used as Strobe 
HM-tBS~ 

HCS ~~ ________________ --J~ 

HREAi) ~ r-
HWRITE 

HROY _____________________ 1\... 

OA~ -_::::::::::::~~~~i;C:::::::~ (out) preyjo"s read "--lCaIla.. 

HOST 

LAD 

CAMO 

RCA 

SF 

ODIN 

LROY 

BUSERR 

RO 

f4"- Local·Memory Host Read 1/0 Cycl~ 

1 I I I I 1 I I I I I 
1~lrul~lool~lrul~lool~lrul 
[J 1 I I I I I I I I I 

b""""~ I i I I 1\ I I I 1 * -1 

1 

~~~~~~~r-~i 

I I,J
I~

'-I--+-+-+--l'1 I I
~~~~ I~ 

I I 
I 1 
1 1 
1 I 
I I 
I I 
I 1 

v 1\ 
r I I I 

I 
!~ ~l 

I I 

! T I 

I 
I 

I I 

" I I, 
1 I I I I 1 1 1 1 1 \. I I 

I I I I I I I I I I 

Note: Prefetch after read is disabled (HPFW = 1 or HINC = 0). 

Figure 7-9 shows asimple read cycle; the host is accessing an 1/0 register. The leading edge of the strobe initializes 
the local-memory cycle. Comparing this figure to the previous figure, you'll see that to the host, there's little differ­
ence between accessing an 1/0 register and accessing the rest of the local memory. However, some of the 
local-memory strobes are different; CASO-CAS3, ODIN, and TR/QE are not activated because the data is trans­
ferred from within the TMS34020, not from the local memory. 

7-20 Communicating with a Host Processor 



Timing Examples 
::''' ...... ",,'''' ""U'u""'''"x.::W,M;XZ'..::x-'..::~:;z~~=~::s.x::XX::XX$('''''''''''''~'''''''''''''''f'''''''''''~$( ...... "uu .. %'uuu .. " .. uu.::::~::::::::xw..::~.x::~x::.::::.xx:'~~::u::::x:'~.::~~f~~~::x:::'.::::x~::::.::::::~ .. ~~( ... $(~.:::f ... w, .. %nu""""uUUU'''''''':;Xz:',x::'::::::f::x .. :;xm 

Figure 7-10. Single Host Read with One Wait State; HCS Used as Strobe 
HAlHBS~~ 
HCS~~ ______________________ ~'--

HREAD ~ C 

HRDY ______________ ..... 1\... 

D~A ________ ~pre~yi~QlJ~Sr~Aa~d ______ ~~ 
(out) 

HDST 

LAD 

I" Local·Memory Host Read Cycle with One Wait State _I 
I I I I I I I I I I I I I I I 
1~1~1~IOOI~I~I~IOOI~I~I~IOOI~I~1 
V I I I I I I I I I I I I I I 
~I I I I I I III I I I~ 

I I I I 1\ I I I I I I I I \---.-L IIII II 
~ +-I-~-+-t--1-+-+--: 

CAMD 

I 
RCA 

TRiQE 

DDIN 

LRDY 

SF 

~~r-~~~-.~~~._.__.~I I 
I I I I,J 

I-r--ir---l~1 I Ir,-l 
I''--t-I-Ir--+---t--t--t---I---r--t'l I I 

1-7-+--+--+-1 --1..1, l;-t--j 
I I- I I I 
I I I I~ 
I I I ~-r--!-~-!---i'l I I 
I I I I I I I 
I I I\. I I ----1-...J 
I I I- I I'TI 
I I I IJ I\..J......J 
I I I I 1'--1 
I IJ 1 I I 1\:-1 V r 1 1 1 1 J 

I~ 0. 1 

I I 1 I 

1 I I 

BUSERR 

I T I I 
I 

RO 
I I I 1 

II 

Notes: 1) Prefetch after read is disabled (HPFW = 1 or HINC = 0). 
2) This figure refers to host reads of TMS34020 local memory and does not include host reads of 

TMS34020 I/O registers. 

Figure 7-10 is identical to Figure 7-8 except that the memory cycle includes one wait state. Both figures show a 
simple read cycle in which a host processor is accessing a location in the TMS34020's local memory. The leading 
edge of the host request strobe initializes the local-memory cycle. 

7-21 





Figure 7-12. Back-to-Back Host Read Cycles with Implicit Addressing; HREAD as Strobe 
HAlHBS. 

HCS 

HREAD 

HWRITE 

HRDY 

DATA 
(out) 

HOST 

LAD 

CAMD 

RCA 

SF 

ODIN 

LRDY 

BUSERR 

RO 

~ c 
~ ~--------------~I \\-____ ..Jr-

----------------~~\-----------------~~ 
________ ~p~my~iQ~!J§~m~ad~ ____ ~X~ __ ~--~lS~m~ad~y~alj~d ______ ~ 

!.---Local-Memory Host Read Cycle .. 14 ' Local-Memory Host Preletch Cycle----.i I 
~4Irul~IOOI~lrul~lool~lrul~IOOI~lrul~IOOI~lrul 
~ l I I I I I I I I I I I I I I I I I Un_: I 1 1\ I I II I : I I 1\ I : :rr1 
~ ~-~-~i- +-~-~-~~ 

1 I I I I I I I 1 I 
I I I I I I 1 I I I I h--+--+--""--~~I\ I j 1\ I r-;-"'j 

I I I I I I'-...r..j--+-I'I I I 
I II I ,~-t---I\II" I I ,~+--i\II"-H1 ~+-~-T'~~~~I' '~'~-+--Ir-+I--r-~I' 

1 I i-r-';--~I\ I I 1 I I/r-;I--+--;---i-I --"IC~:J 
f 1 I I I I 

I 
I~ Wi I~ WI I 

1 I -:- i 

I T T ! 

I I I I 

Notes: 1) Prefetch after read is enabled (HINC = 1 and HPFW = 0). 
2) This figure refers to host reads of local memory and does not include host reads of I/O registers. 

Figure 7-12 shows 2 back-to-back read cycles; the second location is prefetched after the first location is read. The 
trailing edge of the host request strobe initiates the prefetch. Just as in Figure 7-11, the prefetch relaxes the timing 
of the request strobe. Figure 7-12 also illustrates implicit addressing. Although not explicitly shown, the value on 
HBSG-HBS3 must be 11112. 00112. or 11002_ The initial address is the one supplied at the falling edge of HCS. 

7-23 



Timing Examples 

Figure 7-13. Successive Reads to Same 32-8it Location; HCS and HREAD Strobed Together 

HAlHBS~ 

HCS~~ ________________ ~/ 

HREAD~ / 

HWRITE 

HRDY __________________ __ 

DATA ------------p-[e~yiQ-us-re-a-:-d ------~x yaljd 
(out) -------------1 .......................... -------' 

HDST 

LAD 

CAMD 

RCA 

SF 

DDIN 

LRDY 

BUSERR 

RO 

/4----t.ocal.Memory Host Read Cycl~ 

I I I I I I I I I I I It 04 I 01 I 02 I 03 I 04 I 01 I 02 I 03 I Q4 I 01 I 
I I I I I I I I I I V I I I I 1\ I I 1f-+--1 
~I 1111I n- +-+--l--~l 

I 
~-=~~~~~-T l 

r-L~ I I I I 1,...1 
11'1 I I I I~ 
V;""--i-I --I-~I\ I I Ifil 
b I I I 

I I I k I 1--1..........!1 
I I ''-. -t--+I --t"--t'11 ~I I 

V I I I I : 1\ Ir+--i 
I I I I I I I I P i I I I I I I I 

I I I 
I 

I~ WI 

I I I 

I T J 

I I I 
II 

Notes: 1} Prefetch after read or write is enabled {HINC = 1 and HPFW = don't care}. 
2} This figure refers to host reads of TMS34020 local memory and does not include host reads of 

TMS34020 110 registers. 

Figure 7-13 shows successive reads to the different bytes at the same location. Notice how repeatedly accessing 
the same word carries little overhead because the TMS34020 accesses the data only once. The HINC bit must 
equal 1 {enabling prefetching} to support the necessary address comparison. 

7-24 Communicating with a Host Processor 



Figure 7-14. Single Host Write Cycle; HCS Used as Strobe 

HAlHBS~ 

HCS~ 

HREAD -----

HWRITE \ ~ 

HRDY~ 

DATA VVVVVVVVVVVVVVV I'd ~ (In) ~ .... , __ YXialalll..l --~ 

HDST 

LAD 

CAMD 

RCA 

SF 

TRlQE 

DDIN 

I I I I 
I """"+---h.I'-H1 ..... +-...;....--;..--+1-.;.--1' I I 
11"-;'-1--"";'-""""'1 ---r.IC,.......J 

I I I i 
LRDY I~ '8 1 

I i I 

BUSERR 
I 1 I 

I I i 
Fio " I I ..... 1 I 
Fii i : : 

Notes: 1) Prefetch after write is disabled (HPFW = 1 or HINC = 0). 
2) This figure refers to hDst writes tD TMS34020 local memory and does not include host writes to 

TMS34020 1/0 registers. 

Figure 7-14 shows a simple write cycle; the host is writing to a location in local memory. The trailing edge of the 
host request strobe initializes the local-memory cycle. 

7-25 



Timing Examples 
~"ili~:;-'N..:.~;;:;x~~m::m::-,..x::~::x:::::::: ............... "":N~~s~~'·~x~.z:::;:;s:::;s::xw..::~::x:;.:;zx:;:~xm:;::::::XX~::::~~ili:;-~~~::::m:::: ___ --.,~::::sz_f~ ............... ::::::::=w_""""'" 

Figure 7-15. Single Host Write Cycle to liD Registers; HWRITE Used as Strobe 

HNHBS »C)OOOOOO(XXXX 

HCS~ 

HREAD-----

HWRITE~ 

HRDY~ 

DAJ~ moooooooooooooo .... __ ya ... ljd'--_~ 

HOST 

LAD 

CAMD 

RCA 

SF 

ODIN 

LRDY 

BUSERR 

AO 

Note: Prefetch after write is disabled (HPFW = 0 or HINC = 0). 

Figure 7-15 shows a simple write cycle; the host is writing to an I/O register. The trailing edge of the host request 
strobe initializes the local-memory cycle. Comparing Figure 7-15 to Figure 7-14, you'll see that to the host, there's 
little difference between writing to an I/O register appears and accessing any other memory location. However, data 
is latched into the TMS34020 on LAD31-LADO. 

7-26 Communicating with a Host Processor 



Timing Examples 
~~;x:;; 9:",*"·m·w.·~"""":::,~·~~·X'm"W=·"""""""''''''*W''''''''' ~ wmw~~x' f ··mxm·%w.~&lr#~...x:;:l'/..x:w..x-.:::x::;::::::;s.:::::::.~:;:.x:~::xx::x:::::::::::::;~m::::::-.:::~..:;m::::-.:::::..,*,~~-..::::;:;:;:.:x::::::-~.:.::::.::::::::::x:::::::::.:::: 

Figure 7-16. Single Host Write Cycle with One Wait State; HCS Used as Strobe 

HAlHBS x:::>@OOOOOOOO 

HCS~ 

HREAD 

HWRITE ~ r-= 
HRDY~ 

DATA iOOOOOOOOOOOOOO valjd ~ 
(m) I . I 

HOST 

LAD 

CAMD 

RCA 

SF 

WE 

TR/OE 

ODIN 

LRDY 

SIZE16 

BUSFLT 

AO 

~Local.MemOry Host Write Cycle with One Wait State ~ 

I 04 I 01 I 02 1 03 1 04 1 01 I Q2 I 03 I 04 I 01 I 021 03: 04! 01 i 
II I I 1 1 I, I II II II II II l;-r-il I 

I I 1 I 1 I 
I I I 1 1 I I I I I I 1 I : 
F}-I I I I I I I I 1 I 

~~~~+-~~-+-r~-+-r~ 
I

I I I I I I
1\ I I II 1\....l...J
~-'-!--i--..;..I ---11-';-1 ---v I -1--1
~ I~~I-+:~~--~~~~I-;IC~~
I

~I
I

I'll<:
I i

I I 1 I

I T T I

I I I I

" 1 1 1 1 1 1/ I I : '\ 1 1 I 1 1 1 I I I I I
I I I I I I I I I I

Notes: 1) Prefetch after write is disabled (HPFW = 0 or HINC = 0).
2) This figure refers to host writes to TMS34020 local memory and does not include host writes to

TMS34020 liD registers.

Figure 7-16 shows a simple write cycle; the host is writing to a location in local memory. The trailing edge of the
host request strobe initializes the local-memory cycle. Figure 7-16 is identical to Figure 7-14 except that the
memory cycle includes one wait state.

7-27

Timing Examples

Figure 7-17. Back-to-Back Host Write Cycles; HCS Used as Strobe
HAlHBS~

HWRITE ~~~ __ ~t=\ __ ~ __________ LI ____ __

HRDY

DATA iOOOOOOOOOOOOOO
(In)

1st valid XXX8XXXXXXXXXXX 2nd valid ~

HDST

LAD

CAMD

RCA

SF

DDIN

, I I J
LRDY

I
I~ Wi IT, I

,1 I I

BUSFLT

I 1 T
I , I I I , , I

RO

Notes: 1) Prefetch after write is disabled (HPFW = 0 or HINC = 0).
2) This figure refers to host writes to local memory and does not include host writes to I/O registers.

Figure 7-17 shows 2 consecutive writes. The trailing edge of the host request strobe initializes the local-memory
cycle. On the second write, notice that HRDY remains low until just before the data in the transceivers (from the
first write) is written to memory.

7-28 Communicating with a Host Processor

Timing Examples
;z-;m;;;;;;:;~~~"X;::::;x:;x:;~~m,':::::;~'X~-::~X':;~":::::'*::;-;~:Y.$7..x:;X::W..xm:::«-::~~::::x~~~;;;;:;.;;::-.:::~~::::::::::::::x::..;x:;-;::x::::::~::-;;;-;:::::::;xx:;;;;:~~~~~:;::;~~::::::::::::x:;~x:.~~.;::;~~~.::~::::~~::::~::::;;;:~~~~~~~~~~~~~~~::::~~~~::-;~~~~~~~:<-~~~:'::::~~~~::::~::~~~~~~::~::~~M"#;:::::::::~:::::::~~::::::~::~x:~::X::~::~::~~~~::::::::~::~~:::::

Figure 7-18. Back-to-Back Host Write Cycles with Implicit Addressing; HWRITE as Strobe

HNHBS~

Notes:

HCS~~ __________________ ~{ ___ ___

HAEAD

HADY

CAMD

ACA

SF

TA/QE

DDIN

LADY

BUSFLT

AO

,'-___ --J/

.J
I I

.........j. __ ..L..-.....L.---+ __ .i.-....JI __ ..JIIr-1" I 1,-1
I I I I I I

'-+----if---.j...-+I ----!'I/ I I 1111
I-r-+--+-+--+. I I I{ I I I~

I I I I I I I I
1-r-L...-.....ir----,,..---l-----1I----1-I'--'-l! I I Ir-r-i

I I I I I I I I I
i-7-+--!---!---;----!\I' I I II I I 11"11
L I I I I I I I I I I I I I I
V I I I I I I I I I I I I I I I I I I

~I iii I i~11 iii ki i'--H

=W±i~i=
~I~I~
I I : I, I I I 1/ I I I I, I I I 1/ I I I
1-1 -r-'I --r---rl ~I"--i-I --+1 ----tIl I I I I I I I I I I I
I : .: :' I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I

1) Prefetch after read is enabled (HINC = 1 and HPFW = 0).
2) This figure refers to host writes to local memory and does not include host writes to I/O registers.

Figure 7-18 shows 2 consecutive writes. The trailing edge of the host request strobe initializes the local-memory
cycle. Note that on the second write, HRDY remains low until just before the data in the transceivers (from the first
write) is written to memory. Figure 7-18 also illustrates implicit addressing. Although not explicitly shown, the value
on HBSQ-HBS3 must be 11112,00112, or 110°2' The initial address is the one supplied at the falling edge of HCS.

7-29

Timing Examples
~..x::.:;:;::S:::=S::::-;..~::s:;:;.:;~~:::;%~..:;X'~;::s::s::s~:;:;%X~:;:;r.:;~~:;~~r.~xz::x::m~~..:;mm:;::~::x:::~::s:;:;r.f.::S%Mmw.~f.~::~::::~;;:;:::;:;XX',,:;~:;,~:::;x~,*~~w~r.~~~::::s::~r.~::::r.:;:;::::::-';:;f.~~r.::::::::::::r.m~$::::~r.::::::W.'$r.r.~~~~

Figure 7-19. Host Write Cycle Back-to-Back with Prefetch of Next Word,' HCS Used as Strobe

HAlHBS .XXXXXXXXXXXXXXl
HCS \---I '--..J

HREAD ,'-_----.J/

HWRITE ~ /

HRDY __ ..Jr\.'-_________________ ~

HOE

HDST

LAD

Gi

CAMD

RCA

SF

TRlQE

DDIN

DDOUT

LRDY

BUSFLT

AD

~~T-~~~~r-~ ~
I I I

1'---!!---,---,-1 ---11--:----'-1 --II I I Ir-l
~~+l~ I I kr~~~~+_+_~I~~:ri_1

I 1 I 1/ I Irt-!
I 1 I I I 1 1 I
I 1 I'~";"--'li/ II'~~-,<,I~
I I I I I I I

rr--+---'-I ----i-;--~I''-_+I-.f--...jIV I If'll
I I I I I 1 I I

I :~ Wi I~ ~I I

I 1 i I

I T 1 I

1 1

iii i~ I I ! II iii i' i i ! il iii
Notes: 1) Prefetch after write is enabled (HINC = 1 and HPFW = 1).

2) This figure refers to host writes to local memory and does not include host writes to I/O registers.

Figure 7-19 shows a write cycle followed by a prefetch of the next location. The TMS34020 automatically initiates
the prefetch after it completes the write. Notice that HRDY remains low until just before the prefetched data is latched
into the transceivers.

7-30 Communicating with a Host Processor

Figure 7-20. Host Write Cycle Back-to-Back with Prefetch of Next Word and Implicit Addressing; HREAD and
HWRITE Used as Strobes
HAlHBS.

HCS ~~ __ ~/~~~~-

HREAD ''---_...,1
HWRITE ~ I

HRDY ---./\---_______________________________ ~

DATA~--w-::'rite-v-::Aljd-:--~
(IN)

~~~ ----------------------p-my~io-ys-m-OO~------------------~ 

~ Local·Memory Host Write Cycle -I.. Local·Memory Host Prefetch Cycle----.! 

HOST 

LAD 

CAMD 

RCA 

SF 

TRiOE 

ODIN 

LRDY 

BUSFLT 

RO 

'I I I I I I I I I I I I I I I I I I I 
04 101 I 02 I 03 104 I 01 102 103 I 04 101 102 103 104 101 I 02 I 03 I~ 
I I I I I I' I I II I I I I I' I I I I I 
I I I I I I I I I I I I I I I I I I I 
~I 11111 11111 
~ ~"'--l~~-r-+-+--'-i- +-+-+--1--1 

...J 
I 

",,-!-__ +-...I....-+I ---! __ .. I ~ I I 1,---1 

~~+-~:, I 1rr-~+-~~~~~I-+~:ri-1 
: I II II :rH 
I I 1,~+-~ltr4-~~-r-~I~I'~+-~I~1 
I I I I I I I I I 
I I I ''--;:_oI--IIlIr-+--'---:-rl ~I, ..... --;:_+--_I~ 
I : I I + : I I I I I 
I I I I I I I I I I II 
I I I II' I /,-t--t.11'--+--11 I-'--;--;----rl -II--T---i'I· I 1 I 

1 I l::l I l/r...,lr-+---r----rI--r--~ II I lco 
I I I I I 

I 
I~ ~ I 

1'Qj ~I I 

I I .- I J 

T T 
I ! ! ! 

i ; ; ;~! !/ i i\ ! !/ i 
Notes: 1} Prefetch after write is enabled (HINC = 1 and HPFW = 1). 

2} This figure refers to host writes to local memory and does not include host writes to I/O registers. 

Figure 7-20 shows a write cycle followed by a prefetch of the next location. Notice that HRDY remains low until 
just before the prefetched data is latched into the transceivers. Figure 7-20 also illustrates implicit addressing. 
Although not explicitly shown, the value on HBSQ-HBS3 must be 11112.00112. or 11002' 

7-31 



Halting TMS34020 Execution and Downloading New Code 

7.8 Halting TMS34020 Execution and Downloading New Code 

A host processor can halt TMS34020 execution by setting HLT[HSTCTLH]. 
While halted, the TMS34020 cannot access its local memory. This removes the 
major source of delay to host-initiated memory cycles and reduces (by half) the 
time taken for the host to access local memory. 

Halting the TMS34020 involves several bits in the HSTCTLH register. The 
picture below identifies the pertinent bits: 

address: COOO 0100h 
4 0 

Note: For a complete illustration and description of HSTCTLH, see Chapter 4. 

7-32 

The TMS34020 may not immediately recognize the halt (reasons for thi.s are 
described in Section 7.10.2, Halt Latency, on page 7-39 ).Ifthe host is transfer­
ring large amounts of data, however, the increased throughput gained by halt­
ing the TMS34020 more than compensates for any delay in waiting for the 
TMS34020 to recognize the halt. 

In order for a host processor to determine when the TMS34020 actually halts, 
it can 

IJi Wait for a period equal to the TMS34020's maximum halt latency, or 

IJi Repeatedly read the value of the HACK bit until HACK=1. When the 
TMS34020 halts, it sets HACK. When the TMS34020 is released from halt, 
it automatically clears HACK. 

The TMS34020 recognizes a halt request on an instruction boundary only. 
Unlike an interrupt, a halt is not recognized during an interruptible instruction 
such as a PIXBLT. A PIXBLT of a very large area of memory could take a signifi­
cant time to complete. If the host needs a prompter response to the halt 
request-that is, if it cannot wait for the current instruction to complete-the 
host should set the NMI bit when it sets HLT. The NMI (nonmaskable interrupt) 
is taken at the first interruptible point, which may be midway through an inter­
ruptible instruction. As soon as the NMI is taken, the halt is recognized (when 
both NMI and HLT are set, the TMS34020 halts before executing the first 
instruction in the NMI service routine). 

One of the most useful applications for halting the TMS34020 is to provide a 
host processor with an efficient method for downloading new code to 
TMS34020 local memory. The host can download code by following these 
steps: 

Communicating with a Host Processor 



Halting TMS34020 Execution and Downloading New Code 
___ S{~=<==<="'''",",;;;:;==="",,"==:;(":;s ... ::srmsW?''W?"_ww-=='_' == __ =="",::s,,::s,~~~::s;;:;;s**~;;;;:;;;;:;::s:,;::s;~ .... -m~ :::::;:,:::·;r;r;'S~~'::.:;:;:;;;:;;;x:;::s!~;~ 

Step 1: Set the NMI, HLT, and CF bits to 1. This interrupts and halts the 
TMS34020 and flushes the cache. 

Step 2: Download the code through the host interface. You can use the auto­
incrementing (implicit addressing) feature by setting HINC to 1, 
clearing HPFW to 0, and providing the starting address of the code's 
destination. 

Step 3: Write the starting address of the new code to the NMI vector so that 
the new code begins execution at the vectored address. (The NMI 
vector address is FFFF FEEOh.) 

Step 4: Set the NMI bit to 1 to initiate a nonmaskable interrupt (the bit was 
cleared automatically ifthe previous nonmaskable interrupt was tak­
en before the halt). At the same time, set the NMIM bit to 1 if the host 
does not need the current context to be stored on the stack or if the 
nonmaskable interrupt was taken in the first step; otherwise, clear 
NMIMto O. 

Step 5: Restart the TMS34020 by writing a 0 to HLT; at the same time, clear 
the CF bit. 

7-33 



Host-Interface Data Throughput (Bandwidth) 

7.9 Host-Interface Data Throughput (Bandwidth) 

The host-interface bandwidth is the number of bits per second that can be 
transferred through the host interface during a block data transfer to or from 
TMS34020 local memory. 

7.9.1 Achieving Maximum Bandwidth 

Table 7-1. 

7-34 

The maximum host-interface bandwidth approaches the bandwidth of the 
TMS34020's local-memory interface. For a 40MHz TMS34020 with no 
memory wait states, and allowing for the fact that successive host-initiated 
local-memory cycles cannot be performed using page mode, the local-memory 
interface can perform one memory cycle every 200 nanoseconds. This is a 
bandwidth of 160 megabits per second. 

Memory requests from other sources (such as screen refreshes, DRAM 
refreshes, or the TMS34020's CPU) tend to reduce the rate of data transfer. 
However, refreshes of either type occur infrequently (and therefore have little 
effect), and halting the TMS34020 prevents the CPU from making memory 
requests. 

If the CPU is not halted, it could reduce the bandwidth through the host inter­
face by up to 50%. If both host and CPU memory requests are pending, the 
host request is performed first, but the CPU request is performed before the 
next host request. Thus, if both the host and the CPU continue to make memory 
requests, host and CPU memory cycles occur alternately. Table 7-1 summa­
rizes the different host interface bandwidths that can be expected. 

Host Interface Estimated Maximum Bandwidth 

Assumptions 

Q TMS34020 is halted 

Q 40 MHz TMS34020 

Q No wait states 

[l TMS34020 is running 

[l 40 MHz TMS34020 

Q No wait states 

Q TMS34020 is halted 

Q 40 MHz TMS34020 

Q N wait states 

Approximate Throughput 

32 bits per transfer 

200 ns per transfer 

32 bits per transfer 

400 ns per transfer 

= 160 Mbits per second 

= 80 Mbits per second 

32 bits per transfer 
-------- Mbits per second 
(200+N) 100 ns per transfer 

Communicating with a Host Processor 



Host-Interface Data Throughput (Bandwidth) 
WW~ msmd~~$~$S~«::"""~_"" __ """""~r=r==?';x~~?, «fW ..................... ~.«~f~'« m««w-r'::@"(m:'f$?,$:::;m?,?,wm~w~ 

7.9.2 Timing Considerations for Optimizing Host-Interface Bandwidth 

To use the local memory's full bandwidth, the host must be able to initiate a 
memory cycle every 200 nanoseconds. However, because there is an inherent 
synchronization and recognition delay between when the host request strobe 
occurs and when the local-memory cycle it initiates can begin, the request 
strobe that initiates the next memory cycle must occur before the current 
memory cycle has completed. 

To enable the host to do this, HRDY is asserted active-high early during 
host-initiated memory cycles, shortly after LCLK2's low-to-high transition. The 
host request strobe that initiates the next memory cycle must occur before 
LCLK2's high-to-Iow transition in the current machine state, so that the 
memory cycle can begin in the next machine state. If the host request strobe 
occurs after this, it is not recognized until LCLK2's next high-to-Iow transition, 
so the memory cycle it initiates cannot begin until the machine state after that. 
This is illustrated in Figure 7-21. 

Figure 7-21. Host Request Synchronization 

(a) Case 1: host request strobe occurs before Q4 

STROBE :::x:::: 
I I 

LCLK2 

r-­
lool~I~I~lool~I~I~lool~1 
I I I I I I I I I I I 

(b) Case 2: host request strobe occurs after Q4 

STROBE : x: 

LCLK2 

Note: This illustration uses the hypothetical signal STROBE, which is the logical-OR 
of HCS with either HREAD or HWRITE; it is low when HCS and either H READ 
or HWRITE are low. Host read cycles are initiated by STROBE's high-to-Iow 
transition (the leading edge of the host request). Write and prefetch cycles are 
initiated by STROBE's low-to-high transition (the trailing edge of the host 
request). The diagrams illustrate both possibilities. In both cases, the arrow 
(-) identifies the earliest point at which the host-initiated local-memory 
cycle can begin. Obviously, this may be delayed if another local-memory cycle 
is being performed at this time. 

For write requests or prefetch-initiating read requests, a low-to-high transition 
of the host request strobe is all that is necessary to initiate the next 
local-memory cycle. However, for host read requests when prefetching is 
disabled, the strobe's high-to-Iow transition enables the next local-memory 

7-35 



Host-Interface Data Throughput (Bandwidth) 
~~, .. ~~ ...... , ........ w ............... w...::: .... :::::'m .. :::::::::" .... ~~~~:;-.. ~;:.;~~~..::~~~X"..::~::::::::x::::x::::::-"' .... =;:· .. ...,:::::::w..m".«~.:x::xx::--..::::::::::::::::::::::::::;~"::::x::-.:mx::::::~w..::::x::~::::~~M7.@..:;mx::--..::w..x::::::::--.. ::sx::::x::::-~:::;%X~~~x::~::~:w:::::~~.:'@~:;:;~:::::::::::::; 

7-36 

cycle forthe host. Because of this, it is not possible to achieve maximum band­
width when performing multiple host read requests where prefetches are 
disabled. There is not enough time, after HRDY goes active shortly following 
LCLK2's low-to-high transition, to deassert the host request strobes and then 
reassert them before LCLK2's high-to-Iow transition. In most applications, this 
should not matter because consecutive host accesses are typically to contigu­
ous blocks where prefetching can be used. 

Although HRDY is asserted just after LCLK2's low-to-high transition, the host 
cannot access the transceivers until both HDST and HOE are high. One of 
these signals is always low when HRDY goes high during a host-initiated cycle. 
This means that the host must gate HRDY with HDST and HOE to determine 
when it can access the transceivers. 

The manner in which HRDY is gated with HDST and HOE depends primarily 
on the rate at which the host can consecutively access the TMS34020: 

~ Host can make requests fast enough to use the maximum available 
throughput. As described above, the host request strobe that initiates the 
next memory cycle must occur before the end of the current memory cycle, 
before the host can access the transceivers. This requires additional data 
buffering (or pipelining) into and out of the transceivers. HRDY will have 
returned to its inactive-low state before HDST or HOE goes high at the end 
of the current memory cycle. Because of this, the rising edge of HRDY 
must be used to set an edge-triggered latch, so that the output of the latch 
becomes a 1. This must be ANDed with HDST and HOE, so that when 
HDST is high and the HRDY latch is set, the transceivers can be read from; 
when HOE is high and the HRDY latch is set, the transceivers can be 
written to. A mechanism for clearing the latch must be provided, although 
this depends on the precise requirements of the application. However, the 
latch must be cleared before the next low-to-high transition of HRDY, which 
can occur while either HDST or HOE is low. One possibility would be to use 
an edge-cleared latch cleared on the falling edge or either HDST or HOE. 

~ Host cannot make requests fast enough to use the maximum avail­
able throughput. There is no need forthe host request strobe that initiates 
the next local-memory access to occur until after the current host-initiated 
memory cycle completes. This can be achieved by ANDing HRDY with 
HDST and HOE, so that the host does not respond to HRDY until HRDY, 
HDST, and HOE are all high. 

Communicating with a Host Processor 





Delays to Host Accesses 

7-38 

To calculate your application's worst case, determine which delays apply, and 
sum these individual delay times. This figure is the worst-case delay for a host 
access. It does not include the time required to actually perform the host 
access. The following paragraphs describe the delay sources. 

Q Delay 1: Host request synchronization. This is the time required to 
internally synchronize a host request to the TMS34020's local clock. Typi­
cally, host signals are not synchronous to the TMS34020's local clocks. 
Before using a signal from the host, the TMS34020 must pass it through 
a synchronizing latch (part of the TMS34020's on-chip host-interface 
logic). The delay through the synchronizer is 1.25 to 2.25 local clock 
cycles. However, the host-default cycle performed by the local-memory 
interface when no other requests are pending allows this synchronization 
to occur in parallel with the address subcycle. Thus, synchronization delay 
can be as small as 0.25 local clock cycles. 

Q Delay 2: Screen-refresh cycles. Any screen refresh has a higher priority 
than a host request. Thus, if a screen refresh and a host access are 
requested simultaneously, the TMS34020 performs the screen refresh. 
The longest delay that can be caused by screen refreshes occurs during 
horizontal blanking in split-serial register VRAM mode; this delay takes 4 
machine states plus wait states. If this mode is not used, the longest delay 
is 2 machine states plus wait states (see Chapter 9, Video Timing and 
Screen Refresh). 

Q Delay 3: DRAM-refresh cycles. The TMS34020 can have up to 15 
DRAM refreshes pending. If 12 or more DRAM refreshes are pending, they 
have higher priority than host requests. In this situation, if a DRAM refresh 
and a host access are requested simultaneously, the TMS34020 performs 
the DRAM refresh first. Thus, the TMS34020 may perform up to 4 DRAM 
refresh cycles before servicing a host request. In most systems, however, 
no more than 12 refreshes will ever be pending. The only way more than 
12 DRAM refreshes could be pending is if a memory cycle is wait-stated 
for an extremely long time, or if the GI pin is deasserted for long enough. 
If 12 or fewer DRAM refreshes are pending, a host access can be delayed 
by one DRAM refresh only. 

Q Delay 4: Bus-master arbitration. This occurs only in systems where mul­
tiple TMS34020s and/or other devices share local memory and arbitrate 
for bus control through the multiprocessor interface (see Chapter 11). Typi­
cally, the host is connected to the only TMS34020 in the system that can 
make high-priority bus-master requests. Host requests generate the high­
priority request code on RO and R1. The time taken to reclaim bus owner­
ship after a high-priority request code is output is entirely application de­
pendent. 

Q Delay 5: Previous host cycle. The worst form of this delay occurs when 
the previous host request was a write with prefetch, and the host then 

Communicating with a Host Processor 



Delays to Host Accesses 
:X$~~~~;:;xx~~w~..::::::::x:;::~~~%~:~::::~::-.:s~m/'..:'.::x~~':::::::::::::::;:;$~::::::X~~~~$:::-':::;x:;.X.~~:::::::::;!"-:;::-;:;::::::':;~~::~W(.:;~:;(.::~m:;w::::w.::::ZXX::::~~~:;:;~::':;::::~*:::::~~$ili%:::::::::>::~~:~~$~:;~':=~::::~~~:;~$W:='::~$:::::::::::::;:;:;~Z:::<'::::~::::$$$~~~::$~~::::::::X:::::::::;-'::::::;$::::::::X~::X~~::~X::::::$~:>:~:::::::~::::~::::~::::~~:::::::;:::;-»'''''''::::::~ 

7.10.2 Halt Latency 

attempts to read from or write to a location other than the prefetched loca­
tion.ln this case, the TMS34020 performs the write and the prefetch before 
performing the current request. This is a delay' of 4 machine states plus 
wait states. If prefetch-after-write is not enabled, the worst-case delay is 
2 machine states plus wait states. 

[J Delay 6: CPU cycle. The TMS34020 CPU might be using the local­
memory interface when the host requests a write. This causes a delay 
before the memory controller can perform the requested write. Note that 
a CPU cycle cannot delay a host access if 

• The TMS34020 encounters a bus-master arbitration delay. 
• The TMS34020 is halted. 

In any system, worst-case delays occur too infrequently to affect overall 
performance. For example, DRAM-refresh cycles typically consume approxi­
mately 2% of the available memory bandwidth, and screen-refresh cycles 
(using VRAMs) consume approximately 1.5%. Do not use the worst-case 
delay to determine host-interface throughput. 

The worst-case delay assumes that 

[J A screen-refresh cycle is generated within the TMS34020 on the same 
clock edge at which the host request arrives (after synchronization). 

[J 12 or more DRAM refreshes are requested during the next 1 + n clock 
edges. This is the number pending when the host and screen-refresh 
requests were made, plus additional requests (if any) made in the ensuing 
1 + n machine states while the screen refresh is executed. 

[J An equivalent delay occurs when 12 or more DRAM-refresh requests and 
the host request occur on the same clock edge and a screen refresh is 
requested on a later clock edge before the host access begins. Host, 
DRAM-refresh, and screen-refresh requests all assert the high-priority 
request code through the multiprocessor interface (see Chapter 11). 

Section 7.8 (page 7-32) describes a method for halting the TMS34020 by set­
ting the HLT bit. If you use this halt function, you may find it useful to know how 
long it can take the TMS34020 to enter the halt condition. This time, called halt 
latency, a/ways includes 

1 or 2 machine states caused by the host-request synchronization 
(see delay 1 on page 7-38) 

+ 2 machine states for the host to actually write to the HLT bit 

+ 1 machine state forthe CPU to halt after recognizing the request 

4 or 5 machine states is the minimum amount of time required to halt 
the TMS34020 

7-39 



Delays to Host Accesses / Systems with Multiple TMS34020s 
~A m m::::~;::;:>.;:;m»m;;::o:::o:::w· ;~m-...m:;::-~~~:;m-~mo;x::x::::::~ 

In addition to the delays listed in Section 7.1 0.1, the TMS34020 may be execut­
ing an instruction when it receives the halt request. In this case, the TMS34020 
does not halt until it completes the instruction execution. This could take sever­
al machine states (depending on the instruction), and applies to noninterrupt­
ible instructions as well. The TMS34020 recognizes a halt request only on an 
instruction boundary. 

Section 7.10.1 shows the worst-case delay for accessing local memory 
(including 1/0 registers). Delays 2 through 6 can affect the time taken to halt 
the TMS34020, but their effect on halt latency is usually much less than the 
worst-case delay. In fact, they usually do not affect halt latency at all; even a 
single DRAM refresh is unlikely to delay halt recognition. 

7.11 Systems with Multiple TMS34020s 

7-40 

Multiple TMS34020s running within a single system can share the same local 
memory. This can improve system performance significantly; however, it may 
complicate host-interface communications. For a general description of multi­
ple TMS34020 systems, see Chapter 11, Multiprocessing and System Archi­
tecture. 

If a multi-TMS34020 system contains ROM, the TMS34020s will probably be 
initialized from the ROM at power-up. However, if the system contains no 
ROM, the host processor must be able to download code to all of the 
TMS34020s. To do this, a host typically halts the TMS34020s; as an alterna­
tive, the host can prevent the processors from fetching code by setting their GI 
pins inactive, which prevents them from using the local-memory bus. 

If all the TMS34020s are halted at power-up, the host must be able to restart 
them. To restart a halted TMS34020, the host must write a 0 to that 
TMS34020's HLT bit. The host can access the 1/0 registers of only those 
TMS34020s to which it is directly attached; one TMS34020 cannot access 
another's 1/0 registers. This means that the only method for clearing the HLT 
bit of a TMS34020 to which the host is not connected is to assert its RESET 
pin. Only those TMS34020s to which the host has direct access can be pow­
ered-up halted. 

The host can access multiple TMS34020s by having a different HCS signal for 
each one. Because host requests are considered high priority, your mUlti­
processor arbitration scheme must prioritize simultaneous high-priority bus 
requests from different TMS34020s. To accomplish this, you can use one of 
two possible transceiver configurations: 

Q All TMS34020s share one set of transceivers. Wire together all the 
HOST pins, and wire together all the HOE pins. All data is transferred 
through the one set of transceivers to whichever TMS34020 is being 
accessed. This solution requires less hardware to implement. However, 
be very cautious when using prefetch modes; the location prefetched by 
one TMS34020 will no longer be stored in the transceivers if another 

Communicating with a Host Processor 



TMS34020 performed a host read. This could result in the host reading in­
correct data. There are a number of solutions to this problem; here are two: 

• 00 not use the prefetch modes at all, or 

• Ensure that the each time the host requests an access from a different 
TMS34020, the first read request performed is to a dummy location 
(this ensures that any previously fetched data is flushed out of the 
transceivers). 

Q Each TMS34020 uses its own set of transceivers. Connect the HOST 
and HOE pins from each TMS34020 to their respective sets of transceiv­
ers. Each set of transceivers transfers data between the host and one 
TMS34020. Although this implementation requires more hardware, it does 
allow you to use the prefetch modes. It also allows each TMS34020 to 
have a different host, if you desire. 

When a TMS34020 loses bus mastership, the HOST and HOE pins are set to 
high impedance just like the local-memory control signals. However, unlike the 
local-memory signals, HOST and HOE both have internal pull-up resistors. 
This allows either of the above configurations to be implemented without 
requiring any additional external control circuitry. If HOST and HOE are not 
driven by anotherTMS34020 (the second case described above), the resistors 
hold them at the logic-high level. However, the resistors are sufficiently large 
that they do not prevent another TMS34020 from subsequently driving HOST 
and HOE (the first case described above). 

If you want to connect the host to only one TMS34020, but want the host to 
download code to the other TMS34020s (to which it is not directly attached), 
you can use indirect-access methods. These other methods take advantage 
of the fact that even if not halted, a TMS34020 cannot access memory while 
its GI pin is held inactive-high. By explicitly controlling the multiprocessor-arbi­
tration logic, the host can prevent TMS34020s to which it is not attached from 
fetching and executing new code until after the host downloads code through 
the TMS34020 to which it is attached. 

If you adopt this procedure, a device can inform the TMS34020 of where to 
execute code from by asserting an external interrupt (via LlNT1 or LlNT2) while 
GI is held in its inactive state, then writing the address of the first word of code 
into the appropriate interrupt vector before asserting GI active low. This may 
be most useful at power-up (when the TMS34020 fetches code from the 
address specified in the reset vector). At other times, the TMS34020 may not 
start executing the new code immediately, because it may not have been at an 
instruction boundary or an interruptible point within an interruptible instruction 
when GI was deasserted. 

In addition, the host can access other TMS34020s by using interrupt routines 
and/or flags (semaphores) to access information at a known location in 
memory, accessible to the host through the TMS34020 to which it is attached. 
The TMS34020's SWAPF instruction is helpful for this type of operation. 

7-41 



Systems with 16-8it Memory Devices 

7.12 Systems with 16-Bit Memory Devices 

7-42 

If some or all of the TMS34020's local memory is made up of 16-bit memory 
devices, the TMS34020's memory controller uses its dynamic bus-sizing capa­
bility to access this memory. 

If the host wants to access 16-bit local memory, you must add transceivers to 
route the data to and from the correct halves of the TMS34020's local address/ 
data bus (LADO-LAD31). 

If the host uses a 32-bit bus and at least part of the TMS34020's local memory 
is 16 bits wide, then you'll need six 8-bit transceivers: 

Q The 4 regular transceivers for transferring data between the host and the 
32-bit local memory. 

Q 2 additional transceivers to multiplex data between whichever half of the 
local bus the 16-bit memory is attached to and the opposite half of the 
host's data bus. 

For example, if the 16-bit memory is configured on LADO-LAD15, then the 
extra transceivers are required to multiplex data between LADO-LAD15 and 
bits 16-31 of the host's data bus (when accessing the second ofthe two 16-bit 
words contained in the 32-bit location specified by HA5-HA31). 

If 16-bit memory is configured to both halves of the TMS34020's local-memory 
address/data bus (LADO-LAD15 and LAD16-LAD31), then you need eight 
8-bittransceivers because it is necessary to swap both halves of the local ad­
dress/data and host data buses. 

Even if the host is configured to a 16-bit bus and all of the TMS34020's local 
memory is 16 bits wide, four 8-bit transceivers are still required because the 
I/O registers are 32 bits wide. Only in the unlikely situation in which the host 
would never access any I/O registers could you use two 8-bit transceivers to 
connect the host's 16-bit data bus to the appropriate half of the TMS34020's 
local address/data bus. 

Data should be routed according to the SIZE16 signal. For more details about 
dynamic bus sizing, refer to Section 8.6, Dynamic Bus Sizing, on page 8-12. 

If the host accesses 16-bit-wide memory, the TMS34020's memory controller 
automatically performs both cycles necessary to access the full 32 bits of the 
long-word address present on HA5-HA31, regardless of which HBS byte 
strobes are active. 

Figure 7-22 shows the transceiver combinations required for the various sys­
tem configurations. 

Communicating with a Host Processor 



Systems with 16-Bit Memory Devices 
m::-m::::mt~~~rtwwm~m~~m:lmmmt~r r$$.w,:.:- 'm-

Figure 7-22. Host-to-TMS34020 Transceiver Wiring with 16-Bit Memory 

(a) Without 16-bit memory 

(c) With 16-bit memory connected to 
LAD 16-LAD31 

(b) With 16-bit memory connected to 
LADO-LAD15 

(d) With 16-bit memory connected to both 
LADO-LAD15 and LAD 16-LAD31 

7-43 



Systems with Big-Endian Addressing 

7.13 Systems with Big-Endian Addressing 

If the your system uses the TMS34020 in big-endian mode, then the bytes 
addressed by HBSQ-HBS3 are swapped. See Chapter 3, Memory Organiza­
tion and Hardware-Supported Data Structures, for more detail on the differ­
ences between big-endian and little-end ian operation. Figure 7-23 shows the 
byte addressing for both. 

Figure 7-23. Big-Endian and Little-Endian Byte Addressing Modes 

(a) Little-endian byte addressing 

7-44 

Bits: 

Byte Strobes: 

(b) Big-endian byte addressing 

Bits: 

Byte Strobes: 

For example, in order to access bits 7-0 of a word in the TMS34020's local 
memory in big-end ian mode, the host must assert HBS3 instead of HBSO. 

Communicating with a Host Processor 





Related Signals 

8.1 Related Signals 

8-2 

Many of the TMS34020's pins provide access to and control over the 
local-memory and DRAMNRAM interfaces. Chapter 2 describes these signals 
in detail; they are summarized below for your convenience. 

Signals Descriptions 1/0 

ALTCH is the address latch signal. An external latch (such as 0 
a 74AlS373) can use a high-to-Iow transition on 
AlTCH to maintain the current address and status 
from LADO-LAD31. 

BUSFLT is the bus-fault signal. If external logic detects an error 
or fault in the current cycle, the logic asserts BUSFlT 
high. BUSFlT is also used in conjunctionwith lRDY 
to generate bus-retry cycles. 

CAMD is the column-address mode input that allows mixing 
of DRAM address matrices using the same mUlti-
plexed RCAO-RCA 12 address signals. 

CASQ-;-CAS3 are the column-address strobe signals that drive the 0 
CAS inputs of DRAMs and VRAMs. They also provide 
access to the individual bytes in each long-word in 
memory. 

CLKIN is the clock input signal. The TMS34020's processor 
functions are synchronous to elKIN. 

DDIN is the local data-bus-direction input-enable signal, 0 
driven high to enable data transceivers (such as a 
74AlS623) on LADO-LAD31 to input data to the 
TMS34020. 

DDOUT is the local data-bus-direction output-enable signal. It 0 
is driven low to enable data transceivers (such as a 
74AlS623) on LADO-lAD31 to output data from the 
TMS34020. 

LADO-LAD31 form the local addressldata bus. 1/0 

LCLK1, are the local output clocks. These signals are available 0 
LCLK2 to the system for synchronous control of external logic. 

LlNT1, LlNT2 are the TMS34020's local interrupt-request signals. 
External devices can use LlNT1 and LlNT2 to interrupt 
TMS34020 operation. 

LRDY is the local ready signal. External circuitry drives 
lRDY low to inhibit the TMS34020 from completing a 
local-memory cycle. 

Local-Memory and DRAMNRAM Interfaces 



Related Signals 
S(mw 

Signals Descriptions 1/0 

PGMD is the page-mode signal. External memory decode 
logic asserts PGMD low if the currently addressed 
memory supports burst (page mode) accesses. 

RAS is the row-address strobe signal that drives the RAS 0 
inputs of DRAMs and VRAMs. 

RCAO-RCA12 form the multiplexed row/column address bus, used 0 
for the row and column addresses for DRAMs and 
VRAMs. 

SF is the special-function signal that connects to the SF 0 
pin of 1 M VRAMs. 

SIZE16 is the bus-size signal. External memory decode logic I 
asserts SIZE 1610w if the currently addressed memory 
supports 16-bit accesses only. SIZE16 is also used to 
determine to which half of the LAD bus the accesses 
are made. 

TR/QE is the transfer/output-enable signal that connects to 0 
the TR/QE pins of VRAMs. 

WE is the write-enable signal that drives the WE inputs of 0 
DRAMs and VRAMs. 

8-3 



Related Registers 

8.2 Related Registers 

CON FIG register 
15 

The local-memory interface registers summarized below are a subset of the 
1/0 registers discussed in Chapter 4. 

Four registers are associated with the local-memory arid DRAMNRAM inter­
faces: 

IJ CON FIG contains several bits that control individual aspects of the 
local-memory interface. 

IJ DPYCTL controls aspects of the DRAMNRAM interface. 

IJ The PMASK and REFADR registers contain 16-bit values that are neces­
sary for proper operation of the local-memory or DRAMNRAM interface. 

Note: For a complete illustration and description of CONFIG, see Chapter 4. 

8-4 

+:!8j+ 
bit 0 

.. 
bits 1-2 

.:.M 
bit 3 

.9". 
bit 8 

Setting the BEN (big-endian enable) bit to 1 tells the TMS34020 to access 
memory in big-end ian mode. Clearing BEN to 0 tells the TMS34020 to access 
memory in little-end ian mode. Little-endian is the default. 

The RCM (RCA bus mode configuration) bits determine the basic row- and 
column-address mode for the RCA bus. 

Setting the CBP (configuration byte protect) to 1 write-protects bits 0-7 of the 
CON FIG register. This prevents modification of the selected configuration. 

Setting the VEN (V RAM enable) bitto 1 informs the TMS34020 thatthe system 
contains VRAMs with special features such as write-mask and color-latch reg­
isters. 

_ The RR (DRAM refresh rate) bits control the frequency of DRAM refresh 
bits10-12 cycles. 

Local-Memory and DRAMNRAM Interfaces 



DPYCTL register 
15 12 11 7 6 

Related Registers 
::o:-m"'~'':":>:';::' s"z:nm:t' 

address: CODa 0080h 
o 

Note: For a complete illustration and description of DPYCTL, see Chapter 4 . 

.. 
bit 6 .. 
bit 7 

.. 
bit 11 

.-
bit 12 .. 
bit 15 

PMASKL register 
PMASKH register 
REFADR register 

Setting the SSV (split-serial-register midline-reload enable) bit to 1 enables the 
TMS34020 to perform screen refreshes for VRAMs with split serial registers. 

The VCE (video capture enable) bit selects the type of screen-refresh memory 
cycle: 

VCE=O selects memory-to-register screen-refresh cycles. 
VCE=1 selects register-to-memory screen-refresh cycles . 

Setting the CST (CPU serial register transfer) bit to 1 tells the TMS34020 to 
convert ordinary pixel accesses into VRAM serial register transfers. 

Setting the SRE (screen-refresh enable) bit to 1 enables automatic screen 
refreshes when video is enabled (ENV=1). 

The ENV (enable video) bit must be 1 to allow the video timing logicto operate. 
When ENV=O, the TMS34020's blanking outputs are permanently at the 
active-low level, and all display control is disabled. 

PMASKL, 
PMASKH 

REFADR 

address: CODa 0160h 
address: CODa 0170h 
address: CODa 01 FOh 

work together to form a 32-bit plane mask. The 0 and 1 values in 
the plane mask selectively enable or disable various planes in a 
multiple-bit-per-pixel bitmapped display. 

is the refresh-address register. It contains a pseudo-address that 
is output on each refresh cycle. 

8-5 



Priorities of Memory Bus Requests 
~..::~::z:::::::::::::::::-;m:::;~.#m::::~m::»~~w...::::::::~.:::::s:::::;~we:Y',.:;'=,,,,,;=, ««=M=:::;:::;:::::::::wm:;:::;m::::::::::,",@.:xx~..x::::::::.w.:-mx::~x::~w.:::m:;~~:::;~::z::z~~;:::;::w:;-.:!~~~w::::::::~.::::~:~~;:;:::::;:I'..::m::~~W"..::::::m.::::::::::*~w, 

8.3 Priorities of Memory Bus Requests 

The TMS34020's local-memory controller assigns priorities to local-memory 
requests from various on- and off-chip sources. The memory controller can 
generate VRAM serial-data-register transfer cycles, refresh cycles, host 
accesses to memory, CPU cycles, and emulator accesses, and it can release 
the local bus for other processors. Table 8-1 shows the order in which the 
TMS34020 responds to these access requests; priority 1 is the highest priority 
(the TMS34020 responds to it first). 

Table B-1. Priorities for Memory Cycle Requests 

8-6 

Priority Memory Cycle Request 

1 Loss of bus grant, indicated by GI (grant input) high 

2 Any video-generated VRAM serial-data-register transfer cycle 

3 12 or more DRAM-refresh cycles are pending 

4 Emulator (if emulator priority requested) 

5 Host access 

6 4 or more DRAM-refresh cycles are pending 

7 TMS34020 CPU access (single cycle, page mode, or CPU-initiated 
serial-data-register transfer cycles) 

8 Less than 4 DRAM-refresh cycles are due 

9 Host-default cycle 

Note: If enabled, the TMS34020 waits for a host request when no other cycle is 
requested. 

Here are more detailed descriptions of these memory cycle requests. 

1) The highest priority is assigned to the loss of bus grant, which takes priority 
over all other types of memory requests. However, it is recommended that 
the bus grant is not removed when a high-priority memory cycle code is 
output on the RO and R 1 signals. Requests of priorities 2-5 generate this 
code. 

2) Any video-generated, VRAM serial-data-register transfer requests have 
the second highest priority. This is the highest priority of any internally gen­
erated request. 

3) DRAM-refresh requests are programmed to occur at regular intervals. The 
TMS34020 has an internal counter that tracks how many refreshes are 
due. The TMS34020 increments this counter by 1 when the refresh count­
er requests a refresh; the TMS34020 decrements the counter by 1 when 
a refresh takes place. When 12 refreshes are due, refreshing becomes a 
higher priority to ensure that a refresh cycle occurs. 

Local-Memory and DRAMNRAM Interfaces 



Priorities of Memory Bus Requests 
:::.::.::::.::'~~~:;;;~:::e::~::X::::::::::::~$:::.:::::~~:::.:::::~~~w..z--..::xx:::;~~:;::::~.::~m:::::;:;xx:;:=.:;:@~::.x::::~~::;:~~::::*"~~::::::::::~~~~~~x~~~~~:=.:;::::::;:~::::;:~~::::::xx:;.:;~::::$~~$~~$~~$$r.::::~w.::~m$::X:;:;ili$$::~~~~:~:::::::;:$::::::$::::::$~::::$r.::::$~:~:::::$~::::::~::::~$::::~,;:::::$$$$$::::$~.{'::::::::;:~:~$$::::::r.::::~ 

4) An in-circuit emulator (such as the Texas Instruments TMS34020 Emula­
tor) can raise the priority of the emulator's and the CPU's local-memory 
requests above the priority of the host's local-memory requests. If you do 
not do this, the TMS34020 treats emulator requests with the same priority 
as regular CPU requests. 

5) The host interface has the next highest priority. If a CPU-initiated cycle is 
in progress, it is interrupted on the next 32-bit boundary. (If the CPU is 
inserting a field, then both the read and write cycles complete. Any opera­
tion required as a result of dynamic bus sizing also completes.) 

6) If the DRAM-refresh counter indicates that 4 or more cycles are pending 
and no page-mode accesses are in progress, then refresh cycles assume 
a higher priority than CPU-initiated requests. This prevents the refresh 
counter from progressing too far without interrupting page-mode blocks. 

7) CPU requests are serviced if no higher priority requests are present. Once 
a CPU cycle begins, request with priorities 1 through 5 can interrupt a 
series of CPU-initiated page-mode accesses. The interrupted sequence 
will restart as with any ordinary access. 

8) If the refresh counter is not 0 and nothing else is happening, then DRAM 
refreshes occur. 

9) If no definite request is pending, then the TMS34020 performs a host­
default cycle. This is a special type of idle cycle. (For more information, see 
Section 8.15 on page 8-49.) 

Even if host requests are being made at the full bandwidth rate, there will 
always be one cycle after a host access when the host interface request to the 
memory controller is not active. If no other accesses are pending, the 
host-default state will enable host accesses to use the full bus bandwidth. How­
ever, if another type of access is pending, this other access will be executed 
in preference to the host default. 

Thus, if both the host interface and the CPU are requesting access at the maxi­
mum rate possible, the memory controller services the requests alternately. 
This prevents the hostfrom completely dominating the local-memory interface; 
the host cannot prevent servicing of other requests. 

8-7 



General Form of a Local-Memory Cycle 
~'~·r':"·:"w':"""x~,.$~xz:"::x:;:":::x:;:::"~:=::x:;:;::.x:;:;x~:":":r..::x:;s.~:~w~:::;:;:;:~;:"::x:::::;:=x:;:=:~:=:::":::;:::;:~:~:::-~::":::"::!.:'.;;:;xx:::;:":":m:";;:;:;:::::::::;:;:":::::;:::;:;X:":;:;:"~:::;-;:;:~::"::X5W.;;:;x:"::x:;:;:;:-.xx:~:::":"xe.:::;:;~;w.;:::-«-~:9J 

8.4 General Form of a Local-Memory Cycle 

Most local-memory cycles initiated by the TMS34020's memory controller are 
at least 2 machine states in duration. (An exception to this is page-mode 
cycles, discussed in Section 8.7, page 8-15.) Each machine state is one LCLK 
period long and begins atthe rising edge of LCLK1. As Figure 8-1 shows, each 
local-memory cycle has two parts: 

Q the address/status subcycle and 
Q the data subcycle. 

Figure 8-1 also shows the signals required to latch the addresses that are on 
the LAD and RCA buses. Page-mode cycles are an extension of this form. 

Figure 8-1. The Two Parts of a Local-Memory Cycle 

I Address/Status I Data -,1 I (I LCLK cycle) -,.- (n LCLK cycles) 

1~lmlool~I~lmlool~1 
LCLKI I I I I I 

LAD:::r- I ~~~4=> 
RCA =?- I '--l.\~T=¥'"-T~~T=--f 

- I 
ALTCH I I '--II-.l---l--!---¥ 

RAS I I I, I I I \-. -+--+--+---1' 
CAS I I I 

I I I 

Notes: 1) The data subcycle is an integral number of LCLK cycles long. The diagram 
shows the minimum length of 1 LCLK cycle. 

2) This illustration does not apply to page-mode memory cycles. 

3) For complete timing diagrams, refer to Sections 8.8-8.13 (pages 
8-18-8-44) . 

8.4.1 The Address/Status Subcycle 

8-8 

The address/status subcycle coincides with the first machine state of the 
local-memory cycle. The address, status code, and row address forthe access 
are output at this time. This portion of the cycle is often called the row-address 
time because the row address is output during this subcycle. 

Section 8.5 (page 8-10) discusses the status codes output during this sub­
cycle. 

The LAD bus outputs an address that can be latched (using either ALTCH or 
RAS) and used to decode the TMS34020's address space. This address points 
to the currently accessed long-word. The RCA bus outputs a subset of this 
address to serve as the row address. The RCA bus is usually connected 

Local-Memory and DRAMNRAM Interfaces 







General Form of a Local-Memory Cycle 
.............. """"'''''''''''''''''''' __ =='''''''''=''''===O$~::!''''''sm~"''''''''''''''$~'''''mm_~~=:;mw'''''''''_",=="",",,""'."""':;m$~~$$:;,'~$~$$m$$$">m 

Il Video-generated VRAM serial-register transfer. Output when the 
TMS34020 memory controller performs a midline-reload cycle, or a serial­
register-transfer cycle initiated by horizontal blanking. (VCE[DPYCTL] 
controls the transfer direction.) 

Il CPU-generated VRAM serial-register transfer. Output when the 
TMS34020 memory controller performs a serial-register-transfer cycle 
due to a pixel operation instruction with CST[DPYCTL] = 1. A pixel-read 
operation generates a read transfer (VRAM memory to serial register). A 
pixel write generates a write transfer (serial register to VRAM memory). 

Il Write-mask load. Generated during the special 1-Mbit VRAM cycle to 
load the VRAM's on-chip write-mask register with the 1 s complement of 
the TMS34020's PMASK registers. 

Il Color-register load •. Generated during the special1-Mbit VRAM cycle ini­
tiated by the VLCOL instruction, which loads the VRAM's on-chip color 
register. 

Il Data access. Output when the current memory access (read or write) 
involves transferring data to or from the TMS34020's CPU. 

Il Cache fill. Output when the TMS34020 is reading a subsegment (4 
long-words) into the on-chip instruction cache. 

Il Instruction fetch. Output when the instruction cache is disabled 
(CD [CONTROL] = 1) and the TMS34020 is reading instructions or imme­
diate data from memory. 

Il Interrupt-vector fetch. Output any time a TRAP, interrupt, or reset 
occurs. The code indicates that the TMS34020 is reading the appropriate 
vector address from memory. 

Il Bus-locked operation. Executed when the TMS34020 executes a 
SWAPF instruction (indicating a locked read-modify-write operation). 

Il Pixel operation. Output when the TMS34020 performs any pixel opera­
tion and CST[DPYCTL] = o. 

Il Block write. Generated during one of the special 1-Mbit VRAM 
block-write cycles performed when executing the VBLT or VFILL instruc­
tion. 

8-11 



Ending a Local-Memory Cycle 

8.6 Ending a Local-Memory Cycle 

A data subcycle begins in the machine state immediately following the 
address/status subcycle. The data subcycle lasts for a minimum of 1 machine 
state. During this subcycle, the TMS34020 samples the LRDY and BUSFLT 
pins to determine when and how the local-memory cycle will end. The 
TMS34020 also samples the PGMD and SIZE16 pins atthis time. (Section 8.7, 
page 8-15, discusses PGMD; Section 8.9, page 8-25, discusses SIZE16.) 

Immediately following the address subcycle, the TMS34020 samples the 
LRDYand BUSFLT pins on LCLK2's low-to-high transition in each machine 
cycle ofthe data subcycle. The pins are notsampled in subsequent page-mode 
data subcycles (see Section 8.7). External hardware must decode the address 
output during the address/status subcycle and determine the appropriate 
levels for LRDY and BUSFLT. Table 8-3 lists the logical combinations of these 
signals. 

Table 8-3. Bus Cycle Completion Conditions 

Completion Condition BUSFLT LRDY 

Insert a wait state o o 
Successful transfer o 
Retry o 
Bus fault 

8.6.1 Extending a Local-Memory Cycle with Wait States 

8-12 

BUSFLTlow LRDY low 

Under these conditions, the TMS34020 inserts a wait state to extend the data 
subcycle. All local-memory control signals activated during the cycle remain 
active for an additional LCLK cycle. The TMS34020 samples LRDY and 
BUSFLT again on LCLK2's next rising edge. If the TMS34020 detects a wait 
condition again, it extends the data subcycle for another LCLK cycle, and so 
on. 

After the first data subcycle completes successfully, subsequent accesses 
may occur as page-mode cycles (see Section 8.7 on page 8-15). During 
page-mode cycles, the TMS34020 does not sample LRDY and BUSFLT. This 
means that wait states can be inserted during the first data subcycle, but not 
during subsequent page-mode cycles. This can be useful, for example, when 
using external memory management hardware that musttranslate an address; 
although the memory management hardware may allow for high-speed page­
mode accesses, it may not be able to quickly translate the address during the 
first access. 

Local-Memory and DRAMNRAM Interfaces 



Ending a Local-Memory Cycle 
~w~~~:::mx ~m-;:lSl'~~:::::::'.,:~~,%~~:~::~,.::$::-;::~..x:::::::::::'.x~m::::-.:::::::-.:::::::::-.:::-;::-,mm':::::$"'::::::~':~:::::::::::::::::::::~:::-;~::-;:::::::::;x::~;~;::-;-,::;w..::x-;::::::-;-;::-;~ 

8.6.2 Completing a Successful Local-Memory Cycle 

BUSFLTlow LRDY high 

Under these conditions, all the local-memory control signals active during this 
cycle are driven inactive on LCLK2's next high-to-Iowtransition, completing the 
cycle. A successful transfer should be indicated only if 

~ for read cycles, valid data will be available on the LAD bus at the next fail­
ing edge of LCLK2. 

~ for write cycles, the devices being written to will be able to latch the data 
on the LAD bus at the next falling edge of LCLK2. 

If these criteria cannot be met, the TMS34020 must extend the data subcycle 
by inserting wait states. 

8.6.3 Retrying a Local-Memory Cycle 

BUSFLT high LRDYlow 

These conditions terminate the local-memory cycle (in the same way as a 
successful transfer) and subsequently restart the cycle from the beginning. 
The original address and status code are output again during the address/ 
status subcycle of the retried access. 

When a retry occurs, the cycle may not restart immediately because the 
memory controller will first perform any higher priority requests that might be 
pending when the retry occurs. 

Some memory operations require multiple local-memory cycles. (For exam­
ple, modifying a field within a word requires a read and a write. If a field crosses 
a word boundary, 2 reads and writes are required. Also, accessing a 16-bit 
memory device requires twice the number of local-memory cycles.) Except for 
bus-locked local-memory cycles, a retry restarts only the memory cycle on 
which the retry occurred. If a retry occurs on the write portion of a 
read-modify-write sequence, it restarts from the write, not the read. Similarly, 
if a retry occurs on the second ofthe 2 accesses required to read or write a loca­
tion implemented as 16-bit memory, the first of the 2 accesses is not performed 
again; the address output on the LAD and RCA buses during the restarted 
access will have the S bit set to 1. 

The SWAPF instruction initiates bus-locked local-memory cycles used for 
exchanging semaphores. The read and write portions of a bus-locked opera­
tion must occur one immediately after the other. Because of this, if a retry 
occurs on the write part of a bus-locked operation, it is restarted from the read 
cycle. 

8-13 



Ending a Local-Memory Cycle 

If a retry occurs during a host-initiated local-memory cycle, the cycle restarts 
normally. However, the memory controller also sets HRYI[HSTCTLL], indicat­
ing that a retry occurred. If HBREN [HSTCTLL] is also set, the HINT pin is driv­
en low to interrupt the host. Once set by the memory controller, HRYI remains 
set until the host clears the bit. 

8.6.4 Bus Faulting a Local-Memory Cycle 

8-14 

BUSFLT high LRDY high 

These conditions inform the TMS34020 thatthe access was unsuccessful. The 
local-memory cycle is terminated (in the same way as a successful transfer); 
subsequent actions depend on the type of access that caused the bus fault. 

Q If the CPU initiated the access, the memory controller first saves its 
current state in the BSFLTD and BSFLTST registers, then signals a 
bus-fault interrupt to the CPU. (This applies to all memory cycles except 
those with host, DRAM refresh, or video-initiated VRAM serial-register 
transfer status codes.) The CPU saves on the stack all the data necessary 
to allow it to correctly restart execution after returning from the bus fault, 
then reads the bus-fault vector address from FFFFFBCOh. 

The bus-fault routine should clear the cause of the bus fault. Upon return­
ing from the bus-fault routine, the CPU pops all the data it pushed before 
taking the interrupt. The memory controller restores the state of the faulted 
memory cycle from BSFLTD and BSFLTST and restarts the cycle (in the 
same way as for a retry). Section 6.9 (page 6-19) discusses the bus-fault 
interrupt in detail. 

[J If the host initiated the access, the memory controller terminates the 
local-memory cycle (in the same way as for a successfu I transfer) and sets 
HBFI[HSTCTLL] to indicate that a bus fault occurred. No other action is 
taken. If HBREN[HSTCTLL] is also set, the HINT pin is driven low (while 
HBFI is set), to interrupt the host. The host must then clear the source of 
the bus fault before attempting to restart the access. Once set by the 
memory controller, HBFI remains set until the host clears it. 

o If the access was a DRAM-refresh or video-initiated screen-refresh 
cycle, no action is taken. The local-memory cycle is terminated in the 
same way as a successful transfer. 

Local-Memory and DRAMNRAM Interfaces 



Performing Local-Memory Cycles in Page Mode 
~ m .. w:W%~~mwn ..... w ....... w....................... ffiW:CW"'W .. ~.... ...w ........ w ::::~::::;msm-;g':W%:c m::~~ 

8.7 Performing Local-Memory Cycles in Page Mode 

Many DRAMs and VRAMs can operate in page mode. This mode can greatly 
reduce the time required to access a memory location when performing multi­
ple memory cycles, provided that the row address for each access is the same. 
The TMS34020 directly supports page-mode accesses and uses page mode 
whenever possible. 

Figure 8-2 shows the general form of page-mode accesses. It also shows the 
signals required to latch the addresses present on the LAD and RCA buses. 
The first access of any sequence always consists of an address/status sub­
cycle and a data subcycle, as outlined in Section 8.4 (page 8-8). However, 
if multiple accesses are to be made using page mode, the ALTCH and RAS 
signals do not go inactive at the end of the first data subcycle. They remain 
active until the end of the last access in the sequence, thereby ensuring that 
the original row address stays latched in the DRAMs throughout the access. 
Afterthe first word is accessed, all subsequent accesses are made using single 
machine-state page-mode cycles, during which the column address for the 
access is output and data is transferred. 

Figure 8-2. Multiple Local-Memory Cycles Using Page Mode 
I.- Address/Status -..I.- Page Data -I.- Last Data ....I I (t LCLK cycle) I (iccurst timet) I (1 LCLK cycle) I 
1~1~lool~I~I~lool~I~I~lool~1 

LCLKI J;-t-i\ I 1/ I 1\ 1 1/ 1 1\ I II 
LAD ::?--k a¥@s*ruuJx : ¥a: :X: d'a: :>-
RCA ~ +< ~wa+9 .. } fOlumf addrrss ;x ;COIU+ addless ;>-

ALTCH 1 : 1\ I I I I I I I Ilrr 
-III I I I I I I 1 I I~ 
RAS I I I 1\ I I I I I I I I~ 
CAS I I I I I 1\ I II I 1\ I Ir+ 

I I I I I I I 1 I I 1 I 

Notes: 1) Except for the first data subcycle (which may be extended by inserting wait 
states), each page-mode data cycle is only 1-LCLK cycle long. 

2) n is an integer in the range of 0-63. 

3) For complete timing diagrams for specific local-memory cycles, refer to 
Sections 8.8-8.13 (pages 8-18-8-44). 

8.7.1 Selecting Page-Mode Operation 

Each time the TMS3020 performs a standard memory access, it has the oppor­
tunityto perform a page-mode access. The TMS34020 samples the PGMD pin 
to determine whether the DRAMNRAM supports page mode. If subsequent 
memory accesses are required, these are (whenever possible) performed in 
page mode unless the local memory indicates that page-mode accesses are 
not supported at the current address. 

8-15 



Performing Local-Memory Cycles in Page Mode 

External hardware must decode the address output during the address/status 
subcycle and determine the appropriate level for the PGMD pin, which the 
TMS34020 samples at the same time as LRDY and BUSFL T. Sampling a 0 on 
the PGMD pin indicates that page-mode accesses are supported. If wait states 
are inserted into the initial memory cycle, PGMD must be kept at a valid level 
on LCLK2's low-to-high transition during each machine state of the data 
subcycle. 

The TMS34020 supports a page size of sixty-four 32-bit words. All memory 
locations for which logical address bits 10 through 31 are the same are consid­
ered to be within the same page. If, while performing a sequence of page-mode 
accesses, the TMS34020 wishes to access a location that is not on the same 
page as the previous access (that is, the value on bits 10 througH 31 differ), 
the page-mode sequence ends. The access is made using an standard 
local-memory cycle, with an address/status subcycle and a data subcycle, so 
that a new row address can be output. LRDY, BUSFLT, and PGMD can be 
resampled. 

Once PGMD is detected low and a page-mode sequence begins, the 
TMS34020 does not sample LRDY, BUSFLT, and PGMD again. This means 
that 

Q All 64 locations within the page must be capable of supporting page-mode 
operation. 

Q All locations within a page must support 0 wait-state accesses. 

Q No bus faults or retries can be generated within the page, once a 
page-mode sequence has started. If you are using bus faults to implement 
a virtual memory system, this means that the entire page must be mapped 
into the physical address space. 

8.7.2 How the TMS34020 Uses Page Mode 

8-16 

The TMS34020 uses page mode any time it must make multiple accesses to 
contiguous addresses. Page-mode cycles can originate from two sources: the 
CPU and the memory controller. Assuming that the addressed memory 
supports page mode, a page-mode cycle occurs: 

Q Any time the CPU wishes to read or write multiple consecutive words in 
memory. This can occur during almost all graphics instructions (PIXBLT, 
FILL, VBLT, VFILL, etc.) and the multiple move instructions (MMTM, 
MMFM, and BLMOVE). It can also occur anytime a cache fill is performed, 
or if a context switch is made before servicing or when returning from an 
interrupt. 

Q Any time the memory controller must perform multiple memory accesses 
to complete a single memory operation. This occurs when the CPU wishes 

Local-Memory and DRAMIVRAM Interfaces 



Performing Local-Memory Cycles in Page Mode 
~t-;::;;::~ ,*,m~t'~Wfi~~$'7~ ............................. "'%~~'''~~'~~m::xm~·~ ...... ''~~''~~~ ........ mm: 

to write a non-byte-aligned field within a word (in which case a 
read-modify-write must be performed), or if the CPU accesses a field that 
straddles a word boundary. It can also occur when dynamic bus sizing is 
used to access a 16-bit memory (because 2 memory accesses are 
required to completely read or write one word). This occurs on both host­
and CPU-initiated accesses. Section 8.9 (page 8-25) discusses dynamic 
bus sizing. 

Note: 

The TMS34020's 1/0 registers cannot be accessed using page mode. 

To allow instructions that move data from one area of memory to another to use 
page-mode, the TMS34020 contains a temporary register file capable of stor­
ing eight 32-bit words. This allows up to 9 words to be read from the source 
using page mode, and then written to the destination. If the original destination 
data is not to be combined with the source data in any way, these writes can 
also be performed using page mode. 

8-17 





Local-Memory Read and Write Cycles 
... "6Z'Z""_ ... """' ....... ==""""""'''''''''''''''''''rrS5'''''. """""""""""""""."".=== .... ,.=_""""' __ ="""iW~..mzm:m;rm-",w..m:wm'rr:::'rr~m::m:rrm ;$r;;mM~ 

LRDY is shown being sampled high on LCLK2's high-to-Iow transition during 
an address/status subcycle. This is to maintain compatibility with future 
pin-compatible TMS340xO devices. Current devices ignore the state of LRDY. 
However, future devices may not; the value of LRDY sampled at this time may 
be used to prolong the address/status subcycle. This eases interfacing to 
DRAMs if the TMS34020's LCLK frequency is increased above 1 OMHz. Main­
taining LRDY high at this time in your current designs ensu res that the address/ 
status subcycle timing shown in the diagrams will not be affected when you use 
future TMS3402x devices. 

Figure 8-3. General Timing of the Local-Memory Read and Write Cycles 

I.--- Standard Memory Cycle .. I. Palle Mode -.I 
I I cycle I 
I Address Subcycle I Data TranSfer I Data Transfer I I Subcycle Subcycle 

'~iru'oo'oo'~'ru'oo'oo'~'ru'oo'oo'~'ru' 
LCLK1Li/ I I,ll 1 I, 1 II 1 I, 1 Ir-f 

I ! I I 1 I 1 I 1 1 1 1 I 1 
LCLK2j\ 1 II I I' I II I 1\ I I~ 
Gi~i~,~ 

LAo*-+< :add,ss :x: : : :x: : : >-~ 

-:~ 
ALTCH I I' 'I 1 I I I I I I 1rT"l 

17 11 III I I 1 I I I~ 
RAS 1 I I' I I I I I I I I'll 

1 I I I I I I I I I 1---1---1 
CAS P iii I I' I II i I' I II i i 
WE V I I I i': : :' 1\: : :' 1 I 
~ I I I I I I 

TR/QE ~ i I I': : :' i': : :' I I 
SF ~T' I I I I I 1 1 I I I', 

~U11i4!~ 
PGMO~I~ 

SIZE16 

-:ttrm!trmm 
8-19 



Local-Memory Read and Write Cycles 
~ ~~ 

8.8.1 Local-Memory Read Cycle Timing (with Page Mode) 

A local-memory read cycle (with page mode) transfers data and instructions 
to the TMS34020 from memory that supports page-mode accesses, as 
Figure 8-4 shows. The status code on LADO-LAD4 identifies a data transfer, 
cache fill, instruction fetch, interrupt-vector fetch, or pixel operation. 

DDOUT goes low during the address subcycle to enable the address through 
external bus transceivers to the memory. DDOUT returns high after the 
address is latched, indicating that a memory read cycle is about to take place. 
The LAD bus goes into a high-impedance state following the address subcycle, 
allowing data from the addressed memory to be placed on the bus. 

External decode logic asserts PGMD low at the beginning of 02 after RAS low 
(the first data subcycle), indicating that the memory supports page-mode 
operation. External logic also asserts LRDY high and BUSFLT low at this time, 
indicating that the cycle may continue without a retry, bus fault, or wait-state 
insertion. SIZE16 must be valid at the beginning of 02 during all data transfer 
cycles, indicating whether the access is to a 32-bit or a 16-bit memory device. 
In Figure 8-4, the external logic asserts SIZE16 high to allow access to 32-bit 
memory. 

The TMS34020 outputs DDIN high during the data transfer cycle, allowing the 
external bus transceivers to enable data to the processor. Data from the 
accessed memory must be valid at the beginning of 04 in the data transfer 
cycle (with some data setup time). The data from the memory should be 
disabled with the low-to-high transition of ALTCH, RAS, CAS, orTR/OE, or with 
DDIN's high-to-Iow transition. These transitions occur well before the time at 
which the LAD bus turns on to output the address for the next cycle. 

Note that the TMS34020 does not sample LRDY, PGMD, and BUSFLT during 
subsequent page-mode cycles when accessing 32-bit memory. The 
TMS34020 does not sample SIZE 16 during the page-mode cycle, because the 
memory has responded that it supports 32-bit accesses. Section 8.9 (page 
8-25) discusses dynamic bus sizing and SIZE16 in detail. 

8.8.2 Local-Memory Write-Cycle Timing (with Page Mode) 

8-20 

As Figure 8-5 (page 8-22) shows, this page-mode write cycle transfers data 
from the TMS34020 to memory that supports page-mode accesses. 
LADD-LAD31 output the data during the data transfer subcycle. The status 
code output on LADo-LAD3 identifies a data transfer or a pixel operation. 

DDOUT remains low after the initial address output on LAD (during 04 after 
RAS goes low). This indicates that a memory write cycle is about to take place, 
allowing the data to be output through external data transceivers. WE is output 
low before the CAS signals go low to implement an early write to the DRAMs 
and VRAMs. Because data is valid both before and after the CAS signals are 
asserted low, external devices can latch the data on either the high-to-Iow or 
low-to-high edge of a signal that is the logical-OR of CAS and WE. 

Local-Memory and DRAMNRAM Interfaces 



LO(;ahlVIf:!lrT/Olrv Read and Write 

Figure 8-4. Local-Memory Read-Cycle Timing (with Page Mode) 

j.- Standard Memory Read Cycle 

Kn; LAD (TMS34020): The TMS34020 outputs this to the LAD bus. 
LAD (memory): Memory outputs this to the LAD bus. 

8-21 



Local-Memory Read and Write Cycles 
;:m; ...... t«W~; ;;;; 

Figure 8-5. Local-Memory Write-Cycle Timing (with Page Mode) 

I.- Standard Memory Write Cycla --.J..- Page-Mode --eI 
I I Write I 
I Address Subcycle I Data Transfar I Data Transfar I I Subcycle Subcycle 

1~lrul~lool~lrul~lool~lrul~lool~lrul 
LCLKl '--lI I 1\ I II I 1\ I II I 1\ I 1,-1 

II I I I I I I I I I I I I 
LCOOI\ I II I 1\ I II I 1\ I II I I\...J--' 

Gi~i~l~ 

~ ... 
ALTCH" I I 1\ I I 1 I I I I I 1m -17 1 I I I I I I I I I I I~ 

RASI I I 1\1 I I I I I I 1m 
cAsl, I I I I I I~ I I, I l,-I--i 

r I I I I I l---r-r I I I I I I 
WE V I 1 I I 1\ I I lri\. I Irtl 
"I I I I I 1 1 I 1 1 I 1 

TRlQE I I I I I 1 I I 1 I 1 I 
~.ll I I I I I I I I I 

SF r---r-- I I I I I I I I I I I""l 
DDIN~ I I I : I I I I I I I I I 

I I I I I I I I I I I 
DDOUT V 1 1\ I I I : 1 111\ 1 I~ 
LRDY~I$i~ 
PGMD~I~ 

SIZE16 

BUSFLT~I~ 
Rol : : :\ I 1 I I I I I II I I I 
Rll ; ; ;7 I I I I I I I 1\ I I I 

I I I I I I I I I I I 

Note that when accessing a 32-bit memory, the TMS34020 does not sample 
LRDY, PGMD, and BUSFLT during subsequent page-mode cycles.The 
TMS34020 does not sample SIZE16 during the page-mode cycle, because the 
memory has responded that it supports 32-bit accesses. Section 8.9 (page 
8-25) discusses dynamic bus sizing and SIZE16 in detail. 

8.8.3 Local-Memory ReadlWrite or Read-Modify-Write Cycle Timing 

8-22 

The TMS34020 performs a read-modify-write cycle when inserting a field that 
crosses byte boundaries. This is not the same as the read-modify-write cycle 
specified for some DRAMs, because the CAS signals do not remain active low 
between the read and write. The read-modify-write operation consists of: 

Step 1: A word is read from 'memory. 

Local-Memory and DRAMNRAM Interfaces 





Local-Memory Read and Write Cycles 

If a bus fault or retry aborts this cycle, the cycle restarts from the aborted 
access. If the cycle is interrupted by a higher priority access between the read 
and the write, the memory controller restarts it from the write (unless the 
access was bus locked, in which case it restarts from the read). 

Note that when accessing 32-bit memory, the TMS34020 does not sample 
LRDY, PGMD, and BUSFLT during subsequent page-mode cycles. The 
TMS34020 does not sample SIZE 16 during the page-mode cycle, because the 
memory has responded that it supports 32-bit accesses. Section 8.9 (page 
8-25) discusses dynamic bus sizing and SIZE16 in detail. 

8.8.4 Host-Initiated Local-Memory Read and Write Cycles 

8-24 

When the host requests access to the TMS34020's local memory, the host 
interface schedules a host request to the memory controller. The memory 
controller then performs the appropriate local-memory cycle. The host can 
request a read or a write; there are two types of each request. 

Q Host read from ... 

• local memory. This cycle transfers data from the local memory to the 
bidirectional data transceivers required to interface the LAD bus to the 
host's data bus. 

• TMS34020 1/0 register. This cycle transfers data from one of the 
TMS34020's 1/0 registers to the bidirectional data transceivers 
required to interface the LAD bus to the host's data bus. 

Q Host write to ... 

• local memory. This cycle transfers data from the bidirectional data 
transceivers to the local memory. 

• TMS34020 1/0 register. This cycle transfers data from the bidirec-
tional data transceivers to one of the TMS34020's 1/0 registers. 

Chapter 7, Communicating with a Host Processor, describes these cycles in 
detail. Cycle timings for the four host local-memory cycles are in Figure 7-8 
(page 7-19), Figure 7-9 (page 7-20), Figure 7-15 (page 7-26), and 
Figure 7-16 (page 7-27). 

Host-initiated cycles use page mode only when accessing 16-bit memory. 

Local-Memory and DRAMNRAM Interfaces 



Dynamic Bus Sizing 
~ .... ~~!::::s~~m~ .... w..ss:: .... ~=~:=w='-'w= ........ = ........ =~x """""==_=-===_ .. ::l' .... ~~m .... ~~~~~~ .... AA_===="'"._"'=r:= .... ~ .... %rw:' :=;;;:' :':R::m-

8.9 Accessing 16-Bit or 32-Bit Memory Devices (Dynamic Bus Sizing) 

The TMS34020's dynamic bus sizing capability allows the local memory to be 
organized as 32 bits wide, 16 bits wide, or a combination of the two. This can 
be useful for minimizing system cost if only a small amount of a particular 
memory type (such as ROM or EPROM) is required. 

Initially, when the TMS34020 accesses a new location, the 16-bit word-select 
bit (S) is O. (S is output on LAD4 during the address/status subcycle and on 
RCAO during the data subcycle.) S=O means that the address output is aligned 
to a long-word. If the memory is 16 bits wide, only 16 bits of data are transferred 
during this access. Another memory access with S= 1 must be performed to 
transfer the remaining 16 bits. The SIZE16 pin provides a mechanism fordoing 
this. 

The TMS34020 samples SIZE16 on LCLK2's low-to-high transition during the 
data subcycle (at the same time as LRDY, BUSFLT, and PGMD). SIZE16 
conveys two different but related pieces of information to the TMS34020, 
depending on the value of S output during the memory cycle. 

Q During the initial access to a location (when S=O), SIZE16 determines 
whether the memory is 32 or 16 bits wide. Asserting SIZE16 low selects 
16-bit wide memory. 

Q If SIZE16 was asserted low during the initial access to a location, the 
TMS34020 performs a second access (with S=1). During this memory 
cycle, SIZE16 is used to determine which half of the LAD bus the memory 
is attached to (LADO-LAD15 or LAD16-LAD31). 

Table 8-4 summarizes the interpretation of the different combinations of 
SIZE16 and S. 

Table 8-4. Interpretation of SIZE16 

51ZE16 51ZE16 
(5=0) (5=1) Interpretation 

32-bit access 

o 0 16-bit access via LADD-LAD15 

o 16-bit access via LAD16--LAD31 
Note: If 81ZE16 is sampled as a 1 when 8=0, no access is made with 8=1. 

Determining which level to assert for the SIZE16 pin depends on which half of 
the LAD bus the memories are wired to: 

Q When data is transferred over LADQ-LAD15, the external decode logic 
should simply assert SIZE 16 low during all accesses to 16-bit memory. 

Q When data will be transferred over LAD16-LAD31, the external decode 
logic can use the S bit's value to determine which level to assert on SIZE 16 
during accesses to 16-bit memory. 

8-25 



Dynamic Bus Sizing 
~~~~::::W~'$',~;:.w,;:;m;:;:~:;:~~h~Y,:~~:r"",,:::;::::::-~~~~~~;:~~::;:wx~;o;:;9K~~:::-7.@,.:;mX::'::X~~.Y"'::~~:::;-;::X-~~h::~»':} 

8.9.1 Data Transfer Using Dynamic Bus Sizing

8-26

With dynamic bus sizing, the initial access (with S=O) is no different from a reg­
u lar 32-bit access. The TMS34020 asserts the appropriate CAS strobes for the
access and transfers data over the LAD bus in the normal way. During the sec­
ond access (with S=1), the local-memory control signals behave differently:

o The 2 least significant CAS strobes are swapped with the most significant
CAS strobes; the levels initially output on CASO and CAS1 (when S=O) are
output on CAS2 and CAS3, respectively, and vice versa.

o During a local-memory write, the LAD bus halves are swapped; the data
initially output on LADO-LAD15 (when S=O) is output on LAD 16-LAD31,
and vice versa.

Q During a local-memory read, the data latched from LADO-LAD15 is
swapped onto bits 16-31 of the internal data bus, and vice versa.

This mechanism allows 16-bit memories to be wired directly to one half of the
LAD bus and to the corresponding pair of CAS strobes, without the need for
any external multiplexing logic.

Figure 8-7 shows a read operation from 16-bit memory. All CAS strobes are
active during both read cycles. Figure 8-8 shows a write operation to a 16-bit
memory device. Note how the CAS strobes have been swapped during the
second access. Both diagrams show page-mode operation (discussed in
Section 8.9.2).

Note:

During local-memory read cycles to 16-bit memory, the TMS34020 must
merge the 16 bits of valid data latched during the second (S=1) cycle with the
16 bits of valid data latched during the initial (S=O) cycle, forming the full 32
bits for the access. During the initial cycle, all 32 bits of data on the LAD bus
are latched, but only half is valid. During the second cycle, the level sampled
on SIZE 16 determines which half of this data is overwritten by the second 16
bits of valid data. Because the halves of the LAD bus can be swapped only
during the second access, memories connected to LAD16- LAD31 must
actually transfer the 16 MSBs of data during the initial cycle, and the 16 LSBs
during the second cycle. This can be achieved by inverting the S bit before
connecting it to the memory's least significant address pin.

When performing a read-modify-write operation to 16-bit memory, the
TMS34020 performs the 2 read cycles first, followed by the 2 write cycles.

If the local-memory system indicates that the location being accessed is
arranged as 16-bit memory, the TMS34020 always accesses both 16-bit
words, even if it was only attempting to insert a field in the first of the two 16-bit
words.

Local-Memory and DRAMNRAM Interfaces

Figure 8-7. Dynamic Bus Sizing for a Read Cycle (Connection to LADO-LAD1S,
Indicated by SIZE16 Low During 2nd Data Cycle)

1 Address Subcycle 1 Data Transfer 1 Data Transfer 1
I Subcycle I Subcycle 1

i~II~I~lool~I~I~lool~I~I~lool~I~1
LCLKI 1 I 1 I ,--Ir---¥

I 1
1

LAD0-15

LADI6-31

1
I 1 I 1

1 1 1 I 1 1 I
TR/QE VII In. irii

SF I--l ~ 1 1 1 1 I Ir~ r----r- I 1 I I I I I 1 I I I
ODIN 1 1 I 1 1 I 1

~ I I I I I 1 1 1 I

o::~!~
''''''== 1== BUSFLT_i_

: 1 1 flO:: >1111111 JlIII
- i : : : 1 1 1 1 1 1 1 1 1 1 1
Rl1 1 1 1 1 1 1 1 I' 1 1 1

8-27

Dynamic Bus Sizing

Figure 8-8. Dynamic Bus Sizing for a Write Cycle (Connection to LAD 16-LAD31,
Indicated by SIZE16 High During 2nd Data Cycle)

I Address Subcycle I Data Transfer I Data Transfer I I I Subcycle I Subcycle I
1~1~1~lool~I~I~lool~I~I~lool~I~1

LCLK11 I I I I I I I

LCLK2 ~~.v

LAOQ-15

LA016-31

I
= l

~~~~~~~+-~~I~ 
:::~I 
I, I I ,--I---l 
I '---+--1' I ! 

'--~-t'r-r-~ I I I 

1/ I I 
M-4--r~--~~~ 

'-I---i'l I I 

II I~ 
WEV IrI\. 1111 

1-, I I I I I I 
TRlQEji i I I I I 
SF~ ~ I : I I : I : I I I I,...J r--r- I I I I I I I I I I 

ODIN 1\ I I I I I I II I II I I I I I 
L I I I I I I I I I I I 

OOOUTV I 1\ I : I I I 1r1\. I I IIR 

~::~i== 
SIZE16_1~1~ 
BUSFLT~:~ 

RO: : : :\ I I : I I I I 1/ I I : 

R1! : : ;7 i 1 : 1 1 : 1 1\: : : 

8.9.2 Page Mode and Dynamic Bus Sizing 

8-28 

Whenever possible, the TMS34020 uses page mode for accessing 16-bit 
memory. The TMS34020 samples SIZE16 at the same time as LRDY, 
BUSERR, and PGMD (on LCLK2's low-to-high transition immediately follow­
ing the address/status subcycle). If the TMS34020 samples PGMD low and 

Local-Memory and DRAMNRAM Interfaces 



Dynamic Bus Sizing / VRAM Serial-Register Transfers 
:m.=::m""""'~"""~;l'~W~~~.:::::m»""':::~~::-;::::::::::::::::::I:;::::m~.:::w-::s::::::~$...::m'.::::.:.::::.~.::.~:::;~-m;::':;:;(~~:::~-:;':''l=~~W"..::.:;xz:;:;s:.:::;~m-~~z~,;:~:::::::::::;:;:m::-~ 

SIZE16 high (indicating that page-mode accesses can be made to 32-bit 
memory), it does not sample SIZE16 again during the page-mode sequence 
that may follow. If, however, the TMS34020 samples SIZE16 low (indicating 
16-bit memory), it samples the signal during all subsequent page-mode 
accesses to determine which half of the LAD bus the memory is connected to. 

o If the memory is connected to LADO-LAD15, SIZE16 is asserted low 
during all subsequent page-mode cycles. 

o If the memory is connected to LAD16-LAD31, the value of S output on 
the RCA bus can be used to determine the level of SIZE16 required for 
each page-mode cycle, as Table 8-4 (page 8-25) illustrates. 

Page mode greatly increases the rate of access to 16-bit memory. For exam­
ple, reading or writing a long-word in 16-bit memory requires 2 standard 
memory cycles without page mode (at least 4 machine states), or a standard 
memory cycle followed by a page-mode cycle if page mode is supported (3 
machine states). If subsequent words are accessed using page mode, only 2 
machine states are required for each long-word. Similarly, a read-modify-write 
operation takes only 5 machine states in page mode, compared to 8 without. 

8.9.3 Bus-Locked Operation and Dynamic Bus Sizing 

The SWAPF instruction initiates the bus-locked read-modify-write operation. 
This operation is used for passing semaphores to and from a memory location 
that both the host and the TMS34020 can access. It is uninterruptible; if the 
cycle is interrupted between the read and the write, it starts again from the 
read. This ensures that the write always immediately follows the read. How­
ever, if 2 reads and 2 writes are required, uninterruptibility cannot be guaran­
teed, and because of this, the bus-locked local-memory cycle does not sample 
the SIZE16 pin and does not support 16-bit memory. 

A single read and write are performed. Each cycle outputs only S=O. Any sema­
phores contained in 16-bit memory locations that require S=1 in order to 
access them are not accessed during a bus-locked operation. 

8.10 VRAM Serial-Register Transfers 

The TMS34020 provides control for data transfers between the serial registers 
and the memory array of VRAMs. This is achieved by the appropriate timing 
of the SF, CAS, TRfQE, and WE pins of the VRAMs at the falling edges of RAS 
and CAS. The cycles include 

o Memory-to-serial-register cycle (VRAM read transfer) 

o Memory-to-split-serial-register cycle (VRAM split-serial-register-read 
transfer) 

o Serial-register-to-memory cycle (VRAM write, pseudo-write transfers) 

o Serial-register-to-memory cycle (VRAM alternate-write transfer) 

8-29 



VRAM Serial-Register Transfers .. 

8.10.1 Memory-to-Serial-Data-Register Cycle (VRAM Read Transfer) 

Performed when - executing a pixel-read instruction and 
- CST[DPYCTL] =1 

or - video timing logic requests a horizontal- blank-reload 
cycle and 

- VCE[DPYCTL] = 0 

Indicated by - TRIOE and SF low a.nd 
- CAS and WE high when RAS goes low 

Status code identifies a memory-to-register transfer 
- 01002 (initiated by the video timing logic) or 
- 01012 (initiated by the CPU) 

Although the TMS34020 ignores PGMD and SIZE16 during this cycle, you 
should hold them at a valid level (as the figures show them). 

As Figure 8-9 shows, this cycle causes TR/OE to make its low-to-high transi­
tion at the beginning of 03. 

Figure 8-9. Memory-to-Serial-Data-Register Cycle (VRAM Read Transfer) 
1~1~1~lool~I~I~lool~I~1 

Gi~I~ 

8-30 

~-ALTCH V I I I' I I 1 I Ir-r--l 
L I I 1 I I I 1 I I I 

RAS V I i I I' I I 1 liII 
_I, I I 1 I 1 I 1 I--L........l 
CAS I' I I I I I I' I I~ 
WE P I I I 1 I I I I I 1 

I 1 I I I I I I I I 
TR/QE V I I I' 1 I I V I I 1 

~-!... 1 I I I 1 I I I 
SF~I I I I I I I I""j 

ODIN \ I I I II II I I I I 
~ I I I I I I I I I 

OOOUT lU.l.11 ~ I iJJ:.j 
LROY~I¥I.~ 

PGMO~ 
SIZE16 

BUSFLT p.~""'I""""9""""~"F''''I''''",-+"'''I''''''''f'''''l'~~ 
RO I : : :' I I i II I 1 I 

Rl I ; ; ;x: : : :': : I 
Local-Memory and DRAMNRAM Interfaces 



8.10.2 Memory-to-Split-Serial-Data-Register Cycle 
(V RAM Split-Register Midline-Reload Transfer) 

Performed when • SCOUNT overflows from all 1 s to all Os, 
• VCE[DPYCTL] is cleared to 0, and 
• SSV[DPYCTL] and SRE[DPYCTL] are set to 1 

Indicated by • TR/QE low and 
• CAS, SF, and WE high when RAS goes low 

Status code 01002 (video-initiated VRAM-memory-to-register cycle) 

Although the TMS34020 ignores PGMD and SIZE16 during this cycle, they 
should be held at valid levels. 

Figure 8-10. Memory-to-Split-Serial-Data-Register Cycle (VRAM Split-Register Midline-Reload Transfer) 

1~1~1~IOOI~I~I~IOOI~I~1 

Gi~I~ 

':~+-H-+~ 
RCAR-I-~ 

ALTCH V I I I' I I I I 1111 
17 I I I I I I I I I I 

RAS I i I 'I I I IIjI -It I I I I I I Ir+-! 
CAS I I I I 1\ I I I I 
WE IJ I I I I I I I I 

r I I 1 I I I I 
TRiOE V I I I' I V I I I 

WII I IIII 
SF!-T-r I I I I 1'-1 

DDIN~ I I I I I I I I I 
I I I I I I I 

rnro~~ 
LRDY 

PGMD __ 

SIZE16~ 
BUSFLT~I~ 

RO 1 : : :' I I I 1/ I I I 
- I I I I I I I I 1 I I 
Rl I I I I I I I I I I I 

8-31 



VRAM Serial-Register Transfers 
sss~S%'Z 

8.10.3 Serial-Data-Register-to-Memory Cycle 
(VRAM Write Transfer and Pseudo-Write Transfer) 

Performed when - video timing logic requests a horizontal-blank reload 
and 

- VCE[DPYCTL] and SRE[DPYCTL] are set to 1 

Indicated by - TR/QE, SF, and WE low and 
- CAS high when RAS goes low 

Status code 01002 (video-initiated VRAM-memory-to-register cycle) 

The level of the VRAM SOE pin at the falling edge of RAS selects between write 
transfer (SOE low) and pseudo-write transfer (SOE high) cycles. Section 9.13, 
Video RAM Control (page 9-42), describes application of this cycle. 

Figure 8-11. VRAM Write Transfer and Pseudo-Write Transfer 

8-32 

1~lru 1~lool~lrul~lool~lru I 
Gi~I~ 

c::_:::t 
RCA~ __ ..J 
rI I I 

ALTCH v;"""'''';''I----'IL....-'';''I\ I I I Ir-r--l 
L I I I I I I I I I 

RAS V I i I 1\ I I IIjI 
_I, I I I I I I I--L...-....J 
CAS I' I I I I 1\ I ( i i 
WE IJ I I 1\ I 1.1.. 1rr--1 

r I I I I "1· I I I 
TRlQE V I I 1\ I . II . I I I 
~I I l·l. I I I 

SF~T' I I f ,t< I I" 
ODIN \ I I I I I I 1 I I II 

~ I I I I I I I 
DDOUT lLtl Ill.. 1 ~ 
LRDY~I*I~ 
PGMD~ 
SIZE16~ 
BUSFLT~I~ 
i'io~1111/111 
- I : : : I I I I I I I 
R1 i\ I I I I I I I 

Although the TMS34020 ignores PGMD and SIZE16 during this cycle, they 
should be held at valid levels as shown. Note that external logic must provide 
control of the VRAM SOE pin. 

Local-Memory and DRAMNRAM Interfaces 



VRAM Serial-Register Transfers 
wm· ........... .-w.w.;r~~~m$:':::'mm:;:'rm~·~mm:::':::'~rt~~st-Sl'~s~· ..... mm .......... ···"· ..... ··~.xxx mw=':;;:,r""'sss~r_""""" 

8.10.4 Serial-Data-Register-to-Memory Cycle (VRAM Alternate-Write Transfer) 
Performed when - pixel-write instruction is executed and 

- CST[DPYCTL] is set to 1 

Indicated by - CAS, WE, and SF high when RAS goes low and 
- TR/QE low when RAS goes low 

Status code 01012 (CPU-initiated VRAM-memory-to-register cycle) 

This cycle does not require use of the VRAM's SOE pin and does not affect the 
status of the serial I/O pins. Although the TMS34020 ignores PGMD and 
SIZE16 during this cycle, they should be held at valid levels, as shown. 

Figure 8-12. VRAM Alternate-Write Transfer 
1~lruloolool~lruloolool~lrul 

Girx&>.I~ 

~-RCAR-I--l 
ALTCH V . I I 1\ I I I Ir-r---J 

~ I I I I I I I---L....J 
RAS I i I 1\ I I II I I 

CASV 1 1 1 1 I' i irt--i 
WEI;: I I 1\ I I I I~I 

r I I I I I I 
TR/QE V I I 1\ II I I I 

W 1.; I I I I I I 
SF!--T I I I 1\ I I I 1,-1 

DDIN~ I I I 1 I 1 I I I 1 
I I I I I I I I 

ooou;~ II.., I~ 
LRDY I I 

PGMD 
L .1 

SIZE16 

BUSFLT T I 

I 

" I I i I, ! I I I I I I, I I I I I i I 
RD 

Note: 

VRAMs without an SF pin do not directly support the VRAM alternate-write 
transfer. However, the only difference between this cycle and the VRAM write 
transfer (see Section 8.10.3) is the state of SF at the falling edge of RAS, so 
both cycles appear the same to the VRAMs. In this case, the external hard­
ware used to control theVRAM SOE pin must operate for both types of cycle. 

, . . I 

8-33 



VRAM Write-Mask Local-Memory Cycles 

8.11 VRAM Write-Mask Local-Memory Cycles 

Some VRAMs (such as the TMS44251) contain special logic to enhance the 
performance of writing certain types of data to the memory. The TMS34020 
provides direct support for the VRAM's on-chip write-mask and block-write 
capability. 

A write-mask register within the VRAM allows each 1-bit plane within the 
memory array to be selectively writable or write protected. This is equivalent 
to the TMS34020's plane mask (described in Section 12.10, page 12-39). 
When plane masking is used, the memory controller must normally perform a 
read-modify-write operation, so that only the required bits of each pixel are 
modified. However, when a copy of the plane mask is stored within the VRAM, 
the memory controller need only perform a special write cycle that uses the 
VRAM's write mask. The plane masking is then carried out within the VRAM, 
as data is written. Obviously, the ability to perform a write instead of a read­
modify-write significantly increases the rate at which data within the memory 
can be modified when using plane masking. 

Writing a 1 to VEN[CONFIG] indicates that the VRAMs in the system contain 
a write-mask register. The TMS34020 provides the following local-memory 
cycles to enable the VRAM's write mask to be used: 

[J Load-write-mask cycle 
[J Write cycle (with mask) 
[J Block-write cycle (with mask) 

Section 8.12 (page 8-37) discusses block-write cycles, including block-write 
with mask. 

8.11.1 Load-Write-Mask Cycle 

8-34 

Performed when - PMASKL or PMASKH is written to and 
- VEN[CONFIG] is set 

Indicated by - CAS, WE, TRfQE, and SF high at the falling edge of 
RASand 

- SF low at the falling edge of CAS 

Status code 01102 (write-mask load) 

After the plane mask is copied into the TMS34020's PMASK registers, the 1 s 
complement of PMASK is written to a special register on the VRAM that is used 
in subsequent cycles requiring a write mask. (The 1 s complement of PMASK 
is output on the load-write-mask cycle because the TMS34020 masks the bits 
that are set high in the PMASK registers and the VRAM write mask enables 
the bits that are set high in the write-mask register.) 

Local-Memory and DRAMNRAM Interfaces 



VRAM Write-Mask Local-Memory Cycles 
:::~::::~:::::::.'X::::::x:=.:::;::.::~::::~~::::~;.-:;;.-::::::::::x::::::x~::::::::::xx:;--•• ::!:::g@~~~~.x:::::~~~::::::::::;~~:::~::::~~.;;::-.:x::::::::::::::::::::::::;::;::::::~~::::~:::::!:".x::::::::::::::::::::x-;~*~:~«~:x;:~~::::::~:::::;~::~::::'::::::X::::~';:::::::*~:::~:~:::~::::::~::::~::::;::;:::::~:::::::::::::::;::::::.::::::::~.x::~«::,.;;:;~~::::::::::::::;::.;;:::~::::::~~::::::::::::~~::::::::::::::::::::::::::::::::::::::::~::~:::::::::*:::::::::::::x-.:::.x:::::::::::::~, 

Although the TMS34020 ignores CAMD, PGMD, and SIZE16 during this cycle, 
they should be at a valid level at the time they would normally be sampled. 

Figure 8-13. Load-Write-Mask Cycle 

LAD 

CAMD~~~~~~~~~~~~~~~~~~~~~~~ 
I 

RCA I I I r-l 
L. I I I I I 

ALTCH V I I II 1\ IrTi 

RAS? 1\ I I II I IrH 
CAS V I II~ I Ir+-J 

r I j----r I I I I 
WE i-lv.....-r-r--t--t-I --r\1\ I I II I 1\ I/"TI 

L. I I I I I I I I I I I 
TRiOE V I I I I I I I I I I I I 
~I 1I1I1I11 I III 

SF r---r--T' I I I I I I't' I i\ I I rl 
ODIN 1\ I I I I I I I I I I I I I I I I I I r I I I I I I I I I I I I I I I I I I 

DDOUTV I 1\ I I I I I Itrl\ I I I I I I~ 
~1......J...r...1~1.....J....,,1~ 
LRDY~I*I~I¥I~ 

PGMD~~ 

,::~ 
RO 1 : : :\ I I I 1/ 1 1 1 1\ I I : 1/ 1 1 I 
- I : : : I I I I I I I I I I I I I I I 
R1 i / I I I I \ I I I 1/ I I I I \ I I I 

8-35 



VRAM Write-Mask Local-Memory Cycles 

8.11.2 Write Cycle (with Mask) 

Performed when - executing a byte-aligned pixel-write instruction, 
- the PMASK registers *- 0, 
- CST[DPYCTL.] = 0, and 
- VEN[CONFIG] = 1 

Indicated by - CAS, TR/QE, and SF high at the falling edge of RAS, 
- WE low at the falling edge of RAS, and 
- SF low at the falling edge of CAS 

Status code 11012 (pixel operation) 

The data on LAD is written to memory just as a normal DRAM write, except that 
data in the VRAMs' write mask enables the data bits that are written to memory. 

Figure 8-14. Write Cycle (with Mask) 

8-36 

LAD 

RCA f---\- ir--'-----'-----''\r-''--:-:-'-:----'--.r-''''=-:-'-.--'----...~J 
r-r I I 

ALTCH 171"7-;-1 ~I----h 1r--r-1 
I I I I~ 

RASV I I III' 

'-t----t'l I I 
I I I I~ 

t-r--t-""'--""'I\ I 111\ ~ 
I I I I I I '-+---i----l'1 I I 

TRlQEP I I I I I I I I I 
SFR-+ 1 1\ 1 1 1 I'i 

DDIN~ I I I I I I I I I I I I I I 
~I I I I I I I I I I I I~ 

DDOUT j7 I 1\ I I I I I 111\ I I 1fl"=1 
~1......b...1~ 
LRDY~I¥I~ 

PGMD~I~ 
SIZE16_1~ 
BUSFLT~I~ 

Rol : : :\ I I I I I I I 1/ I I I 
R1 I : : :7 iii iii i i\ iii 

Local-Memory and DRAMNRAM Interfaces 



VRAM Block-Write LOC'8.I-/\f/errl0rV 

8.12 VRAM Block-Write Local-Memory Cycles 

Some VRAMs (like the TMS44251) contain special logic to enhance the per­
formance of writing certain types of data to the VRAM. The TMS34020 directly 
supports the VRAM's on-chip write-mask and block-write capabilities. 

The block-write feature provides a method for writing to up to 128 bits of data 
during a single TMS34020 local-memory cycle (when writing a specific data 
pattern). The value latched on each of the VRAM's data pins enables/disables 
a write of a multi-bit value into the memory. This multi-bit value (typically 4 or 
8 bits) is stored in a color register within each VRAM. Block-write may be used 
to implement several functions; however, these are typically variations of two 
applications: 

Q Fast fills. A fast fill uses block write to replicate the same pixel value or 
pattern in an area of memory. The pixel value or pattern is stored in the 
VRAM's color register. 

Q Data expansion. An example of data expansion is a bitmap stored in com­
pressed form (with 1 s representing the presence of a pixel and Os repre­
senting the absence of a pixel). Typically, this sort of bitmap expansion is 
applied to character fonts, which may be stored in compressed form to 
save memory; data expansion allows the characters to be displayed in 
color (multi-bit pixels), but stored in black and white (i-bit pixels). 

8.12.1 VRAM Support of Block-Write Cycles 
During a block-write cycle, VRAMs ignore the 2 LSBs of the column address. 
This means that the 4 locations specified by the remainder of the column 
address are all selected. Which of these 4 locations is written to is determined 
by the value on the VRAMs' data pins at the falling edge of CAS; a 1 on a data 
pin enables a write, a 0 prevents a write. Each data pin is associated with the 
appropriate location; the least significant data pin controls writes to the least 
significant location, the most significant data pin controls writes to the most 
significant location. If all 4 data pins are 1 s, all 4 locations are written to. 

When a write to a particular location is enabled, the value stored in the VRAM 
color register. is copied into that location. If required, the VRAM write mask 
(described in Section 8.11.1, page 8-34) can be used to selectively enable or 
disable the write of each of the bits within the color register. 

8.12.2 TMS34020 Support of VRAM Block-Write Cycles 
The TMS34020 provides the following local-memory cycles to enable the 
VRAM block write to be used: 

Q Load-color-register cycle 
Q Block-write cycle (without mask) 
Q Block-write cycle (with mask) 

All of these cycles are initiated by specific instructions. Refer to the VLCOL, 
VBLT, and VFILL instructions in Chapter 13, and Sections 12.5.4 (page 12-14, 

8-37 



VRAM Block-Write Local-Memory Cycles 

VRAM Block Mode PIXBLT) and 12.5.7 (page 12-16, VRAM Block Mode Fill) 
for more information on restrictions and use of these cycles. 

8.12.3 Load-Color-Register Cycle 

Performed when - executing a VLCOL instruction 

Indicated by - CAS, WE, TR/QE, and SF high at the falling edge of 
RASand 

- SF high at the falling edge of CAS 

Status code 0 1112 (colo r -latch load) 

The data in COLOR1 is output on the LAD bus and is written to a special VRAM 
register which is used during subsequent block-write cycles. The VRAMs 
ignore the address output during this cycle, so the TMS34020 outputs all Os 
on LADQ-LAD31. 

Although the TMS34020 ignores CAMD, PGMD, and SIZE16 during this cycle, 
these signals should be at a valid level when they would normally be sampled. 

Figure 8-15. Load-Color-Register Cycle 
~1~1~IOOI~I~I~IOOI~I~1 

Gi~I~ 

CA:~ 
~p-t: M"""I :~ 

AiJcH / I I' I I I I I I _17 I I I I I I I I i I 
RAS I I I I' I I I IrrI 
CASU I I I I I I, I I~ r I I I I I I / I I 
WE V I / I I I, I lIT! 
~ I I I I I I I I I 

TRlQE/11 I IIII 
~J.., I I I I I\.. I 
SF~I I I I I 11 

ODIN P I I I I I I I I I 
Di56UT V I I' I I / I Ir-tc=i 

LRDY~I$" 

::~ 
BUSFLT~:~ 

AD I : : :' 1 1 I 1/ I I I 
-: : : : 1 1 I I I 1 I 
R11 1 1 I I' 1 1 I 

8-38 Local-Memory and DRAMNRAM Interfaces 





VRAM Block-Write Local-Memory Cycles 

8.12.5 Block·Write Cycle {with Mask} 

Performed when - executing a VBLT or VFILL instruction and 
- PMASK::f.O 

Indicated by - CAS, TR/QE, and SF high at the falling edge of RAS, 
- WE low at the falling edge of RAS, and 
- SF high at the falling edge of CAS 

Status code 111 02 (block write) 

The data stored in the VRAM's color register is written to the memory locations 
enabled by the appropriate data bits output on the LAD bus. The value in the 
VRAM's write mask determines which bits of the VRAM's color register are 
written. This cycle allows up to a total of 128 bits to be written at once. Although 
this cycle allows16-bit transfers, external multiplexing logic would be required 
to correctly map the data to the appropriate memories. 

Figure8-1l. Block-Write Cycle (with Mask) 

8-40 

LAD 

CAS I I I I 
WE V I I 1\ 111\ 1;-r-1 
~ I I I I I I I I 

TRlQE I I I I I I I I 
SF~~ I I I I I I 
~I I I I I I'-j 

DDIN~ I I I I I I I I 
I I I I I I I I I I I I I 

DDOUT V I 1\ I I I I I lIi\ I I~ 

~I .. I~ LRDY I I 

PGMD~:~ 

"""=== 11=:= ~~cr~ !~ 

RD: : : :' I I I I I I I 1/ I I I 
_: : : : I I I I I I I I I I I 
R1/ I I I I I I I I' I I I 

Local-Memory and DRAMNRAM Interfaces 



VRAM Block-Write Local-Memory Cycles 
l';:;:;::X";~:=::~~::::~~m~~~~x;~x;x;;;-;x;}-::~;::::::;~;;~x;~~~~(.~~s~~s~;;~~~~~~;;~S}-::$~S~$$~S$%$$$}$SX;$$$}$;;:=:'$;:~};:$;:;:$$>;:;:;:$»>:::':::;.O;:;~':=>»>$$»>;:>:;»»>$»»»:::;$»f<4»»::»»$}::::::»:;~.;:~(.~<.>$>:;>::>}:~:}:::~:::>:;:::::::::,»~<-~<:»$>:;>:;:;:;>:.}::::>:::::;::>::::>~::>:::;:};>}»»»::>::>:.};::::::;:::::::::::::;S>::::;:»:.;::;::;:::S»: ::::$::-;»}»>:~;>::»»>::»:·$>l 

8.12.6 Data Mapping During Block-Write Cycles 

Instructions that use block write (VBLT and VFILL) operate on data that is 
essentially a 1-bit-per-pixel representation of mUlti-bit pixels in the VRAM. 
However, because of the data expansion performed inside the VRAMs, the 
1-bit data must be remapped (reordered) before being output on the LAD bus. 

For example, consider a system that uses 4 bits per pixel and eight 4-bit 
VRAMs (such as 1-Mbit VRAMs constructed as 256Kx4). For reference, num­
ber the VRAMs from 0 to 7, with VRAM 0 connected to the 4 LSBs of the LAD 
bus, and VRAM 7 connected to the 4 MSBs of the LAD bus. Because the pixel 
size is 4, each regular memory access to a long-word accesses 8 pixels at a 
time. Because there are 8 VRAMs, pixels with adjacent addresses are not 
physically stored in the same VRAM. VRAM 0 holds pixels 0, 8, 16,24, etc. In 
general, the VRAM containing pixel n also contains pixelsn+8, n+ 16, n+24, 
etc. Table 8-5 shows this. 

Table 8-5. Connections of 4-Bit VRAMs to the TMS34020 LAD Bus for 4 Bits per Pixel 

VRAM7 VRAM6 VRAM5 VRAM4 VRAM3 VRAM2 VRAM 1 VRAMO 

VRAM Bit # 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 
LAO Bus 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0 Connection 1 o 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

00 Pixel # 7 6 5 4 3 2 1 0 
01 Pixel # 15 14 13 12 11 10 9 8 
02 Pixel # 23 22 21 20 19 18 17 16 
03 Pixel # 31 30 29 28 27 26 25 24 

Note: On Pixel # refers to the pixels controlled by VRAM data pin Dn dunng a block-wnte cycle {n IS 0, 1, 2, or 3}. 

Normally, when the TMS34020 addresses long-word 0, the 8 VRAMs access 
pixels 0-7; when the TMS34020 addresses long-word 1, the VRAMs access 
pixels 8-15. Now consider a block-write cycle; the VRAMs ignore the 2 LSBs 
of the address, selecting 4 contiguous 4-bit locations within each VRAM for 
access. The 4 data lines act as write enables; a 1 on a data line enables a write 
of the color register to the corresponding 4-bit location in the VRAM. The data 
from the TMS34020 is organized so that each bit enables ( or disables) the writ­
ing of a pixel, allowing 32 pixels to be written for each long-word of data passed 
to the VRAMs. As Table 8-5 shows, the data on LADO-3, for example, con­
trols pixels 0, 8, 16, and 24 in the VRAM. It is evident that the order of the bits 
within the CPU is not the same as the order of the bits expected by the VRAM. 

If you want to write pixel 8 only, then the D1 data input of VRAM 0 should be 
a 1 (that is, the long-word on the LAD bus must be 0000 0002h). However, 
because the TMS34020 operates on 32 contiguous bits that represent 32 con­
tiguous pixel locations in the memory, enabling pixel 8 is represented by setting 
bit 8 (so the long-word in the CPU is 0000 01 OOh). 

The TMS34020 logic performs the remapping necessary to reorder the bits 
within each 32-bit word, so the bits are written out over the LAD bus in the order 
expected by the VRAMs. Table 8-6 shows the remapping for 4 bits per pixel. 

8-41 



VRAM Block-Write Loca/~Memory Cycles 
"""'" 

Table 8-6. Data Remapping for Block Write at 4 Bits per Pixel 

Internal LAD Pin 
Data Bit Number 

0 0 

1 4 

2 8 

3 12 

4 16 

5 20 

6 24 

7 28 

8 1 

9 5 

10 9 

11 13 

12 17 

13 21 

14 25 

15 29 

Internal LAD Pin 
VRAM Connection Data Bit Number VRAM Connection 

VRAM 0, data pin 0 16 2 VRAM 0, data pin 2 

VRAM 1, data pin 0 17 6 VRAM 1, data pin 2 

VRAM 2, data pin 0 18 10 VRAM 2, data pin 2 

VRAM 3, data pin 0 19 14 VRAM 3, data pin 2 

VRAM 4, data pin 0 20 18 VRAM 4, data pin 2 

VRAM 5, data pin 0 21 22 VRAM 5, data pin 2 

VRAM 6, data pin 0 22 26 VRAM 6, data pin 2 

VRAM 7, data pin 0 23 30 VRAM 7, data pin 2 

VRAM 0, data pin 1 24 3 VRAM 0, data pin 3 

VRAM 1, data pin 1 25 7 VRAM 1, data pin 3 

VRAM 2, data pin 1 26 11 VRAM 2, data pin 3 

VRAM 3, data pin 1 27 15 VRAM 3, data pin 3 

VRAM 4, data pin 1 28 19 VRAM 4, data pin 3 

VRAM 5, data pin 1 29 23 VRAM 5, data pin 3 

VRAM 6, data pin 1 30 27 VRAM 6, data pin 3 

VRAM 7, data pin 2 31 31 VRAM 7, data pin 3 

Due to the organization of the VRAM, which accesses 4 bits at a time; the data 
expansion of the block-write feature is possible only when PSIZE ~4. 

Table 8-7. Block-Write Data Expansion 

8-42 

Pixels per 32-bit 
Bits per pixel write 

1 32 
2 16 
4 8 
8 4 
16 2 
32 1 

Pixels per 
block write 

32 
16 
8 
4 

The TMS34020 supports the data bus remapping required for 4, 8, 16, and 32 
bits per pixel. The TMS34020 uses the value contained within the PSIZE regis­
ter to determine the correct data remapping to be used. Table 8-8 and 
Table 8-9 show the data connections and required remapping for 8 bits per 
pixel. Because two 4-bit VRAMs are needed to hold an 8-bit pixel, the VRAM 
data lines must be controlled in pairs; thus, the 32-bit bus can write only 16 pix­
els at a time. 

Local-Memory and DRAMNRAM Interfaces 



VRAM Block-Write Local-Memory Cycles 

Table 8-8. Connections of 4-Bit VRAMs to the TMS34020 LAD Bus for 8 Bits per Pixel 

RAM 7 RAM 6 RAMS RAM 4 RAM 3 RAM 2 RAM 1 RAMO 

VRAM Bit # 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 

LAD Bus 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
9 8 7 6 5 4 3 2 1 0 

Connection 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

DO Pixel # 3 2 1 0 
01 Pixel # 7 6 5 4 
02 Pixel # 11 10 9 8 
03 Pixel # 15 14 13 12 

Note: On Pixel # refers to the pixels controlled by VRAM data pin Dn during a block-write cycle (n is 0, 1,2, or 3). 

The VBLT and VFILL instructions always operate on 32 1-bit pixels at a time. 
As Table 8-7 shows, the number of pixels that can be written in each 
block-write cycle is less than 32 when the pixel size is 8 or more. The instruc­
tions automatically compensate for this by generating the appropriate number 
of block-write cycles to ensure that all the data is written. Similarly, 4 block-write 

. cycles are required at 16 bits per pixel, and 8 at 32 bits per pixel. 

Table 8-9. Data Remapping for Block Write at 8 Bits per Pixel 

Internal Internal LAD Pin 
Data Bit Data Bit Number VRAM Connection 

0 16 Oand4 VRAM 0, data 0 and VRAM 1, data 0 

1 17 8 and 12 VRAM 2, data 0 and VRAM 1, data 0 

2 18 16 and 20 VRAM 4, data 0 and VRAM 1 , data 0 

3 19 24 and 28 VRAM 6, data 0 and VRAM 1, data 0 

4 20 1 and 5 VRAM 0, data 1 and VRAM 1, data 1 

5 21 9 and 13 VRAM 2, data 1 and VRAM 1, data 1 

6 22 17 and 21 VRAM 4, data 1 and VRAM 1, data 1 

7 23 25 and 29 VRAM 6, data 1 and VRAM 1, data 1 

8 24 2 and 6 VRAM 0, data 2 and VRAM 1, data 2 

9 25 10 and 14 VRAM 2, data 2 and VRAM 1, data 2 

10 26 18 and 22 VRAM 4, data 2 and VRAM 1 , data 2 

11 27 26 and 30 VRAM 6, data 2 and VRAM 1 , data 2 

12 28 3 and 7 VRAM 0, data 3 and VRAM 1, data 3 

13 29 11 and 15 VRAM 2, data 3 and VRAM 1, data 3 

14 30 19 and 23 VRAM 4, data 3 and VRAM 1 , data 3 

15 31 27 and 31 VRAM 6, data 3 and VRAM 1, data 3 

Note: Data bits 0 & 16 use the same LAD pin numbering and VRAM connection infor­
mation, as do data bits 1 & 17, 2 & 18, etc. 

8-43 



DRAM-Refresh Local-Memory Cycles 

8.13 DRAM-Refresh Local-Memory Cycles 

8-44 

The TMS34020 supports DRAM and VRAM memory refresh with CAS­
before-RAS refresh cycles. Each time the internal refresh counter counts the 
number of machine states indicated by RR[CONFIG], a DRAM-refresh 
request is scheduled. DRAM-refresh cycles are performed according to the 
local-memory cycle priorities outlined in Section 8.3 (page 8-6). The 
TMS34020 can keep track of up to 15 pending DRAM-refresh requests 
(although it is unlikely that this many refreshes could ever be scheduled but not 
performed). 

The refresh cycle has been implemented on the TMS34020 to use 3 machine 
cycles (12 quarter cycles), so the refresh status may be used to modify the 
generation of the RAS and CAS signals to the DRAMs. 

The refresh pseudo-address output to RCAO-RCA12 and LADO-LAD31 
comes from the 16-bit REFADR register, which is incremented after each 
refresh cycle. The 16 bits of the address are placed on LAD 16-LAD31 and 
LADO-LAD3 contain the refresh status code. All other LAD bus lines are Os. 
The logical addresses on RCAO-RCA12 corresponding to LAD16-LAD31 
also output the address from REFADR. The LAD and RCA buses are held con­
stant through the refresh cycle. 

Note that CAMD, PGMD, and SIZE16 are not sampled during a refresh cycle, 
although PGMD and SIZE16 must be held at a valid level as indicated in 
Figure 8-18. Once the refresh cycle has begun, GI is not sampled until it 
completes. LRDY and BUSFLT are not sampled until LCLK2's low-to-high 
transition after RAS has gone low. 

If a refresh cycle is aborted because of a retry, then the count of refreshes 
pending is not decremented and the same pseudo-address is reissued when 
the refresh is restarted. 

Local-Memory and DRAMNRAM Interfaces 



Figure 8-18. Refresh Cycle Timing 

I I I 

I -L I 
LRDY 

I 
I T I 

BUSFLT 
I I J 

RO " 
, I i I I I I I I I I I I x '\. 

I I I I I I I I I I I I I 

8-45 



Local-Memory Cycles with Wait States 
z:w:w mm::s 

8.14 Local-Memory Cycles with Wait States 

All other local-memory cycle timing diagrams throughout this chapter assume 
. that LRDY is sampled high during the cycle and that there are no wait states. 
A slower memory that requires a longer cycle time may pull the LRDY pin low. 
The TMS34020 samples the LRDY input on the low-to-high transition of LCLK2 
after RAS goes low, as indicated in the illustrations. If LRDY is low, the 
TMS34020 inserts an additional state, called a wait state, into the cycle by 
maintaining all of the signals output to memory at the same level. Wait states 
continue to be inserted until LRDY is sampled at a high level. 

. 8.14.1 Adding Wait States in Read and Write Cycles 

8-46 

Figure 8-19 shows an example of a local-memory read cycle extended by 1 
wait state. The first time LRDY is sampled, the TMS34020 detects a low level, 
causing the cycle to be extended by 1 wait state. When LRDY is sampled one 
LCLK period later, the TMS34020 detects a high level, permitting the cycle to 
complete. 

All local-memory read and write cycles (including the special write-mask and 
block-write cycles for VRAMs) are extended in the same way as Figure 8-19. 
VRAM serial-register transfers are extended slightly differently. 

Note: 

PGMD, SIZE16, and BUSFLT must be held at a valid level at the beginning 
of each Q2 until LRDY is sampled high. The levels of PGMD and SIZE16 at 
the time LRDY is sampled high will affectthe subsequent cycle (allowing page 
mode or dynamic bus sizing). 

Local-Memory and DRAMNRAM Interfaces 



Local-Memory Cycles with Wait States 

Figure 8-19. Local-Memory Read Cycle with 1 Wait State 

I Address Subcycle I Walt State I Read Transfer I 

'~i~'~'oo'~'~'~'oo'~'~'~'oo'~'~' LCLKl I I I I I I I 
I I I I I I I I LCLK2 I 

Gi~1 
LAD (TMS34020) ~ +< ;8ddreis9 ;>-~-I- -I- - + -I- -4 - + -I-~ 

~I 11111111 

""'(m:::~-H-+++~ 
'M~ 

ALTCH r I I I' I I I I I I I I II I i 
- 11111111 II II~ RASP I I I I' I I I I I I I 101 
CASV I I I I I I, I I I I I l;-I-j 

L I I I I I I I I I I I I I I 
WEV I I I I I I I I I I I I I 

TPJQE?: : I I :' I iii I 1m 
~I I I I I I I I I I IJ 

SF r----r-T' I I I I I I I I I I I' I 
DDIN 1\ I I I I I II I I I i I I'---.!..-J 

L I I I I I I I I I I I I I DDOUT V I I'-+--Y I I I I I i I I I C"'l 

LRDY~I,*,I~i~ 

.::~!S 
AO i : :.:, I I : I I I i II I I i 

: : : 
I I I I I I I I I 

All 7 I I iii I, I 
I I I I I I I I I '--rl ---t1~1 

Key: LAD (TMS34020): The TMS34020 outputs this to the LAD bus. 
LAD (memory): Memory outputs this to the LAD bus. 

8-47 



Local-Memory Cycles with Wait States 

8.14.2 Adding Wait States in VRAM Serial-Register Transfers 

Figure 8-20 shows an example of a memory-to-serial-data-register transfer 
cycle extended by 1 wait state. The wait state is inserted in exactly the same 
way as for other local-memory cycles. During a serial register transfer, TR/QE 
normally makes a low-to-high transition 114 cycle earlier than the other 
local-memory control signals. When a wait state is inserted, TR/QE is not kept 
low during the wait state. All serial-register transfers exhibit this behavior. 

Figure 8-20. Memory-to-Serial-Data-Register Cycle with Wait State (VRAM Read Transfer) 

I... I ---.I.- Cycle -.I 
1 Address SUbCYCI~ Walt State 1 Completion 1 

04 101 102 103 104 01 102 103 104 01 02 03 04 01 I 
Gi~.u=~=OC:::~~~~::::><$=~~)@ 

LAD 

RCA~- l~rW~-T~--~~~~--~-r-T c-r I I 
ALTCH V I I I I I 

RAS V:: :\'--+--+: ~Ir---t--+--+--t--!' 
CAS p I I : :\ I 
WE V I I 1 1 I 

L I I I I I 
TRIOE V I I -...I_I--..... I---"Vr--+--+--,---t--i--;---i 

SF~~-+~:-r-~I~Ir-r-~~-+~~ 
DDIN ~ I : : : .......,.---t-: --;.I __ ;-...-.--I---; __ -t---;""--I 

DDOUT V 1 1'--t---iJ I 
I I 1 I 1 1 1 I 

LRDY I~I 1 1 1 
I I I 
I T 1 I 

BUSFLT 
I 1 I 1 1 

: iii i~! ! ! ! ! ! : !~ iii 

8-48 Local-Memory and DRAMNRAM Interfaces 



The Host Default Local-Memory Cycle 
-'t"«W ::::::::~ f~'="""f:;:'''''''~:'~:'f''''''::::,,~::::~::::::::::::m:;:;x:::mmm=m::x::::x'(,;~~»",;~:»~~~XX'..::::::~ 

8.15 The Host-Default Local-Memory Cycle 

When no other local-memory requests are pending, the memory controller 
executes a special idle cycle known as the host-default cycle. Th memory 
controller repeats the host-default cycle until another memory request occurs. 

The host-default cycle is similar to the address subcycle of a host-initiated 
access, except that ALTCH and RAS are not activated. Figure 8-21 shows a 
host-default cycle. During this cycle, the host access status code is output on 
LADO-LAD3. The address output on the remainder of the LAD bus and the 
RCA bus comes from the internal register used to store the address provided 
by the host for a host access. 

Figure Pr21. The Host-Default Cycle 
I---- Host Default --I 

i 04 I 01 I 02 I 03 I 04 I 01 I 

'"'"l ;1 :1 :' :, !; LCLK21 I I 

Gi~I~ 

~:~ 
RCA~j<: : :~l 
SFY.....-h I I I""l ::;--r I I I I 

ALTCH i I I I I I I -p I I I I I 
RAS I I I I I 
CASV I I I I I 

~ I I I I I 

WE!7 I ! I I 
T:::h I I I I I ! 

L I 1 1 1 
DDOUT V I 1\ . 1 1ri9 
LRDY~ 
PGMD~ 
SIZE1S=== 

BUSFLTI'l'_~~I'l'l'l'~cqcc~lQW 

I 1 
RO I 1 1 1 I I I 

All· : : >: I I 
The address and status code output are normally of no significance, because 
ALTCH and RAS are not activated. The reason they are output at all is because 

8-49 





Addressing Mechanisms ..... 

Figure 8-22. Logical Address Output on LAD 

LSB 

16-bit word select 
bus cycle status code 

8.16.2 Multiplexed Addressing 

The TMS34020 provides direct support for DRAMs and VRAMs, which expect 
an address' row and column parts to be provided sequentially, time-multi­
plexed over the same wires. The 13-bit RCA bus is used for this purpose. For 
the sake of brevity, this section uses the word DRAM to refer to DRAM, VRAM, 
or any other device that expects multiplexed row and column addresses. 

During an address/status subcycle, a subset of the logical long-word address 
output on the LAD bus is output simultaneously on the RCA bus. This serves 
as the row address for the DRAMs. During a data subcycle, a different subset 
of the logical address is output on the RCA bus. This serves as the column 
address for the DRAMs. The 16-bit word select (S) is also output on the RCA 
bus during the data subcycle. 

The RCA bus is designed so that DRAMs from 64Kxn to 16Mxn can be con­
nected directly, without external multiplexing hardware. (n represents the 
number of 1-bit memories of the base size integrated onto a single chip. For 
example, 1-Mbit VRAMs are implemented as four 256K memories within a 
single chip; 256Kx4.) To do this, the following requirements must be met: 

Q All the row address bits for the DRAM must be available during the 
address/status subcycle, and then all the column address bits must be 
available during the data subcycle on exactly the same RCA pins. 

Q All the logical address bits that comprise the row and column addresses 
must form a continuous field. That is, all the logical address bits between 
the lowest and the highest connected to the DRAMs must also be 
connected. If this is not the case, the memory will not be fully decoded. 

Q Logical address bits that are connected to the DRAMs at row-address time 
should not be connected to the DRAMs at column-address time. 

Because the different DRAM 'sizes require different numbers of address lines 
(from 8 for 64Kxn up to 12 for 16Mxn), this can be achieved only by providing 
a number of programmable choices for the subsets of the logical address 
output at row-address time and at column-address time. Two mechanisms are 
provided to do this: 

Q RCM[CONFIG] determines the address subset output at row-address 
time. The RCM bits are loaded from bits 1 and 2 of the reset vector 
(address FFFF FFEOh; Section 6.12.4, page 6-26, discusses this). 

8-51 



Addressing Mechanisms 

Q The address subset output at column-address time is determined dynami­
cally on a cycle-by-cycle basis by the CAMD pin. This allows DRAMs of 
different array sizes to coexist within the same system, still without the 
need for external multiplexing hardware. 

RCM[CONFIG] determines the DRAM base array size for the application. 
This is the DRAM array size supported when CAMD=O. It is determined by the 
displacement between the logical address bit output on any given RCA pin at 
row-address time and the logical address bit output on the same pin at 
column-address time. For instance, when the base array size=64Kxn, if the 
logical address bit output at row-address time on a given RCA pin is bit m, then 
the logical address bit output on the same pin at column-address time is bit 
m-8. For 256Kxn base array size, it is bit m-9, and so on. Base DRAM array 
sizes supported are 64Kxn, 256Kxn, 1 MXn, and 4Mxn. 

The TMS34020 samples the data on the CAMD pin on LCLK1 's low-to-high 
transition at the end of the address/status subcycle. This allows you to decode 
the full logical address output on the LAD bus at this time (or the row address 
output on the RCA bus) with external logic to determine what the array size of 
the memory being addressed is, and thus what the column-address mode 
should be for the particular access. Table 8-10 shows all the possible DRAM 
array sizes that are supported by the various combinations of the RCM bits and 
the CAMD pin. 

Table 8-10. DRAM Array Sizes 

8-52 

RCM Base Array Additional Arrays 

1 0 (CAMD=O) Supported by CAMD=1 

0 0 64Kxn 256Kxn, 1 MXn 
0 1 256Kxn 1Mxn,4Mxn 
1 0 

1Mxn 4Mxn 1 1 
4Mxn 16Mxn (32 bits wide only) 

Note: 16Mxn memory can be addressed only as 32-bit-wide memory; dynamic bus 
sizing cannot be used, because there is no way to incorporate the S bit into the 
address connected to DRAMs of this size. 

Q When CAMD=O, the logical address bits output on the RCA bus at 
column-address time allow DRAMs of the base array size to be connected. 

Q When CAMD=1, a different logical address mapping is generated at 
column-address time. For most of the RCA pins, the logical address bits· 
output at column-address time when CAMD=O are output 1 RCA pin higher 
when CAMD= 1. For example, the logical address bit output on RCA6 when 
CAMD=O is output on RCA? when CAMD=1. This increases the displace­
ment between the logical address bit output on a given RCA pin at 
row-address time and the logical address bit output on the same pin at 
column time by 1, thus allowing DRAMs with an array size 1 larger than 
the base array size specified by the RCM bits to be directly connected. 

Local-Memory and DRAMNRAM Interfaces 



Addressing Mechanisms 
"""""-==-==='m_~x~"'''~~xw~~~w~:;:;:;:;;x;; ""X:::':::':::'::XX:::::-~~~~~·*,i*, xx*,x""x::::~~::-.:::::x::::::~~::::~~::::X:;~~¥'«~~~:l: 

For some base array modes, RCA4, RCA 11, and RCA 12 may output logical 
address bits that are not determined by this CAMD=1 mapping: 

64Kxn The logical address bits output on RCA 11 and RCA 12 are not contigu­
ous with the logical address bits output on RCA 1-RCA 10. This allows 
for 1 Mxn DRAMs to be connec~ed without the same logical address bit 
appearing in both row and column addresses. 

256Kxn The logical address bit output on RCA 12 is discontiguous with the log­
ical address bits output on RCA 1-RCA 11. This allows 4Mxn DRAMs 
to be connected withoutthe same logical address bit appearing in both 
the row and column addresses. 

4Mxn The logical address bits output on RCA 12 and RCA4 allow 16Mxn 
DRAMs to be connected without the same logical address bit appear­
ing in both the row and column addresses. 

All except 4Mxn 
The S bit is always mapped to RCA4. 

Table 8-11 lists the actual logical address bits output on the RCA bus for each 
of the base DRAM array sizes, with both states of CAMD. 

Table 8-11. Logical Addresses Output on the RCA Bus 

RCM Base Address RCA Bus 

1 0 Array Time CAMD 12 11 10 9 8 7 6 5 4 3 2 1 0 

64Kxn Row - 24 23 22 21 20 19 18 17 16 15 14 13 12 

0 0 Ll=8 Column 0 16 15 14 13 12 11 10 9 8 7 6 5 S 

Column 1 23 22 13 12 11 10 9 8 7 6 5 S S 

256Kxn Row - 25 24 23 22 21 20 19 18 17 16 15 14 13 

0 1 Ll=9 Column 0 16 15 14 13 12 11 10 9 8 7 6 5 S 

Column 1 26 14 13 12 11 10 9 8 7 6 5 S S 

1Mxn Row - 26 25 24 23 22 21 20 19 18 17 16 15 14 

1 0 Ll=10 Column 0 16 15 14 13 12 11 10 9 8 7 6 5 S 

Column 1 15 14 13 12 11 10 9 8 7 6 5 S S 

4Mxn Row - 27 26 25 24 23 22 21 20 19 18 17 16 15 

1 1 Ll=11 Column 0 16 15 14 13 12 11 10 9 8 7 6 5 S 

Column 1 28 14 13 12 11 10 9 8 7 6 5 S 16 

Key: Ll is the displacement between the logical address bits output at row-address time and column-address 
time on a given pin, for CAMD=O. 

n is the number of 1-bit memories for each of the base array sizes, integrated within a single chip. 
S is the 16-bit word select. 

During page-mode memory cycles (described in detail in Section 8.7, page 
8-15), the data subcycle is repeated. Each time access to a new location is 
required, the address output on the RCA bus at this time is incremented or 
decremented. 

8-53 



Addressing Mechanisms 
$$$$ 

8.16.3 Display Memory Requirements for Multiplexed Addressing 

The TMS34020's RCA bus makes provision for many different multiplexed 
addressing schemes. However, in a graphics based system, there are some 
additional considerations that should be taken into account regarding the 
display memory. 

When addressing the display memory (the memory area that stores the graph­
ics image output to the screen), the logical address bits connected to the 
VRAMs must be sequential. That is, the least significant logical address bit is 
the LSB of the address presented to the VRAMs, the next least significant 
logical address bit is the next LSB of the address presented to the VRAMs, and 
so on up to the most significant logical address bit, which is the MSB of the 
address presented to the VRAMs. 

If this is not the case, pixels with sequential addresses are not stored in 
sequential locations within the VRAM. This means pixels do not appear on the 
screen in the order they appear in the address map. Because of this require­
ment, the display memory should not be implemented with 

lJi 1 Mxn VRAMs when the base DRAM array size is 64Kxn 
lJi 4Mxn VRAMs when the base DRAM array size is 256Kxn 
lJi 16Mxn VRAMs when the base DRAM array size is 4Mxn 

When using DRAMs to store data that is not to be output to the screen, the 
order in which the data is actually stored in the memory is unimportant; thus, 
these considerations do not apply. 

8.16.4 Example Connections for Multiplexed Addressing 

8-54 

Table 8-12 provides example wiring configurations for DRAMs of different 
array sizes. This table assumes that any bank selecting is done with high-order 
logical-address bits so that the banks are not interleaved. This means that the 
DRAMs are wired to the lowest RCA pins possible. 

In all modes except 4Mxn with CAMD=1, connections are shown for memory 
arranged as 32 bits wide and 16 bits wide. The latter requires the use of the 
TMS34020's dynamic bus sizing capability. You can't connect16-bit-wide 
16Mxn memory; if the S bit is connected to one of the memory's address pins, 
logical address bit 15 cannot be connected. This means that the data within 
the DRAM appears at 2 logical addresses (one for each of the values of logical 
address bit 15). 

Local-Memory and DRAMNRAM Interfaces 



Addressing Mechanisms 
=w~~m:S$$~:::msm~m:;m~~:::~':::'m,,::::::::::::m:::,:::mSml"Zl"'mmmm::l'::m$1,m:::'fsm::m:':::'::::"':::"~:::"':::""'Wml'~~~~"""""m'::;m"':::"mzx:::smm"nw .. :;m:;s:;mm,,:::,s~mm,,~ 

Table 8-12. Example Connections to the RCA Bus 

Base DRAM RCA Bus Wiring 
Array CAMD Array 12 11 10 9 8 7 6 5 4 3 2 1 0 

S4Kxn 0 S4K (is) a7 as a5 a4 a3 a2 a1 aO 
S4K (32) a7 as a5 a4 a3 a2 a1 aO 

1 25SK (is) a8 a7 as a5 a4 a3 a2 a1 aO 
25SK (32) a8 a7 as a5 a4 a3 a2 a1 aO 
1 M (is) a9 a8 a7 as a5 a4 a3 a2 a1 aO 
1M (32) a9 a8 a7 as a5 a4 a3 a2 a1 aO 

25SKxn 0 25SK (is) a8 a7 as a5 a4 a3 a2 a1 aO 
25SK (32) a8 a7 as a5 a4 a3 a2 a1 a9 

1 1 M (16) a9 a8 a7 a6 a5 a4 a3 a2 a1 aO 
1M (32) a9 a8 a7 a6 a5 a4 a3 a2 a1 aO 
4M (32) aiD a9 a8 a7 a6 a5 a4 a3 a2 a1 aD 

1Mxn 0 1 M (16) a9 a8 a7 as a5 a4 a3 a2 a1 aD 
1M (32) a9 a8 a7 a6 a5 a4 a3 a2 a1 aD 

1 4M (16) aiD a9 a8 a7 as a5 a4 a3 a2 a1 aD 
4M (32) aiD a9 a8 a7 a6 a5 a4 a3 a2 a1 aD 

4Mxn 0 4M (16) a10 a9 a8 a7 as a5 a4 a3 a2 a1 aD 
4M (32) aiD a9 a8 a7 a6 a5 a4 a3 a2 a1 aO 

1 16M (32) a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 aD 
Note: aO-a11 are the DRAM address pins (aD is the least significant). 

8.16.5 Memory Organization and Bank Selecting 

System memory is typically partitioned into several banks. Each bank contains 
the number of memory devices that can be accessed in a single memory cycle. 
Thus, the number of memory devices per bank is determined by dividing the 
data-bus width by the memory-device width. The TMS34020's data bus can 
access 16 or 32 bits per cycle (depending on dynamic bus sizing). Therefore, 
a bank composed of 1 Mx1 RAMs contains 16 or 32 RAM devices. Using 
256Kx4 RAMs requires either 4 or 8 RAM devices. 

Logical address bits not used to form the row and column addresses of the 
DRAMs can be used to select between banks. These bits can be decoded with 
external logic, so that only the RAS or CAS strobe to the appropriate memory 
bank is enabled. This can be achieved in two ways: 

~ The DRAM's address pins can be connected to the RCA bus' lower end. 
Use higher order logical address bits to select between different banks; 
prevent activation of the unselected banks' RAS pins. These can be 
decoded from either the LAD or RCA bus during the address/status sub­
cycle. In this case, the long-words within a given bank are contiguous. For 
instance, if each bank contains m words, then one bank may contain words 
o to m-1, the next bank words m to 2m-1, and so on. 

8-55 



RorJI",r","'""",,rrrJ Mechanisms 

Q The DRAM's address pins can be connected to the RCA bus' upper end. 
Use lower order logical address bits to select between different banks; pre­
vent activation of the unselected banks' CAS pins. These can be decoded 
from the RCA bus during the data subcycle. In this case, the long-words 
within each bank are interleaved-if there are 2 banks, all odd words are 
in one bank, and all even words in another; each bank contains alternating 
words. If there are 4 banks, each bank contains every fourth word, etc. 

Although you can use either form of bank selecting (or a combination of the 
two), be aware that interleaved banks do not easily support the use of the 
special block-write features available on some VRAMs and supported by the 
VBLT and VFILL instructions. This is because the VRAM block write allows 4 
long-words to be written to simultaneously. If you use interleaved banking, 
these 4 words will not all be contained within the same memory bank. However, 
because the VRAMs ignore the 2 LSBs of the column address when a 
block-write cycle is performed, it is not possible to write less than 4 long-words 
at a time to a given bank. 

In a typical graphics system, the local memory is divided into two parts: 

Q display memory 
Q system memory (additional DRAMs needed to store programs and data) 

A high-order address bit is typically used to select between the two. Within 
each part, other address bits can be used to select particular banks. 

The decode logic must be capable of more than just selecting a particular bank 
of the display memory or system memory during a memory read or write cycle. 
It must also be able to enable all DRAMs and VRAMs during a DRAM-refresh 
cycle and to enable the appropriate VRAMs during a serial-register transfer 
cycle. The decode logic must then distinguish DRAM-refresh and serial-regis­
ter transfer cycles from memory-access cycles. This is done by decoding the 
4 LSBs of the address output on the LAD bus to determine the current bus 
status. 

8.16.6 Display Memory Hardware Requirements 

8-56 

The minimum number of memory bits required to implement the display 
memory is the product of the total number of pixels (on-screen and off-screen 
areas combined) and the number of bits per pixel. The minimum number of 
VRAMs required to contain the display memory is calculated as follows: 

b f "R'JlMS (pixels per line) x (lines per frame) x (bits per pixe~ 
num er 0 v, 1"1 = . 

number of bits per VRAM 

This calculation yields the minimum number of VRAMs needed; however, 
some applications may require additional VRAMs. For example, the 
TMS34020 supports XY addressing most efficiently when the number of pixels 
per line of the display memory is a power of 2. Achieving this may require more 
than the minimum number of VRAMs needed to contain the display. 

Local-Memory and DRAMNRAM Interfaces 



Double-Buffered Display Example 

8.17 Double-Buffered Display Example (2x1280x1 024) 

As an example, consider a display system that implements a 1280x1024 
double-buffered screen at 8 bits per pixel, with an additional 4 Mbytes of 
system memory. 

The TM834020's 32-bit data path allows four 8-bit pixels to be accessed simul­
taneously. This also means that 4 pixels are clocked out of the VRAMs' serial 
registers simultaneously. If the display is refreshed 60 times per second, pixels 
must be displayed at a rate of one every 12.7 ns. The VRAMs' serial registers 
must therefore be clocked once every 50.8 ns (that is, at a frequency of 19.6 
MHz). This is well within the operating range of VRAMs. 

The VRAM address decoding scheme shown in Figure 8-23 provides for 
these configuration requirements. Three logical address bits (23, 24, and 25) 
are used as bank-select bits. Logical address bits 5-13 are used as the 9-bit 
column address, and bits 1 ~22 are used as the 9-bit row address. The base 
VRAM array size should be set (via RCM[CONFIGJ]) to 256Kxn. Referring to 
Table 8-11 (page 8-53), the row and column addresses are multiplexed out on 
the same 9 pins, RCA1-RCA10. The total number of address bits used to 
address external memory is 26, for a total address reach of 8 megabytes. The 
remaining 6 address bits output by the TM834020 are not used for this exam­
ple, but could be used for more system memory or any peripherals required 
for the system. 

Figure 8-23. VRAM Address Decode for Example System 

LAD • 32-bit logical address .. 
pin # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I B B B 
S S S 9-bit row address 9-bit column address BIT 
210 

Key: BIT: Bit-select within 32-bit long-word 
BS1: Bank-select bit 1 

BSO: Bank-select bit 0 
BS2: Bank-select bit 2 

BSO & BS1 (bank-select bits 0 and 1) select between the 2 buffers in the dis­
play memory. 

BS2 (bank-select bit 2) selects between the display memory and the 
system memory. 882=0 selects the display memory and 882=1 
selects the system memory. If the system memory is implem­
ented with 1 Mx1 DRAMs, the decode logic should assert 
CAMD=1 when 882=1 to configure the RCA bus correctly. 
Figure 8-24 shows the address decode configuration for the 
system memory. Logical address bits 5-14 are used as the 
10-bit column address, and bits 15-24 are used as the 10-bit 
row address. Referring to Table 8-11, the row and column 
addresses are multiplexed out over the same 10 pins, 
RCA2-RCA 11. 

8-57 



Double-Buffered Display Example 
:::::::;::::::~:~,;::~:;x:=,~::::::~::::~:~:::::::::::::f,::f,::f.:::=-:::::::::f.::f.:::::.f.:;:;~::::~~:~;:;:.::::::~::::~~~'::~f.~'::~'::f,m::::~~;::::~:::~:f,~::::::::::::~~:~:::XX::::::f,::::xm::;::::::::X::~f.f. . .':::::::::::::::X:~;:;~f.~:::-.m::::f,5m'':::::-'::::~'::::::f,m:::::::::~:;:::::::::::-.x::::::::::::'-:::~'::f,~:::::::::::;::::::::~::::Z~::::f,::~~:~::::::;::5r.$Y...x::::::~,%'~.x:~~..:; 

Figure 8-24. DRAM Address Decode for Example System 

LAD • 32-bit logical address ------------... 
pin# 31 3029282726 25 24 23 22 21 2019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

B 
S 
2 

1 O-bit row address 

~ BIT: Bit-select within 32-bit long-word 

1 O-bit column address BIT 

BS2: Bank-select bit 2 

The amount of VRAM required to implement the display memory in this system 
depends on whether midline reload is used to pack the data for each scan line 
into contiguous locations within the VRAM. The serial register within each 
VRAM is 512 bits long. Between them, the 32 serial registers hold 2048 pixels 
at anyone time. However, each scan line requires only 1280 pixels. If midline 
reload is not used, each scan line must begin with a new row of VRAM, and 
768 pixels from each row of memory cannot be displayed. 

8.17.1 Display Memory Implementation Using Midline Reload 

8-58 

Midline reload allows all 2048 pixels in each row of VRAM to be displayed, 
because the VRAM row being clocked out can change in the middle of a scan 
line. Sections 9.13 to 9.15 (pages 9-42-9-51) discuss midline reload in detail. 
It is enabled by settingSSV[DPYCTL] to a 1. For this example, DPYMSK 
should be loaded with FFh (to indicate no bank-selects at the least significant 
end of the address, and a VRAM half serial register of 256 bits). . 

Figure 8-25 shows the structure of the display memory when midline reload 
is used. Note that only 3 banks are required to implement both display buffers. 
The total amount of display memory required is 24 Mbytes. BSO and BS1 select 
between the banks. Display buffer 1 is spread across banks 0 and 1 ; display 
buffer 2 is spread across banks 1 and 2. 

Because each buffer is spread across 2 banks, the bank from which pixels are 
being shifted must change part way down the screen. The changeover 
between banks must occur during a horizontal blanking period, when the 
VRAMs are not clocking pixels out of their serial registers. This means that the 
last pixel in a bank must also be the last pixel on a scan line. Each bank contains 
enough pixels for 4/5 of one display buffer (819.2Iines). The address ofthe first 
pixel in each display buffer must be such that the last pixel in banks 0 and 1 
is also the last pixel on a line. 

Local-Memory and DRAMNRAM Interfaces 



Figure 8-25. Example Display Memory Dimensions (with Midline Reload) 

1024 lines 

1024 lines 

Key: 11[1 Display buffer 1 

• Display buffer 2 

BankO 
(880=0,881=0) 

Bank 1 
(880=1,881=0) 

8ank2 
(880=0,881=1) 

Notes: 1) The pixels contained in each row are spread across the 2 scan lines. 

2) The white area (- 0.5 Mbytes) is not displayed. 

8.17.2 Display Memory Implementation Without Midline Reload 

When midline reload is not used, all the pixel data for any single scan line must 
be contained within a single row of VRAM. Each VRAM row contains 2048 
pixels, but only 1280 of these are required for a scan line. This means that 40% 
of the display memory is not output to the display (unless you wish to be able 
to pan the display around within the display buffer). 

Figure 8-26 shows the structure of the display memory when midline reload 
is not used. In this case, 4 banks are required to implement both display buffers 
because each display buffer requires 1 row of VRAM for each of its 1024 lines. 
The total amount of display memory required is 32 Mbytes. BSO and BS1 select 
between the banks. BS1 selects between the display buffers. 

Unfortunately, the 12.8 Mbytes of memory not used for the display is not 
addressable as a contiguous block. This makes it very difficult to use for 
program storage, etc. 

8-59 



Double-Buffered Display Example ~~*"'~:I;:; Sf~~~X~m'""-___________________ =_==_ 

Figure 8-26. Example Display Memory Dimensions (Without Midline Reload) 

8-60 

1024 lines 

1024 lines 

Key: • Display buffer 1 

II Display buffer 2 

BankO 
(B80=O, B81 =0) 

Bank 1 
(B80=1, B81 =0) 

Bank 2 
(B80=O, B81=1) 

Bank 3 
(B80=1, B81 =1) 

Note: Each display buffer can contain 2048 pixels per line, but only 1280 are output to 
the VRAMs. The undisplayed 2/5 of all rows constitutes a total of 12.8 Mbytes of 
undisplayed memory. 

Local-Memory and DRAMNRAM Interfaces 



Chapter 9 

Video Timin and Screen Refresh 

The TMS34020's video interface provides these features: 

a Separate or composite sync and blanking 
a Synchronization to internal or external signals 
a Interlaced or non interlaced video 
a A variety of screen resolutions 

Additionally, the TMS34020 directly supports the use ofVRAMs by generating 
the memory-to-register cycles needed to refresh a screen. The TMS34020 can 
also control video capture by performing register-to-memory (instead of 
memory-to-register) cycles. 

This chapter includes the following topics: 

Section Page 

Basic information will help you 9.1 
use the rest of this chapter. 9.2 

Besides reviews of signals and 9.3 
registers, these Sections provide 
details of horizontal and vertical 9.4 

timing. 9.5 

Special features of the 9.6 
TMS34020's variety of video modes 9.7 

are covered in detail. 9.8 

9.9 
9.10 

Examples elaborate on the video 9.11 
discussion. 9.12 

The chapter finishes with a 9.13 
discussion of VRAM topics. 9.14 

9.15 

Related Signals ....................... 9-2 
Related Registers .. . . . . . . . . . . . . . . . . .. 9-4 
Relationship Between Horizontal and 
Vertical Timing Signals ................ 9-9 
Horizontal Video Timing (I nternal) . . . . . . .. 9-11 

Vertical Video Timing (Internal) .......... 9-13 

Composite Video Timing ............... 9-15 

Noninterlaced Video Timing ............ 9-18 

Interlaced Video Timing ................ 9-21 
External Synchronization Modes ......... 9-29 
Screen Sizes and Dot Rate ............. 9-36 

Display Interrupts and Applications ....... 9-37 
Video Timing Programming Examples .... 9-38 

Video RAM Control ................... 9-42 
Scheduling Screen-Refresh Cycles ... , .. 9-50 

Generating Screen-Refresh Addresses ... 9-51 

9-1 



9.1 Related Signals 

9-2 

The TMS34020's video timing logic is driven by an external video clock; the 
TMS34020 generates sync and blanking signals on chip. These signals control 
the horizontal and vertical sweep rates of the screen and synchronize the 
screen display to data output by the VRAMs. The video-timing and screen-re­
fresh signals are summarized below foryour convenience; for detailed descrip­
tions, refer to Chapter 2. Note that these signals depend on information that 
is provided in the DPYCTL register. 

Signals 

CBLNKI 
VBLNK 

CSYNCI 
HBLNK 

Descriptions 

can be either a composite-blanking signal or a verti­
cal-blanking signal, depending on the value of CVD: 

1/0 

CVD=O selects CBLNK, which is the composite-blanking 
signal that turns off a CRT's electron beam during a 
both horizontal and vertical retrace intervals. You 
can also use CBLNK to control stopping and start-
ing of the VRAM serial registers. 

CVD=1 selects VBLNK, which is the vertical-blanking sig-
nal thatturns off a CRT's electron beam during ver- a 
tical retrace intervals. You can also use VBLNK 
with HBLNK to control stopping and starting of the 
VRAM serial registers. 

Both signals are always outputs. 

can be either a composite-sync signal or a horizontal-blank­
ing signal, depending on the value of CVD: 

CVD=O selects CSYNC, which is the composite-sync sig­
nal that controls external video circuitry. CSYNC 
can be an input or an output, depending on the val­
ue of CSU: 

CSD=O selects external composite sync; CSYNC 
is an input 

CSD= 1 CSYNC is an output a 
CVD=1 selects HBLNK, which is the horizontal-blanking a 

signal that turns off a CRT's electron beam during 
horizontal retrace intervals. HBLNK is always an 
output, regardless of the value of CSD (however, 
to ensure correct operation, you should always set 
CSD to 1 when CVD=1). 

HBLNK is always an output, but ":;:;:C;:::'Sy>7N"'C~can be an input or 
an output. 

Video Timing and Screen Refresh 



Related Signals 
~·~~~Sl"~t~:::'::.'~$~rz=xr~~·~:'4m~f~~$mmZrf::.'Z ~Wrff;'%~~~~~fx::~~~wa~~Z~$..x::--~ 

Signals Descriptions I/O 

HSYNC is the horizontal-sync signal that controls external video cir­
cuitry. HSYNC can be an input or an output, depending on 
the value of HSD: 

HSD=O selects external horizontal sync; HSYNC is an in­
put 

HSD= 1 HSYNC is an output 

SCLK is the VRAM serial-register clock. When using midline 
reload, this input is used to track the VRAM tap point. SCLK 
should be low during horizontal and vertical blanking. If you 
are not using midline reload, SCLK should be low. 

VCLK is the video clock signal that drives the TMS34020's internal 
video timing logic. VCLK is derived from the dot clock of the 
external video system. 

VSYNC is the vertical-sync signal that controls external video circuit­
ry. VSYNC can be an input or an output, depending on the 
value of VSD: 

VSD=O selects external vertical sync; VSYNC is an input 

VSD= 1 VSYNC is an output 

o 

o 

9-3 



Related HI'''''I"c:rt:>rc: 

9.2 Related Registers 

HCOUNT register 
HESYNC register 
HESERR register 
HEBlNK register 
HSBlNK register 
HTOTAl register 
SETHCNT register 

9-4 

The video timing and screen-refresh registers are a subset of the I/O registers 
described in Chapter 4. These registers are divided into 3 groups: 

Q Horizontal timing registers control the timing of the HSYNC signal, the 
HBLNK signal, and the horizontal components of the CSYNC and CBLNK 
composite signals. 

Q Vertical timing registers control the timing of the VSYNC signal, the 
VBLNK signal, and the vertical components of the CSYNC and CBLNK 
composite signals. 

Q Screen-refresh registers control the addresses generated during local­
memory screen-refresh (memory-to-register) cycles. 

HCOUNT 

HESYNC 

HESERR 

HEBLNK 

HSBLNK 

HTOTAL 

SETHCNT 

address: COOO 01 DOh 
address: COOO 001 Oh 
address: COOO 0270h 
address: COOO 0030h 
address: COOO OOSOh 
address: COOO 0070h 
address: COOO 0310h 

tracks the number of VCLK periods that occur per horizontal 
scan line. 

defines the point in a horizontal scan line where horizontal sync 
ends and the HSYNC signal is driven inactive. 

is used in composite mode only. It identifies the point in the hori­
zontal scan line where serration ends. Serration may occur on 
the CSYNC pin during the vertical-sync portion of the display, 
and is similar in form to horizontal sync, though of different 
duration. 

defines the endpoint of the horizontal-blanking period; this is 
the point when the HBLNK signal is driven inactive. 

-:-:=-:-:-:-:-; 
defines the startpoint of horizontal blanking, when HBLNK is 
driven active. 

defines the number of VCLK periods allowed per horizontal 
line. It also specifies when the horizontal-sync period begins 
and HSYNC is activated. 

is used in external video modes to reload HCOUNT when an 
external composite or horizontal sync begins. This allows you 
to start the horizontal count from an arbitrary value, counteract­
ing synchronization delays and/or external signal skew. 

Video Timing and Screen Refresh 



VCOUNT register 
VESYNC register 
VEBLNK register 
VSBLNK register 
VTOTAL register 
SETVCNT register 
15 

VCOUNT 

VESYNC 

VEBLNK 

VSBLNK 

VTOTAL 

SETVCNT 

address: CODa 01COh 
address: CODa OOOOh 
address: CODa 0020h 
address: CODa 0040h 
address: CODa 0060h 
address: CODa 0300h 

counts the horizontal scan lines in the display. 

defines the number of horizontal scan lines where vertical sync 
ends and the VSYNC signal is driven inactive. 

defines the endpoint of the vertical-blanking period; this is the 
point when the VBLNK signal is driven inactive. 

defines the startpoint of vertical blanking, when VBLNK is 
driven active. 

defines the number of horizontal scan lines allowed for the 
entire display. It also specifies when the vertical-sync period 
begins and VSYNC is activated. 

is used in external noninterlaced video modes to reload 
VCOUNT when the first external composite serration pulse or 
vertical sync begins. This allows you to start the vertical count 
from an arbitrary value, counteracting external signal skew. For 
external interlaced video this register must be programmed to 0 
so that the video timing logic can distinguish the external odd 
and even fields and synchronize accordingly. 

Note: For a complete illustration and description of DPYCTL, see Chapter 4. 

MM·· 
bit 0 

The DPYCTL register does not affect display timing, but it contains several bits 
that control various display functions: 

The HSD (horizontal-sync direction) bit determines whether HSYNC is an input 
or an output: 

HSD=O selects HSYNC as an input. 
HSD=1 selects HSYNC as an output. 

9-5 



MW·M 
bit 1 

M". 
bit 2 

• flt. 
bit 3 

Wii+ 
bit 6 

.'3* 
bit 7 

MM-
bit 11 

+;'+ 
bit 12 .. 
bit 14 .. 
bit 15 

•. g'. 
bit 13 

w·bM 
bit 10 

9-6 

The VSD (vertical-sync direction) bit determines whether VSYNC is an input 
or an output: 
VSD=O selects VSYNC as an input. 
VSD=1 selects VSYNC as an output. 

The CSD (composite-sync direction) bit helps to determine whether CSYNCI 
HBLNK is an input or an output: 
CSD=O selects CSYNC/HBLNK as an output. 
CSD=1 selects CSYNC/HBLNK as an input, provided that CVD=O (if 

CVD=1, this pin is always an output) . 

The CVD (composite-video disable) bit determines the functions of CSYNCI 
HBLNK and CBLNKlVBLNK: 
CVD=O selects CSYNC and CBLNK. 
CVD=1 disables composite video and selects HBLNK and VBLNK. 

Setting the SSV (split-serial-register midline-reload enable) bitto 1 enables the 
TMS34020 to perform screen refreshes for VRAMs with split serial registers. 

The VCE (video-capture enable) bit selects the type of screen-refresh memory 
cycle: 
VCE=O 
VCE=1 

selects memory-to-register screen-refresh cycles. 
selects register-to-memory screen-refresh cycles. 

Setting the CST (CPU serial-register transfer) bit to 1 tells the TMS34020 to 
convert ordinary pixel accesses into VRAM serial-register transfers. 

Setting the SRE (screen-refresh enable) bit to 1 enables automatic screen re­
freshes when video is enabled (ENV=1). 

The NIL (noninterlaced video) bit chooses interlaced or non interlaced video . 
NIL=O enables interlaced video. 
NIL=1 enables noninterlaced video . 

The ENV (enable video) bit must be 1 to allow the video timing logic to operate. 
When ENV=O, the TMS34020's blanking outputs are permanently at the acti­
ve-low level, and all display control is disabled . 

The TMS34010 used bit 13 as the DXV (disable external video) bit. The 
TMS34020 does not need this bit; the TMS34020 relies entirely on HSD, VSD, 
and CSD to individually select which video timing signals are external. The 
TMS34020 ignores bit 13. 

The TMS3401 0 used bit 10 as the ORG (origin) bit to determine whether the 
display origin was in the top left or bottom left corner of the screen, and there­
fore whetherto increment ordecrementthe screen-refresh address dl:Jring hor­
izontal blanking. The TMS34020 does not need this bit; the TMS34020 allows 
you to load SRINC[DINC] with the 2s complement of the display pitch if you 
wish to decrement the screen-refresh address. The TMS34020 ignores bit 10. 

Video Timing and Screen Refresh 



Related Registers "' __ =_=====_'''''~~'''''''","",,''''=='",,",,===,,"=_~_,,"_ .. =,,,,,,,,,::xx,~~~~~~~m~~~~::::x:::;:w:::::;::w,.m+;: 

DPYST registers address: COOO 0200h 

Note: For a complete illustration and description of DPYST, see Chapter 4. 

DPYSTL and DPYSTH are two 16-bit registers that work together to form a 
single 32-bit register. Throughout this chapter, this register pair is referred to 
as DPYST. DPYST contains the 27 -bit SRSTvalue, which represents the long­
word address of the first pixel to be displayed on the screen. 

DPYNX registers address: COOO 0220h 
31 5 4 0 

Note: For a complete illustration and description of DPYNX, see Chapter 4. 

bits 5--31 

bits 0-4 

DPYNXL and DPYNXL are two 16-bit registers that work together to form a 
single 32-bit register. Throughout this chapter, this register pair is referred to 
as DPYNX. The DPYNX registers contain two values. 

The 27-bit SRNX value represents the long-word address of the next-screen 
refresh. This is the address of the first pixel on the next scan line of the display. 

The 5-bit YZCNT value is used to determine whether or not SRNX can be 
incremented between screen refreshes. This allows the image on the screen 
to be magnified (zoomed) in the Y direction by repeating scan lines multiple 
times. 

DINC registers address: COOO 0240h 
31 5 4 0 

I( ... · .... i\ •••••••• • ••• ··.;W ·.···.·.···IIil?i(··"·, '·~; •••• · ••• · •.......•.•... · ............ IijSftiNCIi ·.·.·.··.······.·.··.···.···.·'··{I .... jI .•...•..•...............•......••..•......•..•...•....••.••.••.....•.•.•........•.•...•.•...•... ' ...•.....•...•.....•.....•.....•..........•.•.•.•.•.•.•.•.•.•.•.•.•...•..•.•.•.•.•.•..•.•.•.•...•.....•..•....•.......•. · .....•.•....... , ..•.••.. · ...•.. · .... · ...• ·1 .•.•.••..•.•.• · ...•.•. l.· .•.• · .• r.·.·.(.· •••. * .•... '.·.· .. ·.·.: ..•. Z.· ... •.· ..•. · •••.•.•.. • .••• i .• · ..•. N ... ·· ... ··.· .• · ...•. O.·.·.·,'.· ••. ·,' .• , •.• , •. ·, •.•.•.•• , •.• , •. t.· .•••.• , •. ·1 :r ::::;::::;:;::::::~ ::::::::::::::::::::::::::::::::i:::i:::i1t%N~:J ::::::::::::::::::::::~::::::~:::::::::::: :.:.:.:.:.:.:.:.:.:.:.:.'.:.:.:.:.:.'.:.:.:.:.:.:.:.:.:':':':':':':':':':':":;'::::':::':::::::'::':~ ::::.::::::::::::::=::::::::::::::::::::.:::::::.:::.:::.:::.:::::.::::.:::.::::::::::~:::::.:::.:.:.:.: __ •• ' .' • _ 

Note: For a complete illustration and description of DINC, see Chapter 4. 

bits 5--31 

.'1'1. 
bits 0-4 

DINCL and DINCH are two 16-bit registers that work together to form a single 
32-bit register. Throughout this chapter, this register pair is referred to as DINC. 
The DINC registers contain two values. 

The 27 -bit SRINC value is the amount by which the address in SRNX is increm­
ented between screen refreshes; this value is equal to the display pitch. 

The 5-bit YZINC value is used to determine the number of screen refreshes 
that must occur between each increment of SRNX. YZINC is added to YZCNT 

9-7 



Related Registers 
iliXX~~~.«YhX::-;:;~~~;~~~:;-"';~~~~~~~~~_~::'::~ili;;::~:::'Q.:::'::~~::-YA';::-~»':::::-;-»;:;X::::'::M~m::~:oxmmmW"::XW4::'::X-;-;::-_'m~~.::x~m~.:::::;::-,,,,;;x~::-;oi';-».:::::x~:::w.:~m::::~xxx::~~;;:::;~~:~:%0::X~:::::;:::;-;~::->;~~::-;~~xm:l';-;~::-':::~:::~;:~:::::::~9.::::::::;::~~::;;::::~::»-:;:W;:;:::;::~~~:;:l';~~;:;:;:;:;:::;:;m:;--..::x::::-;::::-;:::;::~f~::;:l';::':;:;:::;-'::::;: 

DPYMSK register 

between every screen refresh, but SRNX is incremented only when YZCNT =0. 
This allows the screen image to be magnified (zoomed) in the Y direction by 
repeating scan lines multiple times. 

address: CODa 02EOh 

~ 
~ 

i~;.~»;.~;.w ...... ,w,.:.);.~;.;.;.;.;.:.;.mw..:~ ........ ,w,.:.w ... ..:w ... m..:(.' ......... ..:w..:~ ...... .wH.Y'''' ... ..whWM ... »m:.;.m;.»»W,..:.:.:.:.:.:~.:.',.:.»J.:·m»w ... H.·»W ... ,.:.:'HHh;.m»:-»:.:-;.x·x·!o',:.:·»»:·»!·x.;.:.w,.:.:~.;.;.w":'X·;':·»:«-~;'W"''':'X0:¢»;'»»»>>>>>:':·:';';'>>''-:''hm:.w.-:·x·x«*-0;';'»:':-:':'»:",*=«*Wh:-'M»»=*,/..:.:.:.:,;.;,:.»:.:'-":':',:.:-:«.J 

9-8 

DPYMSK identifies the portion of the screen-refresh address that represents 
the column or tap-point address for midline reload. DPYMSK's LSB maps to 
the LSB (bit 5 ) of SRST[DPYSl] an~ SRNX[DPYNX]. Allowing for this 5-bit 
offset, DPYMSK must be loaded with a string of contiguous 1 s at the position 
of the column address in the logical address. 

The TMS34020's screen-refresh registers differ from those of the TMS3401 0, 
although the registers are similar in function. 

Q SRST[DPYSl] is equivalent to the SRSTRT field of the TMS34010's 
DPYSTRT register. 

Q SRNX[DPYNX] is equivalent to DPYADR. 

Q SRINC[DINC] is equivalent to the DUDATE field in the TMS34010's 
DPYCTL register. 

Q The TMS34020 does not need the TAPPNT register. 

The TMS34020 supports the DPYSTRT, DPYADR, and TAPPNT registers for 
compatibility purposes only. They are simple read/write registers; they have no 
additional functionality and have no effect on the TMS34020's screen-refresh 
mechanisms. 

There is no equivalent of the LCSTRT field in the TMS3401 O's DPYSTRT reg­
ister. Screen-refresh cycles are generated during the horizontal-blanking inter­
val at the beginning of every unblanked line of the display. 

Video Timing and Screen Refresh 



Relationship Between Horizontal and Vertical Timing Signals 

9.3 Relationship Between Horizontal and Vertical Timing Signals 

Figure 9-1 illustrates the relationship between the horizontal and vertical tim­
ing signals for constructing a 2-dimensional raster display pattern. 

Q The horizontal sync and blanking signals span a single horizontal scan 
line within the frame and are repeated for each line. 

Q The vertical sync and blanking signals span an entire frame (1 complete 
pass of the display). 

Figure 9-1. Horizontal and Vertical Timing Relationship 

- Horizontal Interval --.. -------­
I 

HSYNC~~----------------------------~ 
HBLNKI I 

I 

/ 
1 

VCOUNT =u--r ....... ~~ 

I 
start 
new 

frame 
\ 

\ 
\ 
\ 

-- ----

Active 
Display 
Time 

start new line _ .. 

~t>-" 0-,,0 ----

Vertical 
Interval 

Figure 9-2, a simplified version of Figure 9-1, illustrates several terms and 
phrases used throughout this chapter. 

9-9 



Relationship Between Horizontal and Vertical Timing Signals 

Figure 9-2. The Porches 

1111111111111 

~~---------------------

horizontal front 
porch 

horizontal back 
porch 

vertical front porch 

:z/ </ ~ ~ 

III I 

is the interval between the beginning of 
horizontal blanking and the beginning of 
horizontal sync. 

is the interval between the end of horizon­
tal sync and the end of horizontal blank­
ing. 

is the interval between the beginning of 
vertical blanking and the beginning ofver-
tical sync. 

vertical back porch is the interval between the end of vertical 
sync and the end of vertical blanking. 

9-10 Video Timing and Screen Refresh 



Horizontal Video 

9.4 Horizontal Video Timing (Internal) 

Figure 9-3. 

This discussion applies to video timing signals that the TMS34020 generates 
internally (it does not apply to external signals). Horizontal timing signals are 
the same for interlaced and noninterlaced video displays. Figure 9-3 shows 
how the HESYNC, HEBLNK, HSBLNK, and HTOTAL registers control horizon­
tal signal timing. 

Horizontal Timing 

HBLNK ~ r "v ~'---__ _ 

I Horizontal : Horizontal : Horizontal I I 

HSYNC 

I Front I Sync Back I I 
I Porch I Porch I I 

\ % "v ~~" ---r-: ---'~'---__ 
II HESYNC+ 1 I I I 
14 ~I I I I 
I--HEBLNK+1---'1 I I 
I I I 

I 11+.----HSBLNK+1-----~1 I 
I I 
11+. -----HTOTAL+1 -------.t~ I 

[J All horizontal timing parameters are multiples of VCLK, which are counted 
by HCOUNT. 

[J The time between the start of 2 successive HSYNC pulses is specified by 
HTOTAL. Because HCOUNT counts 0 as its first value, the value in 
HTOTAL represents 1 less than the number of VCLK periods per horizon­
tal scan line. For example, to specify a horizontal interval that is some even 
number 2n of VCLK periods in duration, the HTOTAL register must be set 
to an odd value, 2n-1. 

[J Similarly, the value in HESYNC represents the duration of the HSYNC 
pulse, minus 1, and the values in HSBLNK and HEBLNK represent the 
startpoints and endpoints of the horizontal-blanking interval. 

Figure 9-4 shows a simpHfied diagram of the internal logic that generates the 
horizontal timing signals. HCOUNT is incremented once every VCLK period 
(on the high-to-Iow transition) until it equals the value in HTOTAL. During the 
VCLK period following HCOUNT = HTOTAL, HCOUNT is reset to 0, and 
begins counting again. 

The limits of the horizontal-sync pulse are defined by the values in HESYNC 
and HTOTAL. HSYNC is driven active low after HCOUNT = HTOTAL; it is then 
driven inactive high after HCOUNT = HESYNC. After HCOUNT becomes 
equal to HTOTAL or HESYNC, a 2-VCLK delay occurs before the appropriate 
transition takes place at the HSYNC pin. 

The HBLNK signal is driven active low after HCOUNT = HSBLNK; it is then 
driven inactive high after HCOUNT = HEBLNK. After HCOUNT becomes 

9-11 



Horizontal Video Timing (Internal) 

equal to HSBLNK or HEBLNK, there is a 2-VCLK delay before the appropriate 
transition takes place at the HBLNK or CBLNK pin (depending on the value of 
CSD[DPYCTL]). 

Figure 9-4. Horizontal Timing Logic-Equivalent Circuit 

When HCOUNT = HSBLNK (shortly before the end ofthe horizontal scan), hor­
izontal blanking begins. At this time, the video timing logic automatically sched­
ules a screen-refresh memory cycle, preparing for the next displayed line. 

Note: 

For interlaced video, HSBLNK, HTOTAU2, and HESYNC/2 must be sepa­
rated from each other by a time of at least 2 VCLK periods, plus 2 LCLK peri­
ods, in order that the correct screen-refresh requests are detected by the 

, TMS34020's memory controller. 

Figure 9-5. Example of Horizontal Signal Generation 

9-12 

VCLK 

HCOUNT 

HSYNC 

HBLNK 
orCBLNK 

Horizontal Horizontal Horizontal 
Front Porch Sync Pulse Back Porch 

Video Timing and Screen Refresh 





Vertical Video Timing (Internal) 

The VBLNK signal is driven active low after VCOUNT = VSBLNK; it is then 
driven inactive high after VCOUNT = VEBLNK. Transitions on the CBLNKI 
VBLNK pin coincide with transitions on the HSYNC or CSYNC pins. 

Figure 9-7. Vertical Timing Logic-Equivalent Circuit 

9-14 Video Timing and Screen Refresh 



Composite Video Timing 

9.6 Composite Video Timing 

This discussion applies to video timing signals that the TMS34020 generates 
internally (it does not apply to external signals). 

Composite video signals combine the horizontal and vertical video timing into 
a single blanking signal, CBLNK, and a single sync signal, CSYNC. 

Q CBLNK is simply the logical-OR (negative logic) of the HBLNK and VBLNK 
signals. Thus, when either HBLNK or VBLNK is active low, CBLNK is 
active low. 

Q CSYNC is essentially the same as the HSYNC signal, except during 
portions of the vertical-blanking interval. During these portions, special 
sync pulses (known as serration and equalization pulses) are generated. 
These pulses allow a monitor to detect the vertical-sync interval, while at 
the same time ensuring that it remains in horizontal sync. 

Some video monitors are designed to use composite ratherthan separate sync 
and blanking signals. Video systems used in television and broadcasting use 
composite video signals. 

9.6.1 Theory Behind Serration and Equalization Pulses 

Monitors pass the composite-sync signal through integrating (low pass) filters 
to extract the vertical-sync information from it. Serration pulses occur during 
the vertical-sync interval and are used by the monitor to determine when the 
vertical retrace occurs. 

In noninterlaced video mode, serration pulses begin at the end of each scan 
. line at the same time as the horizontal-sync pulses. In interlaced video mode, 
they also begin at the midpoint of each horizontal scan line. This is because 
in the even field, the vertical-sync interval begins and ends midway through a 
scan line. Ifthe pulses occurred only once per scan line, the vertical-sync pulse 
extracted by the monitor would not start or end at the right time in the even field . 

.• In interlaced video, equalization pulses occur in the regions immediately 
before and after the vertical-sync interval. They also begin at the end and the 
midpoint of each scan line, and because of this each pulse is only half the width 
of a regular horizontal-sync pulse. They are necessary to ensure that the moni­
tor extracts a vertical-sync interval of exactly the same width in both the even 
and odd fields, because the vertical-sync interval begins at the midpoint of a 
scan line in the even field. 

Because vertical sync always begins and ends at the end of a scan line in non­
interlaced video mode, equalization pulses are not required. 

9-15 



Composite Video Timing 

Figure 9-8 shows the regions of vertical blanking in which the serration and 
equalization pulses occur. Each region contains a number of scan lines speci­
fied by the vertical video timing registers. Outside these regions, CSYNC is 
identical to HSYNC. 

Figure 9-8. Regions of Vertical Blanking Where Equalization and Serration Pulses Occur on CSYNC 

VBLNK ~'I-_---I--_-+--_-i--___ ----,r 
I 

VSYNC -""1"1--\1 1/ 
I ~ I 

~ 

CD The first equalization region coincides with the vertical front porch. In 
broadcast-quality composite-video standards such as NTSC and PAL, this 
region has the same duration as the vertical-sync pulse. However, you can 
reprogram the duration by varying the duration of the vertical front porch. 

@) The serration region coincides with vertical sync and immediately follows 
the first equalization region. 

@ The second equalization region immediately follows the serration 
region. Hardware defines this region to have duration equal to that of verti­
cal sync. 

9.6.2 Serration Pulses on CSYNC 

9-16 

Serration pulses are produced during the serration region (see Figure 9-8). 
Serration pulses begin at the end of each horizontal scan line (coinciding with 
the beginning of horizontal sync) after the condition HCOUNT = HTOTAL is 
reached. If the display is interlaced, they also begin at the midpoint of each 
scan line, after the condition HCOUNT = HTOTAU2 is reached. The duration 
of these pulses is determined by the value of the HESERR register. This value 
is 1 less than the number of VCLK periods in the serration pulse, in the same 
way that the value in HESYNC is 1 less than the number of VCLK periods in 
the horizontal-sync pulse. 

Serration pulses are generally longer in duration than regular horizontal-sync 
pulses. This is shown in Figure 9-9. Broadcast-quality composite-video stan­
dards such as NTSC and PAL require that serration pulses are of such a dura­
tion that CSYNC is inactive high for a period equal to the active-low time of 
HSYNC. This can be achieved by programming HESERR to HTOTAL minus 
the number of VCLK periods in the horizontal-sync pulse. 

Video Timing and Screen Refresh 



Composite Video Timing 

Figure 9-9. Composite Sync During Serration Region (Inter/aced) 

HSYNC ~ t 
I HESYNC+1 I 
I' -I 

CSYNC I 

~HESERR+1~ I 

L 
I 
I 

r-----'\.I 

I' J:L,.-----J. 
I, 2 I _______ _ 
I H 

9.6.3 Equalization Pulses on CSYNC 

If the display is interlaced, equalization pulses are produced during the equal­
ization regions (see Figure 9-8, page 9-16). These pulses begin at both the 
end and the midpoint of each horizontal scan line, after HCOUNT = HTOTAL, 
and after HCOUNT = HTOTAU2. Each pulse ends after HCOUNT = HE­
SYNC/2. The beginning of every other pulse coincides with horizontal sync 
(see Figure 9-10). 

Figure 9-10. Composite Sync During Equalization Regions (Inter/aced) 

HSYNC \ 1 
I . I 

:' HESYNC+1 _I 

CSYNC I 

'L 
I 
I 

,...----__ I 

~~, I 
I' -, I I 

HESYNCt1 : I 
~11,_2 __ ~J:L ___ +. I I 

2 I 
I-I--------H-------.. II 
I I 

Broadcast-quality composite-video standards such as NTSC and PAL require 
that equalization pulses are exactly half the duration of horizontal-sync pulses. 
To achieve this, set HESYNC to an odd value. HCOUNT starts counting from 
0, so an odd value in HESYNC means that horizontal sync is an even number 
of VCLK cycles in length, and therefore exactly divisible by 2. Similarly, set 
HTOTAL to an odd value so that HTOTAU2 is exactly the midpoint of each scan 
line. 

If the display is noninterlaced, no special pulses are produced during the equal­
ization regions. The CSYNC output continues to appear like HSYNC. 

9-17 





Noninterlaced Video 

The example in Figure 9-12 uses the following register values: 

VSBLNK = 8 VTOTAL = 9 
VESYNC = 3 VEBLNK = 2 

Actual applications use much larger values; these values are for illustration 
purposes only. Note that the VESYNC is not selected as you might expect (you 
would expect it to be 1). Section 9.7.2 describes the reason for this, along with 
formal equations for selecting proper values for all the vertical timing registers. 

Each horizontal scan line is preceded by a horizontal retrace, triggered by the 
horizontal-sync pulse. The horizontal scan pattern repeats until VCOUNT = 
VTOTAL. Then, VCOUNT is reset to 0, and the vertical retrace (triggered by 
vertical-sync pulse) returns the beam to the top of the screen. 

VCOUNT is incremented each time HCOUNT is reset to 0 (HCOUNT is reset 
to 0 at the end of each scan line). The VSYNC output goes active when 
VCOUNT = VTOTAL, coinciding with the beginning of the horizontal-sync 
pulse. The VSYNC Signal goes inactive after VCOUNT = VESYNC; this transi­
tion also coincides with the beginning of the horizontal-sync pulse. 

Horizontal blanking is typically active during vertical-blanking transitions, 
which coincide with the leading edges of horizontal-sync pulses. 

Figure 9-12. Noninterlaced Video Timing Waveform Example 

VCOUNT 

HSYNC 

CSYNC 

VSYNC 

horizontal 
sweep 

vertical 
sweep 

Key: @ Vertical retrace 

I I 
I I 
1--®-~-·-----~CWf---------.j"1 
I I I 

CW Active portion of the frame 

9-19 



Noninterlaced Video 

9.7.2 Programming the Vertical Timing Registers for Noninterlaced Video 

For noninterlaced video, VCOUNT increments only after HCOUNT = 
HTOTAL, because there are no equalization or serration pulses with a period 
of half a scan line. Thus, with one exception, all the vertical timing registers are 
programmed in terms of the number of integral horizontal scan lines. VTOTAL 
is 1 less than the number of lines in the frame because VCOUNT counts 0 as 
its first value. VSBLNK and VEBLNK contain the line number, minus 1, where 
vertical blanking starts and ends, respectively. For reasons associated with 
composite interlaced video, the VESYNC register detects the end of vertical 
sync at half the value it is programmed to, and so should be programmed to 
twice the number of lines in the vertical-sync interval, minus 1. Figure 9-13 
summarizes this. 

Figure 9-13. Programming the Video Timing Registers for Noninterlaced Video 

9-20 

HESYNC 

flEBLNK 

t~~~~N~ 

-(th~nl.lihb~~OfVCU~Sih horiibnteJsyhd)2-.1· i········ 
- (the·hurt1b~r·.6f V(;LKs· fr6m·t~.~.·~tk~~fhorizol1t~I.·.$Y.M6f6 •. tJ1e end· •• ··•· 
....... of.J1orizontalblanking) :-:,1 .... .i(··· .••.•.•••.•..•• ..i· ... · ... 

. ~.. (th~number6f V¢p<$~~6mth~~t~rt6fgqtj~6ntal ~YI1c:f6the 
start ofhorizontalblanking)~1·· . ... .... .... . 

HT()~~L .(th~?LJ~~ePo.f"9:~.~ir .·th~lj~~r~··1··."'i .• i.···...i •. · •••. · .•. ·•··· ••.•• ···· .. . 
Hi:$ERR·· ,..(th~h()~berorYCLK§irhori~9mcIlSlf)rration).L1 •. i· 

i~ • .• (tWic~th~~dtnberof lin~sin. ~~ftic~(~yrid)+1 
.~i·· . (th~l1uihbet6tli;'#5 fromjh~start~tJeft!~~I~~hdto ·th~ end6f······ 

y~r:ti<::<:lIl:>I<:ll1kil1g)- 1.... ..... .... .... ... ... . ...... . 

-ith~h6frib~fC)flines~m~ih~~t~rtof ver:tical s~ri¢t~th~~t~rt of·.·.(· •. ver:tic~lbl?nklrig .,..·1 ) .... ... . ........... .............. ........ .......... ... .... .. . ...... . 

..... • = .. · nhWrilJ~b~k9f.lir1~.~··ihtg·~ .•. frk~~)i1})..<············· . 

Note: You don't have to program HESERR if you're not using composite video. 

Video Timing and Screen Refresh 



Interlaced Video 

9.8 Interlaced Video Timing 

DPYCTL register 
NIL 
14 

You can select interlaced scan mode by clearing NIL[DPYCTL] to o. 
address: COOO 0080h 

Note: For a complete illustration and description of DPYCTL, see Chapter 4. 

In interlaced mode, each video frame consists of two vertical fields of horizontal 
scan lines. The display consists of alternate lines from the two fields. This 
doubles the display resolution while only slightly increasing the frequency with 
which data is supplied to the screen. 

The TMS34020 can produce interlaced video signals compatible with NTSC 
(RS-170), PAL, SECAM, and similar broadcast-quality video standards. The 
TMS34020 also supports higher resolution standards such as RS-330 and 
RS-343. 

Note: 

For simplicity, the illustrations in this section show American (NTSC) wave­
forms. European waveforms differ slightly; Section 9.8.3 (page 9-27) 
describes these differences. 

-'~----------------------------------------------~ 

9.8.1 Activity in Interlaced Mode 

Figure 9-14 shows the path traced by the electron beam on the screen for a 
typical interlaced-video display. In interlaced mode, 2 separate vertical scans 
are performed for each frame-1 for the even lines (even field) and 1 for the 
odd lines (odd field). The even field is scanned first. 

(a) shows the vertical retrace at the beginning of the even field, which 
coincides with the vertical-sync pulse. In this example, the vertical 
retrace is an integral number of horizontal scan lines in duration but, 
in fact, can be programmed to any number of half horizontal scan 
lines. 

(b) shows the active portion of the even field. Solid lines represent 
displayed lines; dashed lines are blanked. 

(e) & (d) show the vertical retrace and the active portion of the display, 
respectively, for the odd field. 

(e) shows how the 2 fields form the complete display. Note that active 
scan lines 0-7 are partially blanked. 

9-21 



Interlaced Video Timing 
m,~~~-:;:;:;~:;:;X::~~~:;::~~::':;:;:;:;:;~:;:;:;~Z:;~»»»"ff..:::;:::::;xr":;9.::::;:;:;:;-;::::-,;:;x:;'m~~:;:;O;::::~:$;:;:;:;':;-;~:;':;:::;:i'»,W;:;::::O;~'X:;:;-;:;:;:;:::;:;':l';::':;:;:;:i';%:::;W.4:;:::;~':oW;:;::~~X-y..x:::::::;:;:I';w..:::::;:;:;z.;:::;::~'@":::;:;:~X&;*'::::;:;-;W4'y..z:;:;x:;:::;::~:~q"::M»7":::::~..xm.:::z~ZX';::::XX.:;::::::::::::W"::-Y":::;:~;::::X::::X:;:;::W/H;:::~::;~"} 

Figure 9-14. Electron Beam Pattern for a Typical Interlaced Display 
(a) Vertical retrace-even field (b) Active portion of the 

frame-even ". Id ---~ -----"" ----- --
-~--

--~--
~--

(c) Vertical retrace-odd field (d) Active portion of the 
frame-odd field 

(e) Juxtaposition of both fields 

9-22 

~- -- -- --

-- - ......... 

Figure 9-15 illustrates the video timing signals that generate a display similar 
to the one shown in Figure 9-14. However, Figure 9-15 has more blanked 
lines, to properly illustrate the composite-sync signal. The display line numbers 
and regions from Figure 9-14 are shown for reference. For completeness, all 
6 possible output signals are shown, although you can choose only 4 in either 
of the 2 allowed combinations: 

Combination 1 (CVD=O): 

HSYNC 
VSYNC 
CSYNC 
CBLNK 

Combination 2 (CVD=1): 

HSYNC 
VSYNC 
HBLNK 
VBLNK 

The example in Figure 9-15 uses the following register values: 

VSBLNK = 13 VTOTAL = 17 
VESYNC = 7 VEBLNK = 9 

Video Timing and Screen Refresh 



Interlaced Video Timing 

VCOUNT increments every half horizontal scan line for parts of the display; 
you must allow for this when programming the vertical timing registers. The 
formal programming equations and their derivations are given in Section 9.8.2. 

Figure 9-15. Interlaced Video Timing Waveform Example 

HSYNC 

CSYNC 

CBLNK 

VSYNC 

VBLNK 

horizontal 
sweep 

vertical 
sweep 

Note: 

I Equalization Serration Equalization I I 1 3 5 71 

Ull :ruuLIl 
I 
I 
I 
I 

I 

I I 
(@ .1. © .1. @ .. I.® 

I, I ) 
V 

Odd Field 

This figure is continued on the next page. 

I;l Vertical blanking begins at the end of a horizontal scan line near the end 
of the even field, and in the center of a horizontal scan line (after HCOUNT 
= HTOTAU2) near the end of the odd field. 

I;l Similarly, vertical blanking ends in the center of a horizontal scan line (after 
HCOUNT = HTOTAU2) at the beginning of the even field, and ends at the 
end of a horizontal scan line at the beginning of the odd field. 

The vertical-blanking interval is of the same duration in both the odd and even 
fields. In this way, the beam is positioned so that the horizontal scan lines in 
the odd field fall between the horizontal scan lines of the even field. Because 
each field contains an odd half line (not an integral number of lines), the total 
number of lines in the entire frame must be odd. 

9-23 



Interlaced Video Timing 
SS$$S S~SSSSS$ 

Figure 9-15. Interlaced Video Timing Waveform Example (Continued) 

VCOUNT 

HSYNC 

CSYNC 

VSYNC 

horizontal 
sweep 

vertical 
sweep 

1 
1 Equalization 1 Serration 1 Equalization : 10 2 4 6 1 

lj~--~--~I------~~~--~I--
1 1 1 1 

I I i L 
-l ! ~I------~~ __ ~! __ _ 

1 1 
1 

V 
Even Field 

In Figure 9-15, VCOUNT is incremented twice per horizontal scan line during 
serration and equalization periods. This is the frequency at which equalization 
and serration pulses occur. Because VCOUNT increments every half line 
between the beginning of the first equalization period to the end of the second 
equalization period, you can specify the number of equalization and serration 
pulses required without being restricted to an integral number of lines. 

Outside of the equalization and serri:ltion regions in Figure 9-15, VCOUNT 
increments only once per horizontal scan line, except there is an extra incre­
ment at the end of vertical blanking in the even field. This is necessary to 
ensure that the two fields are of exactly the same duration. 

9.8.2 Programming the Vertical Timing Registers for Interlaced Video 

9-24 

As Figure 9-15 shows, VCOUNT is incremented twice per scan line during 
serration and equalization regions, and once per scan line outside of these 
regions. VTOTAL is not merely the total number of scan lines minus one, as 
it is for noninterlaced video. VTOTAL must account for those regions where 
VCOUNT is incremented twice per line. This applies to all interlaced video, 
independent of the value of CVD[DPYCTL]. VCOUNT always increments on 
half horizontal scan lines during equalization and serration regions of 

Video Timing and Screen Refresh 



Figure 9-16. 

Interlaced Video Timing 

interlaced displays, even if these pulses are not visible at the pins. For this 
reason, you must comply with the programming procedure and equations 
(described in this section and shown in Figure 9-17) for all interlaced displays. 

To program the vertical video timing registers for interlaced video, divide verti­
cal blanking into two parts for calculation purposes: 

VFP Vertical front porch. This 'Is also the first equalization region (the region 
between the beginning of vertical blanking and the beginning of verti­
cal sync). 

VSS Vertical sync to setup. This is the region between the beginning of 
vertical sync and the end of vertical blanking. Note that this can also be 
thought of as comprising the serration region, the second equalization 
region plus the remainder of vertical blanking, or the vertical-sync 
region plus the vertical back porch. 

Figure 9-8 (page 9-16) first described these regions; Figure 9-16 shows them 
again, illustrating the two compound regions used for calculation. 

The Two Regions of Vertical Blanking Used for Programming Calculations 

\~~~ ______ ~r 
I I 
I I I I 
I I I I I 

~ i 
VSYNC 

tvFP..;·Ir--· -----~VSS~------;·I 
Key: VFP: First equalization region 

VSS: Vertical sync to setup 

Both VFP and VSS should be determined as a number of horizontal scan lines. 
The number of horizontal scan lines in vertical sync is also used in the calcula­
tions. If anyone of these values is not an integral number of lines, they should 
not be rounded down. Rounding down should take place only at the end of 
each calculation. 

After determining the duration of both VFP and VSS, you can consider the val­
ues that you must program into the registers: 

[J VESYNC detects the end of vertical sync at half its stored value. This is 
because the second equalization region is of equal duration to vertical 
sync, and the end of this region is detected at the full value of VESYNC. 
In addition, because VCOUNT increments every half horizontal scan line 
during equalization and serration, VESYNC snould be programmed to 4 
times the number of lines in vertical sync, less 1 because VCOUNT starts 
from 0: 

VESYNC = (4 x the number of lines in vertical sync) - 1 

9-25 



Interlaced Video 

Q VTOTAL contains the maximum VCOUNT value achieved for every field 
(odd and even). Because the counter increments every half line during 
equalization and serration, this is not simply the number of lines in the field, 
as is the case with non interlaced video. Allowance must be made for the 
extra increments. VTOTAL is therefore 112 the total number of lines in the 
entire frame, plus 1 for the odd half line at the beginning or end of the field, 
plus the number of lines throughout which VCOUNT is incrementing every 
half line (to account for the half line increments), minus 1 because 
VCOUNT starts from 0. The plus 1 and the minus 1 cancel, and VCOUNT 
increments every half scan line during VFP, vertical sync, and the second 
equalization region (equal in duration to vertical sync). This reduces to: 

VTOTAL = (the number of lines in the frame /2) + (2 x the number of 
lines in vertical sync) + VFP 

Q VEBLNK schedules the end of vertical blanking, which occurs VSS scan 
lines after VCOUNT is set to ° at the beginning of vertical sync. However, 
VCOUNT increments every half scan line during vertical sync and the sec­
ond equalization region (equal in duration to vertical sync). Allowing forthe 
fact that VCOUNT starts from 0, this gives rise to the following expression: 

VEBLNK = VSS + (2 x the number of lines in vertical sync) - 1 

Q VSBLNK schedules the start of vertical blanking, which occurs VFP scan 
lines before the start of vertical sync (when VCOUNT = VTOTAL). 
Because VCOUNT increments twice every scan line during VFP, the value 
of VSBLNK is: 

VSBLNK = VTOTAL - (VFP x 2) 

In this case, there is no need to subtract 1 to account for VCOUNT starting 
from 0, because this is already accounted .for in determining VTOTAL. 

Figure 9-17. Programming the Video Timing Registers for Interlaced Video 

.HE~VN8) ··········(iK~A4M~~rQfYGLKk;gbp~iidnt~lsYrl6): 1 

)iH·•·••••·E•••S•·· ··L· ··N········K> : ":.-;::. 

I-I~~~~~ .. i 
':~J~~GG" G'6li~'i11ii,""'bi vd,:,,~in Ihe]',r.,fif!; 
\\ HESERR( ··(th~riJ;riPEif()f y¢Lksinh6rii6nt;,·· ~J~~~tid~):1····· 
iVES),~d(4~(h~rijhi~~t··df !ige~.i;'''~~i9al. ~Ynd)41.· 
·'1t6TAl .~? 

!'~~Jj~ =. K~J(;V;ra.'~inucibeV.lqige~i?y.~ig<1 ;y~c)~ 1 
VSBLNK· rb\l+9TALT(\,~g~2) ... . . . ... . ... 

Note: You don't have to program HESERR if you're not using composite video. 

9-26 Video Timing and Screen Refresh 





Interlaced Video 

Figure 9-18. Vertical Blanking for NTSC and PAL Standards (Continued) 

(b) PAL 

VCOUNT 

CSYNC 
I 

VSYNC I 
1 

I 
VBLNK I 

1 
--Even .. I Odd-

1 

(c) NTSC 

VCOUNT 

CSYNC 
1 

VSYNC I 
I 

VBLNK I I 
I 
1 

--Odd ... 1 Even-
1 

(d) PAL 

~VCOUNT 

CSYNC 
I 

VSYNC I 
I 

VBLNK I I 
I 
I 

I 
I 
I 1 
I 1 
1 r-I 
I 
I 

End I Equalization 
I 

I 
I 
I 
I 
I 
I 
I 
1 

End I Equalization 
1 

I 
I 
I 
I 
I 
I 

-Odd .. I Even- Endl Equalization 
I I 

9-28 Video Timing and Screen Refresh 



External '~ni~~t"'n Modes 

9.9 External Synchronization Modes 

External synchronization modes enable the TMS34020 to use horizontal-, 
vertical-, and composite-sync signals from an external source. This allows you 
to superimpose or mix TMS34020-generated graphics with images from exter­
nal sources. 

Depending on the video pin configuration (separate or composite sync, select­
able via CVD[DPYCTL]), either 2 or 3 of the 4 video pins are configured as 
sync pins. External synchronization mode is selected by configuring the appro­
priate sync pins as inputs by way of the CSD, VSD, or HSD bits in DPYCTL. 
Each pin is configured as an input when its associated bit is a o. In sepa­
rate-sync mode, the CSD bit must be a 1 because the CSYNC/HBLNK pin is 
configured as horizontal blanking and, as such, is an output only. 

When all the sync pins are configured as outputs, the horizontal and vertical 
counters are cleared to Os after HCOUNT = HTOTAL and after VCOUNT = 
VTOTAL, respectively. This also initiates the corresponding sync pulse. How­
ever, when one or more of the sync pins is configured as an input, this behavior 
is altered somewhat; a high-to-Iow transition on an input sync waveform (the 
beginning of an external sync pulse) causes one or both of the video counters 
to be loaded from SETHCNT and SETVCNT. By loading the video counters 
with a programmable value instead of 0, you can compensate for delays 
inherent in the process of synchronizing the external sync signals to VCLK 
within the TMS34020, for the time required for the TMS34020 to respond to 
the external sync signals, and also for external signal skews. HCOUNT and 
VCOUNT are reloaded as follows: 

Q HCOUNT is reloaded by a falling edge on either the HSYNC orthe CSYNC 
pin. In noninterlaced video mode, a falling edge on VSYNC also reloads 
the horizontal counter. 

Q VCOUNT is reloaded by a falling edge on the VSYNC pin or the first serra­
tion pulse on the CSYNC pin (which occurs at the beginning of vertical 
sync). For this reason, the serration pulse width must be at least 2 VCLK 
periods greater than the internal horizontal-sync pulse width. In program­
ming terms, this means HESERR ;::: HESYNC + 2. If this is not the case, 
the TMS34020 will not be able to detect the beginning of vertical sync from 
the composite input waveform. The HESERR and HESYNC registers 
must be programmed to accurately match the parameters of the external 
video source. 

By causing VCOUNT and HCOUNT to follow the external synchronization 
signals in this way, the blanking intervals and screen-refresh cycles are also 
forced to follow the external video source, and the TMS34020 is therefore syn­
chronized to the external video. 

While the sync pins are independently configurable as inputs or outputs, not 
all of the possible combinations of inputs are useful. Typically, you would use 
one of the following 3 combinations of inputs: 

9-29 



External Synchronization Modes 

9-30 

[J External vertical-sync signal only. 

VSVNC: input HSVNC: output CSVNC/HBLNK: output 

Used with noninterlaced video 

HCOUNT and VCOUNT are loaded simultaneously at the beginning of the 
external vertical-sync pulse, thus completely synchronizing the 
TMS34020 to the external source. Because HCOUNT is synchronized 
only once per frame, it is important that it be programmed to the correct 
value for the external source. For interlaced video, vertical sync coincides 
with a horizontal-sync pulse in every other frame only. Also, vertical sync 
alone is not sufficient to determine the field parity (odd/even) of the exter­
nal video source, and therefore is insufficient to determine the field in which 
the horizontal and vertical sync coincide. Forthese reasons, external verti­
cal sync has no effect on the horizontal timing registers in interlaced video. 

Q EXiernai vertical- and horizontai-sync signals. 

VSVNC: input HSVNC: input CSVNC/HBLNK: output 

Used in both composite- and separate-sync modes, 
interlaced or non interlaced video 

The beginning of the external vertical-sync signal reloads VCOUNT; the 
beginning of the external horizontal-sync signal reloads HCOUNT. 

[J External composite-sync signal only. 

VSVNC: output HSVNC: output CSVNC: input 

Used with interlaced video only 

The TMS34020 must be configured in composite video mode (CVD=O) so 
thatthe CSYNC/HBLNK pin is selected as CSYNC. The beginning of each 
external composite-sync signal reloads HCOUNT, and the beginning of 
the first serration pulse reloads VCOUNT. For noninterlaced video, the 
TMS34020 does not recognize equalization or serration pulses, and so 
cannot detect the beginning of vertical sync from a composite signal. For 
this reason, external composite sync has no effect on the vertical timing 
registers in noninterlaced mode. 

To avoid any potential signal conflicts, all three sync pins are configured as 
inputs when the TMS34020 is reset. However, sync pins not actually being 
driven by external signals should subsequently be configured as outputs. 

Video Timing and Screen Refresh 



9.9.1 Odd and Even Field Alignment in Interlaced Mode 

In interlaced mode, the TMS34020 synchronizes with the same field parity as 
the external source, provided that VTOTAL is programmed to exactly match 
the external source. This is necessary because of the way that the video timing 
logic adjusts to the correct field. 

If the internal video timing has field parity opposite to the external source, the 
horizontal-sync pulse generated by the internal video timing logic is initially 
displaced from those of the external system by half a scan line. However, as 
soon as an external horizontal-sync pulse occurs, HCOUNT is reset, and 
VCOUNT is incremented. This realigns the internally generated horizon­
tal-sync pulses with those of the external system. Because this occurs while 
the internal video timing logic is midway through a scan line (where VCOUNT 
would not normally be incremented), it causes the internal field to be shortened 
by half a scan line. The TMS34020 takes advantage of this at the end of the 
field to ensure that it becomes aligned to the same field as the external source. 

After reaching VTOTAL, the internal video timing logic starts a new field with 
the opposite field parity. However, because the previous field was shortened 
by a half a scan line, the external vertical sync does not occur for another half 
scan line. When it does occur, it causes the video logic to resynchronize to the 
external source and start yet another new field, and the field parity changes 
again. Field parity changes twice, whereas the external source changes field 
parity only once. Thus, the internal video timing logic has the same field parity 
as the external source due to the extra (half scan line long) field. 

If the internal and external vertical-sync pulses are separated by less than the 
duration of the horizontal-sync pulse (if CVD=1) or the composite-serration 
pulse (if CVD=O), the internal field parity does not change twice. This allows 
for normal differences between when VCOUNT = VTOTAL and detection of the 
beginning of the external vertical-sync interval. This will be the case when the 
internal and external field parities match correctly, provided that VTOTAL 
matches the external source. If this is not the case, one of the following situa­
tions applies. 

~ If VTOTAL gives an internal field duration less than that of the external 
source, the internal video timing logic changes field parity twice per field: 
once when VCOUNT = VTOTAL, and once at the beginning of the external 
vertical-sync interval. 

~ If VTOTAL gives an internal field duration greater than that of the external 
source, the internal video timing logic changes field parity only once per 
field: At the beginning of the external vertical-sync interval, even if the 
internal video timing logic does not have the same field parity as the exter­
nal source. 

9-31 



External Synchronization Modes 

9.9.2 Synchronizing External Syncs to VCLK 

The TMS34020 synchronizes input signals to VCLK before passing them to the 
internal video logic. This means that inputs can be asynchronous to VCLK. The 
delay from the high-to-Iow transition of an external sync input to an occurrence 
of transition-induced changes at the video output pins will be from 4 to 5 VCLK 
periods, depending on the phase relationship between the transition and 
VCLK.lf you do not require the TMS34020 to follow the external video source 
to an accuracy of 1 VCLK period (if, for example, the TMS34020 uses the exter­
nal synchronization simply to perform screen refreshes or display interrupts), 
asynchronous operation may be acceptable. 

If you use any of the video output signals (either blanking or sync) to control 
any other part of the system, then the TMS34020 may need to synchronize 
precisely to the external video source. In this case, you can present the exter­
nal input sync signals synchronous to VCLK. If the setup and hold times for a 
valid level on one of the external video input pins with respect to the low-to-high 
transition of VCLK (described in the TMS34020 Data Sheet, Appendix A) are 
met, then the timing relationship between input signals and output signals is 
a constant, integral number of VCLK cycles. However, the exact number of 
cycles will appear to vary according to the value programmed in the SETHCNT 
register. 

9.9.3 Loading the Video Counters 

9-32 

When the external video input signals are presented synchronous to VCLK, 
there is a 4-VCLK delay between the VCLK cycle when a falling edge is 
sampled on an external sync pin, and when the changes induced by this edge 
are visible at the video output pins. If you require the TMS34020 to accurately 
follow the external source, the effect of this delay can be eliminated by using 
the SETHCNT register. 

SETHCNT is loaded into HCOUNT at the beginning of the fifth VCLK period 
after the appropriate external sync signal is detected at the input pin. This is 
shown in Figure 9-19 (a). By programming SETHCNTto 4, the TMS34020's 
video timing registers are aligned exactly to the external source. Loading 
HCOUNT to four 4-VCLK cycles, after the transition on the external sync pin, 
is equivalent to loading HCOUNT to 0 as soon as the transition on the external 
sync pin is detected. 

Once the internal video timing logic is synchronized to the external system (by 
the first high-to-Iow transition of an external sync pin detected by the 
TMS34020), the video timing outputs are aligned with the external system on 
subsequent scan lines, provided that HCOUNT is programmed to match the 
external system. This is shown in Figure 9-19 (b); the internal HTOTAL occurs 
simultaneously with the end of the external system's scan line, causing 
HCOUNT to be reset to 0, activating the appropriate output sync signals at the 
same time as the input sync from the external system. 

Video Timing and Screen Refresh 



External Synchronization Modes 
== __ "",r~ ... ·x..:x..-zxz..:..:..:z·"·.;.;s-y~~:::;mw..x:::».:~1~f·-'*'*'*'''''··''··''''·~":>.:::~::;:;"W"" 

Figure 9-19. Synchronization De/ay Compensation 

(a) Initial synchronization to external sync 

SYNC \ (in) 

HCOUNT ~ n X n+1 X n+2 X n+3 ~ S X 5+1 )( 

SYNC I ~ (out) I 
I" 4 VCLK periods "I 

Note: S is the value contained in SETHCNT. 4-VClK cycles after the falling edge on the input SYNC pin occurs, 
HCOUNT is loaded with S, and the transition on the output SYNC is caused to occur. 

(b) Subsequent synchronization to external sync 

HSYNC \ (in) 

HCOUNT HTOTAL X 0 X X 2 X 3 ~ S(=4) X 5 )( 
I 

CSYNC ~ 
I 

(out) 
4 veLR penods ·1 

Note: If HTOTAl matches the external system and S=4, HTOTAl causes the output sync pin to transition in the 
same VClK cycle as the input sync. 

Programming SETHCNT to values greater than 4 causes the TMS34020's 
video outputs to be in advance of the external video source. This can be useful 
for eliminating additional signal skews in the system. 

There is a similar register for loading the vertical counter, SETVCNT. This must 
be loaded with 0 for interlaced video mode; otherwise, the TMS34020 will not 
be able to synchronize to the external field parity, for the reasons discussed 
in Section 9.9.1. If desired, you may load it with nonzero values in noninter­
laced video mode; this displaces the internal video from the external video by 
a number of scan lines. 

9-33 



External Synchronization Modes 

9.9.4 Synchronization Conversion 

When you load SETHCNT with 4, the TMS34020's video output signals are 
synchronized with the input signals, provided that the input signals meet the 
setup and hold times for synchronous operation (see the TMS34020 Data 
Shee~. Because of this feature, the TMS34020 can be used to convert one 
form of synchronization waveforms into another. 

o If the VSYNC and HSYNC pins are selected as inputs and the video timing 
registers accurately match the parameters of the external source, the 
CSYNC output is an exactly synchronized composite waveform with (in in­
terlaced mode) the correct equalization and serration pulses. 

Q If the CSYNC pin is selected as an input and the video timing registers 
accurately match the parameters of the external source, the HSYNC and 
VSYNC outputs are exactly synchronized separate waveforms equivalent 
to the input. 

9.9.5 Programming Flexibility and Limitations 

9-34 

For asynchronous operation in which the TMS34020 is not required to exactly 
follow the external source, you can program HTOTAL to a very large value 
(such as FFFFh). This prevents the condition HCOUNT = HTOTAL from occur­
ring, and HCOUNT is reset only when a high-to-Iow transition on an external 
sync occurs. When using external synchronization modes there are, depend~ 
ing on the application, a number of different approaches that can be taken in 
programming the video timing registers. 

For non interlaced video, the same is also true for VTOTAL; however, for inter­
laced video, VTOTAL must be programmed to the correct value for the 
TMS34020 to be able to resolve the field parity of the external source. 

Anytime SETHCNT is not 0 (typically for synchronous operation), HTOTAL 
should be loaded to match the external source. If this is not adhered to, then 
the TMS34020 will not be able to start horizontal- or composite-sync pulses 
coincident with the external-sync pulse, because the condition 
HCOUNT = HTOTAL will not occur. If you are not concerned about starting 
horizontal- or composite-sync pulses exactly aligned, but still wish to use 
SETHCNT, HTOTAL can be programmed to a large value as detailed above. 
If you take this approach, there are some pitfalls to avoid: Because HCOUNT 
is reloaded with the value in SETHCNT but HTOTAL is never reached, the 
counter never counts through those values from 0 up to SETHCNT - 1. You 
must ensure that the values of HESYNC, HESYNC/2, HESERR, HSBLNK, 
HEBLNK, or HTOTAU2 do not coincide with any of these values; if they do 
coincide, the output waveforms could be corrupted. Again, for interlaced video, 
VTOTAL must be accurately programmed. 

Video Timing and Screen Refresh 



External Synchronization Modes = _____ • ==- "' .... ==7~_~~:.t~='" __ """",,,~::m~==-==_*,*,w~~_'X ·W " .... ~msm::::'Z:::::::':::'Z!-m-m::m :' ~::::;r~~ 

To allow the TMS34020 to detect the beginning of vertical sync from a com­
posite-sync input, HESERR must be equal to at least HESYNC + 2. The 
TMS34020 samples the state of the composite input waveform when 
HCOUNT = HESYNC to determine whether serration has begun; if this is not 
adhered to, the TMS34020 may mistake a regular horizontal-sync pulse for a 
serration pulse. 

For the TMS34010, it was important that HTOTAL and VTOTAL contained 
values large enough notto cause HCOUNT and VCOUNTto be cleared before 
the leading edges of the external sync pulses could clear them. This is not the 
case for the TMS34020. Instead, it is more important to program the registers 
accurately; it is essential to program VTOTAL correctly for interlaced field 
parity alignment, and HTOTAL correctly for synchronization conversion. 

9.9.6 External Synchronization Pulse Widths 

The external synchronization pulses input to the TMS34020 should have the 
following dimensions: 

Q Minimum width of HSYNC and VSYNC: Not less than 1 VCLK cycle. 

Q Minimum width of CSYNC: Same as for HSYNCIVSYNC except the 
serration pulses input during the vertical-sync portion of the signal must 
be at least 2 VCLK periods longer than the ordinary horizontal-sync pulse. 

Q Maximum width, all pins: Not greater than the internally generated pulse 
(HESYNC + 1, etc.). 

Q As for internal interlaced video, HSBLNK, HTOTAU2, and HESYNC/2 
must be separated from each other by a time of at least 2 VCLK periods 
plus 2 LCLK periods, ensuring that the memory controller can detect the 
correct requests. 

9-35 



Screen Size and Dot Rate 

9.10 Screen Sizes and Dot Rate 

9-36 

The TMS34020's 512-Mbyte address reach supports very high-resolution 
displays. For example, a large TMS34020-based system could use the lower 
half of the address space for display memory and use the upper half for storing 
programs and data. The 256-Mbyte display memory in this example could 
support the following display sizes: 

Q 8,192 by 8,192 pixels at 32 bits per pixel 
Q 16,384 by 8,192 pixels at 16 bits per pixel 
Q 16,384 by 16,384 pixels at 8 bits per pixel 
Q 32,768 by 16,384 pixels at 4 bits per pixel 
Q 32,768 by 32,768 pixels at 2 bits per pixel 
Q 65,536 by 32,768 pixels at 1 bits per pixel 

At most, all of the TMS34020's memory space below that allocated to the 110 
registers could be allocated to the display. 

The video timing registers also support high-resolution displays. The 16-bit 
vertical counter register, VCOUNT, directly supports screen lengths of up to 
65,536 lines. The 16-bit horizontal counter register, HCOUNT, does not directly 
limit horizontal resolution. Each horizontal line can be up to 65,536 VCLK 
(video clock) periods in length. The VCLK period, however, is an arbitrary 
number of dot-clock periods long, depending on the external divide-down logic 
that derives VCLK from the dot clock. Therefore, the number of pixels per line 
supported by the TMS34020's horizontal timing registers is limited only by the 
amount of video memory present. 

A typical screen must be refreshed 60 times per second for a noninterlaced 
display, or 30 times per second for an interlaced display. For a noninterlaced 
display, the dot period (or time to refresh 1 pixel) is estimated as 

dot period = 
DBR x (1/60 second) 

(pixels/line) (lines/frame) 

For an interlaced display, the dot period is estimated as 

dot period = 
DBRx (1/30 second) 

(pixels/line) (lines/frame) 

DBR is the display-to-blanking ratio, equal to the unblanked fraction of each 
frame. This is typically about 0.8, although this factor varies from monitor to 
monitor. During each dot period, the complete information for 1 pixel must be 
obtained from the display memory, or frame buffer. Thus, the rate at which 
video data must be supplied from the display memory (usually the limiting fac­
tor for large systems) is a function of pixel size as well as screen dimensions. 

Video Timing and Screen Refresh 



Display Interrupts and Applications 

9.11 Display Interrupts and Applications 

You can program the TMS34020 to interrupt the CPU when a specified line is 
displayed on the screen. This is called the display interrupt. Enabling the 
display interrupt is a 2-step process: 

Step 1: Set DIE[INTENB] to 1. 

Step 2: Load the DPYINT register with the number of the desired horizontal 
scan line. When VCOUNT = DPYINT, the interrupt request is gener­
ated to coincide with the start of horizontal blanking at the end of the 
specified line. 

DIP[INTPEND] is set every time the interrupt request is generated. You can 
poll the display interrupt by disabling the interrupt (setting DIE to a 0) and 
checking the value of DIP. Writing a 0 to DIP clears the interrupt request. 

The display interrupt has several applications: 

Q Coordinating modifications to a bitmap with displaying the bitmap's 
contents. For example, while the bottom half of the screen is being 
displayed, the TMS34020 can modify the bitmap used for the top half of 
the display, and vice versa. 

Q Maintaining a cursor on the monitor screen. The cursor image resides in 
the on-screen memory only during the time the electron beam is scanning 
the lines containing the cursor, and remains free from flicker even during 
periods when the TMS34020 is busy drawing to the screen. The technique 
is to load the DPYINT register with the VCOUNT value of the scan line just 
above where the top of the cursor is to appear. When the display interrupt 
occurs, the interrupt service routine performs the following tasks: 

• Sets DPYINT to the scan line just below the cursor, 
• Saves the portion of the screen where the cursor is to appear, and 
• PIXBLTs the cursor onto the screen. 

The cursor then remains on the screen until the electron beam next scans 
the lines it is on. In the mean.time, as soon as the electron beam reaches 
the bottom of the cursor, a second display interrupt occurs. This causes the 
original screen to be restored in preparation for the next frame, and the 
TMS34020 can resume drawing to the screen. 

Q Split-screen applications. By modifying the contents of SRNX[DPYNX] 
part way through a frame, you can display different parts of the bitmap in 
different horizontal bands of the screen. Sections 9.15.2 and 9.15.3 
(beginning on page 9-53) discuss the use of SRNX as part of the screen­
refresh mechanism. No special steps are necessary to ensure that loading 
a new value to SRNX does not interfere with the ongoing screen- refresh 
cycle; the display interrupt is requested at the beginning of the horizontal-

9-37 



Display Interrupts and Applications I Video Timing Programming Examples 
sx":::-m~w""'~ ;"m ..... ~..::::::::x~.«::::.~::.:::::;:;:::::::::::::::::;:::::x::.xx::~';::.-:::::;::::~:::;;;;;~').~~hW..m-'..«~~::::::'~...:;:;y~::::-m~;:;o'..x::,,~~"m."XZ'.:::::r..::::x::::::::::~x"~xx::::r .... g..xx,,:::;,,x:;x::::x%!--:;::x~::::::::WM 

blanking interval coincident with a screen-refresh request. However, the 
TMS34020 cannot respond to the interrupt request until the screen refresh 
and subsequent updating of SRNX is complete (this is true whether the 
interrupt was taken or the TMS34020 polls the DI P bit for the 0-to-1 transi­
tion). After DIP is set to 1, SRNXcan be loaded with a new value to achieve 
the split screen any time before the next screen-refresh cycle. 

In interlaced mode, VCOUNT increments every half scan line during the 
equalization and serration regions of vertical blanking. When this is occur­
ring, DPYINT is compared with VCOUNT twice per scan line; the display 
interrupt may occur at the start of horizontal blanking and also when 
HCOUNT = HTOTAU2 (in the center of each line). 

9.12 Video Timing Programming Examples 

This section illustrates procedures for determining the values to be pro­
grammed into the TMS34020's video timing logic. 

9.12.1 Noninterlaced 1024 x 768 Display 

This example assumes that the NIL, CVD, and CSD bits in DPYCTL are set 
to 1, so that the TMS34020 is in noninterlaced video mode with separate hori­
zontal- and vertical-blanking outputs. The values of other control bits in 
DPYCTL depend on other system specifications not covered in this example 
(such as external synchronization modes). 

Specifications--------------------------

9-38 

The monitor in this example uses these parameters; you could easily modify 
the example to fit the specifications of another monitor. 

Q Horizontal (refer to Figure 9-3 on page 9-11): 

Scan line duration (LD): 
Sync duration (HS): 
Back porch (HBP): 
Front porch (HFP): 

20.6251lS 
1 IlS 
2.8751lS 
0.75 1lS 

Q Vertical (refer to Figure 9-6 on page 9-13): 

Frame duration (FD): 16.665 mS 
Sync duration (VS): 831lS 
Back porch (VBP): 660 IlS 
Front porch (VFP): 82 IlS 

Q Screen dimensions: 1 024 pixels by 768 lines 

Video Timing and Screen Refresh 



Video Timing Programming Examples 
;:;x:::::;:;::::::::x-;::x~xx:;~:::;-;:;x::-;-~;::::::rn;:«~~~;::~~x::::$m;m:x::~::~~~:~:~~~~~~~~:;:~.::::::::::-.xx;:;:;::::::::.;~:::;x~::::~:::~:~:::~:::~:;.;::::x:;::~.:;::::~::::-;::::::::::~~~:~:::~::::::~:::;::~$:::::;';::~~~::~ ::::::~::::::f.::-':::$:::::;::-Y":;::::~::~::~~;:::;::~:::;::~~~::::::~::$::~:;;;:::::;:;:;X:~X::~~~::-,::'::;'~~.~::~::::~::::::::::~::f.~~::::~::~::~$~::-;:;~~~::::*'::.::::~:::~;::;.::~y;:;::-;:::::~ 

Procedure----------------------------------'---------------------

Step 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Figure 9-13 (page 9-20) lists the timing register programming equations for 
noninterlaced video. Before you can calculate proper values for the video tim­
ing registers, you must determine the active display time and the VCLK period: 

Q Use the horizontal information to calculate the active display time: 

active time (AT) = LD - HS - HBP - HFP = 16.0001lS 

At 1024 pixels per line, this is 15.625 nS per pixel. 

Q Determine the VCLK period. The minimum VCLK period VCLK is 50 nS, 
which means that the pixel dot clock must be divided by at least 4 to gener­
ate VCLK. Assuming this to be the case, 
VCLK period (T vclk) = 62.5 nS and VCLK frequency = 16 MHz 

Calculate ... Formula Yields a register value of ... 

Number of VCLK cycles per scan line LD HTOTAL = 32910 (149h) 

Tvclk 
= 330 

Number of VCLK cycles in horizontal sync HS HESYNC = 1510 (OFh) 

TVClk 
= 16 

Number of VCLK cycles in the horizontal back HBP = 46 
porch TVClk 

Number of VCLK cycles between the beginning HS + HBP HEBLNK = 6110 (30h) 
of horizontal sync and the end of horizontal TVClk 

= 62 
blanking 

Number of VCLK cycles in the horizontal front HFP = 12 
porch TVClk 

Number of VCLK cycles between the beginning LD - HBP HSBLNK = 21710 (OO9h) 
of horizontal sync and the beginning of horizon-

Tvclk 
= 218 

tal blanking 

Number of lines per frame 
FD = 808 

VTOTAL = 80710 (327h) 

LD 

Number of lines in vertical sync VS = 4 VESYNC = 710 (7h) 

LD 

Number of lines in the vertical back porch 
VBP = 32 
LD 

Number of lines between the beginning of verti- VS + VBP VEBLNK = 3510 (23h) 
cal sync and the end of vertical blanking LD 

= 36 

Number of lines in the vertical front porch 
VFP = 4 
LD 

Number of lines between the beginning of verti- FO - VFP = 804 VSBLNK = 80310 (323h) 
cal sync and the beginning of vertical blanking 

9-39 





Step 

1 

2 

3 

4 

5 

6 

Video Timing Programming Examples 
·~">$~ms*,~;::=:::,sm$*,r;;;:;:::;::::::::::::;::::: m:::,;m:X~"""'''''''m';;::=;;;::=m;~m~~m::::::::::::::::::::::::::::;$;;:;w,,::::::~'''':::,;;m;;::=;':::,;;:::,;;;; :l"'m:r":::;:~:::::~~7~:;X 

means that the number of VCLKs per line must also be even. This results in 
VCLK being 4 times the frequency of the subcarrier, with 910 VCLKs per line. 
Therefore, 

VCLK period (Tvclk) = 69.48 nS and VCLK frequency = 14.318 MHz 

Calculate ..• 

Number of VCLK cycles per scan line 

Number of VCLK cycles in horizontal 
sync 

Formula Yields a register value of ... 

LD = 910 
HTOTAL = 90910 (148h) 

TVClk 

HS = 67.29 
HESYNC = 6710 (42h) 

Tvclk 

This is not an integer, but if 68 is chosen, the value of HS 

derived is still within the ±0.1 ~S tolerance specified: 4.749 

~S. Remember that horizontal sync should be an even num­
ber of VCLKs long to ensure that the equalization pulses are 
exactly half that duration. 

Number of VCLK cycles in horizontal LD _ HS 
serration 2 To = 387.7 

HESERR = 38710 (183h) 

Number of VCLK cycles between the 
beginning of horizontal sync and the 
end of horizontal blanking 

Number of VCLK cycles in the hori­
zontal front porch 

Number of VCLK cycles between the 
beginning of horizontal sync and the 
beginning of horizontal blanking 

vclk 

388 gives the inactive time between serration pulses, which 

is specified identical to HS, as 4.679 ~S, which is within the 
tolerance 

HSS = 134.58 
TVClk 

HEBLNK = 13410 (86h) 

135 is within the tolerance specified: HSS=9.428 ~S 

HFP = 21.47 
Tvclk 

22 is within the tolerance specified: HFP= 1.536 ~S 

LD HLP HSBLNK = 88710 (337h) 
- " = 888 
TVClk 

9-41 



Video Timing Programming Examples / Video RAM Control 
~~~»'1o~~:1'..:;:;:::;:..,:=~w..x::-»".a::::::::::~::::,:;::::xW((("·",,,,,,,,,,,,,,,,,,,,,w·"····""·~..xr~~~""""~$M::::: ........ m~'»,:=::::~~:».:::xx:::;:~::::.:;::::~~~,:=~:m~~~:::'-::~~::::~~:~::::::::~~'2'«::~.::::: ........ m ........ ::x::::::~~~~'Xw-.:::~~~~::::-w..x::~7.:~%!::''::~ 

Step Calculate ...

7 VESYNC

8 VTOTAL

9 VSBLNK

10 VEBLNK

Because the vertical timing parameters are already specified in lines, it is nec­
essary only to work through the formulas given in Figure 9-17 to calculate the
vertical timing register programming:

Formula Yields a register value of ...

VSx 4-1 VESYNC = 1110 (OBh)

FD ""2 + (2 x VS) + VFP = 271.5
VESYNC = 27110 (1 OFh)

VTOTAL - VFP x 2 VSBLNK = 26510 (109h)

VSS+2x VS-1 VEBLNK = 2210 (16h)

9.13 Video RAM Coniroi

Display memory is the area of memory that holds the graphics image output
to the video monitor. The display memory is typically implemented with VRAMs
(video RAMs). The TMS34020 automatically schedules VRAM memory-to­
register cycles, called screen-refresh cycles, needed to refresh a video
screen. A screen-refresh cycle typically affects all VRAMs in a system. During
a screen-refresh cycle, a selected row of the display memory is transferred to
the internal serial register of each VRAM. The data is then shifted out to refresh
the display.

The TMS34020 supports 2 distinct types of screen refresh:

[J Screen refreshes that occur during horizontal blanking and
[J Screen refreshes that occur during the active display time.

The addresses output during both types of screen-refresh cycles are gener­
ated by a separate mechanism discussed in Section 9.15 (page 9-51); this
section also discusses other VRAM-control options programmed via the
DPYCTL register.

9.13.1 Screen Refreshes During Horizontal Blanking

9-42

The video timing logic schedules a screen-refresh cycle at the beginning of
each horizontal-blanking interval. During blanking, the VRAM serial registers
should not be shifting data (SCLK should be off). During the vertical-blanking
interval, no screen refreshes take place until the horizontal-blanking interval
at the beginning of the first displayed line of the new frame. Figure 9-20 shows
the local-memory screen-refresh memory cycle.

Video Timing and Screen Refresh

Video RAM Control

Figure 9-20. Local-Memory Memory-to-Register Transfer Cycle

WEV I i
TR/QE It : :''--+I-t---i--t' :

DDIN \ I I I I I
~ I I I I :J

DDOUT I-7V-+-nI'+-V.--r-I--"'!"'---t---;"jC-I1
1 I I I

LRDY

SIZE16

BUSFLT

1'\2S
I

I

I

1211

1-
T

I
HOE V I 1

I I I
HDST V I I I

I

I

J
I

HO t--: r--: r--: ~:\ +--+--1--1(...-1--....1-....1
H11 1 I

I 1 I

9.13.2 Screen Refreshes During the Active Display Time (Midline Reload)

The TMS34020 contains dedicated circuitry that operates synchronously to
the VRAM's shift clock (SCLK). This enables the TMS34020 to perform screen
refreshes during the active display time in systems with VRAMs that have split
serial registers (such as the TMS44C251, a 1-Mbit, 256Kxn VRAM). These
occur without interrupting the flow of data to the screen. If enabled, mid­
line-reload screen-refresh cycles occur as well as (not instead of) horizon­
tal-blanking screen-refresh cycles.

The SCOUNT register is loaded automatically during the horizontal-blanking
screen refresh with the column address (or tap-point) portion of the logical
address output to the VRAMs. When blanking ends and SCLK starts again,
SCOUNT is incremented each time the VRAM serial registers shift out a bit of
data. In this way, SCOUNT always contains the column address of the bit of

9-43

Video RAM Control

data currently being shifted out. When SCOUNT increments from all 1 s (the
column address of the last bit to be shifted out of one-half of the serial register)
to all Os (the column address of the first bit to be shifted out of the other half
of the serial register), a midline-reload screen-refresh cycle is scheduled.

You must set SSV[DPYCTL] to a 1 to allow the TMS34020 to perform
split-serial-register screen refreshes when they are scheduled by SCOUNT.
The DPYMSK register must also be programmed to ensure that SCOUNT is
loaded with the correct portion of the full logical address (Section 9.15, page
9-51, describes this). Figure 9-21 shows the split-serial-register VRAM mid­
line-reload screen-refresh memory cycle. The generation of the addresses
output during the register-to-memory cycles described in this section is also
covered in Section 9.15.

Figure 9-21. Local-Memory Split-Serial-Register VRAM Memory-to-Register Cycle

RCA zero ta oint

WEV I I I I I I I I
TRlQE L I I I I 1/ I I I

V \.1-+1 -+---1-1 --1'1- I I I
~ II II I I I OO~ I I I

I I I I I I

I J I I

I :~i I

I 1 I

BUSFLT T
I I I

9-44 Video Timing and Screen Refresh

Video RAM Control

When midline reload is enabled, an extra screen refresh is scheduled during
horizontal blanking. As for any horizontal-blanking period, an ordinary memo­
ry-to-register cycle loads the specified row of VRAM into each of the VRAM
serial registers. This loads both halves of the split serial register. However, if
the tap point is more than halfway along the row, then the idle half of each serial
register (loaded from the lower half of the VRAM row) will not contain data from
the next row of VRAM to be displayed. To ensure that the idle half contains the
next half row, and not the previous, a split-serial-register screen refresh with
the address of the next half-row is generated immediately after the ordinary
horizontal-blanking screen refresh. This is the same type of cycle used for the
midline-reload screen-refresh cycles, and loads only half of each of the VRAM
serial registers. Figure 9-22 shows these memory cycles.

Figure 9-22. Local-Memory Split-Serial-Register VRAM Horizontal-Blanking Memory-to-Register Cycles

Note:

Gi

CAMD

RCA

SF

ALTCH V

I
l

""-"-7'--,---!-1 --'_..l...--U 1 I I'-..J
I I I~

RAS\!

,-+--1--+1-1-1 --l' '\",+--I--4--+I-I'lfli
!-7-+-+-+--I.. I I I,,-+--+--+--I.. I 1r+--1

I I I I I I I
CAS? I

WE?
I
I

TR/QE V I,

DDINb

I
I

DDOUT? I'
I I

~-r--r-l---r--nl'-t-f I lrij

Ii: I I ::: i

I I I I
II I l_l3 IC-1

'--'----,'1 I I ~ I J I

LRDY

SIZE16
I I I I

PGMD
I I I I I J

I I
BUSFLT 1 I] I

HOE 17 I I I I
r I I I I

I I I I 1 I

HDSTV I I I I I

RO i : : :' iIi, i ,r-...I.....--'---:
--- I I I I I I I
Rll I I I I I I I I I I I

During the second screen-refresh cycle, the MSB of the column address identifies which half of the serial
register is reloaded. Remaining bits of the column address = 0 and represent the tap point. The row address
output now addresses the memory row containing the next half row to be transferred to the split serial reg.

9-45

Video RAM Control

Note:

Normally, SCLK should be low during blanking. However, VRAMs require
an SCLK pulse to latch the tap-point address into an internal counter. As
Figure 9-22 shows, 2 tap-point addresses are provided during horizontal
blanking. To ensure correct operation, you must provide a single SCLK
pulse to the VRAMs between TR/QE's low-to-high transition at the end of
the first screen-refresh cycle, and RAS's high-to low transition at the begin­
ning of the second screen-refresh cycle. (This is in accordance with the
timing specifications for VRAMs.) Failure to do this causes the TMS34020
to ignore the tap-point address provided during the screen-refresh cycle.

9.13.3 Why Use Midline Reload?

9-46

If serial-register transfers during horizontal blanking are the only type of trans­
fers available in a system, the display memory must be arranged in a way that
allows the VRAM serial registers to be loaded with enough information for an
entire scan line during each horizontal-blanking interval.Each row of VRAM
must contain at least as many bits as the number of pixels on one screen line.
Depending on the number of pixels, this means that there can potentially be
a significant amount of the display memory that cannot be used.

If, however, the VRAM serial registers can be reloaded during the active
display time as well as during blanking, there is no need for any of the display
memory to be wasted. Also, because each row ofthe display memory no longer
needs to contain enough information for a whole screen line. The number of
memory rows required may allow the display memory to be contained in fewer
banks. Section 8.17 (Double-Buffered Display Example, page 8-57) illustrates
how using midline reload can reduce the amount of VRAM required for display
memory.

Although midline reload can reduce the amount ofVRAM required, there is an
inherent trade-off: The screen pitch may not be a power of 2. If XY addressing
is being used for graphics instructions (as it typically is), this increases the time
taken to convert an XY address to a linear address:

Q If the screen pitch is a power of 2, each conversion takes 3 machine cycles.

o If the screen pitch is the sum of two powers of 2, each conversion takes
4 machine cycles.

o If the screen pitch is an arbitrary val ue, each conversion takes 15 cycles.

I n addition to the CVXYL instruction, which performs one conversion, graphics
instructions that have XY operands (either explicit or implicit) automatically
perform XY-to-linear conversions. The following instructions are affected:

o DRAV performs one conversion.
o FILL XY and PFILL XY perform one conversion.

Video Timing and Screen Refresh

Video RAM Control

'0 LINE performs one conversion.
o PIXBLT instructions perform one conversion for each XY operand.
o PIXT instructions perform one conversion for each XY operand.

Chapter 12, Graphics Instructions and Operations, provides precise details of
how the execution time for each instruction is affected by using a screen pitch
that is not a power of 2.

9.13.4 VRAM Bulk Initialization

VRAMs may be rapidly loaded with an initial value using a special feature that
converts pixel accesses into register transfers. This rapid loading method is
referred to as bulk initialization. When CST[DPYCTL] is set to 1, the
TMS34020 converts all reads and writes of pixel data into register-transfer
cycles. When CST = 0, pixel accesses are performed in the normal way.

When CST = 1, the TMS34020 can initiate register-transfer cycles under
explicit program control. By performing a series of such cycles, some or all of
the display memory can be setto an initial background color or pattern very rap­
idly (in a small fraction of a frame time). First, the VRAM serial registers are
loaded with an initial value. The video memory is then set to the initial color or
pattern one row at a time by writing the serial register contents to the memory.

The row address output during the register-transfer cycle determines which
row of memory is involved in the transfer. The direction of the transfer is deter­
mined by whether the cycle is a read or write. A write cycle (such as a PIXT
from a general-purpose register to memory) is converted to a VRAM regis­
ter-to-memory cycle. Similarly, a read cycle (such as a PIXT from memory to
a general-purpose register) is converted to a VRAM memory- to-register cycle.

The value of the CST bit affects only pixel transfers. Other data accesses and
instruction fetches are unaffected.

Before bulk initialization, the VRAM serial registers must be loaded with the
solid color or pattern with which the display memory will be loaded. This can
be accomplished by

o serially shifting bits into the serial registers, or

o loading a row of display memory with the color or pattern using a series
of normal pixel writes (CST = 0), then loading the contents of this row into
the VRAM serial registers by means of a PIXT memory-to-register instruc­
tion (CST = 1).

To further speed bulk initialization, you can make a series of transfers more
rapidly by using a Single FILL instruction in place of a series of PIXTs. Select
the fill region so that each pixel write cycle generates a new row address. The
fill region should be 1, 2, 3, or 4 bytes wide. Plane masking and transparency

9-47

Video RAM Control

are disabled, and the pixel-processing replace option is selected. This ensures
that the TMS34020 need not perform any read-modify-write operations, and
each row is addressed only once during the course of the fill operation.

The number of bits of the display memory that are altered by a single regis­
ter-to-memory transfer cycle is calculated by multiplying the number of VRAM
devices by the number of serial register bits in each device.

9.13.5 Video Capture

If VCE[DPYCTL] is set to 1, all screen-refresh cycles are executed as regis­
ter-to-memory cycles, rather than memory-to-register cycles. Figure 9-23
shows a memory-to-register cycle. This feature is useful if the VRAMs are used
to capture video data by shifting data bits into them, rather than out.

Figure 9-23. Local-Memory Register-to-Memory Transfer Cycle

CAS
I

WEll I

TRlQE L.,V...-+-I---f,. '--II_+---I---I',-I-+-...J

ODIN ~~+--+----;.-+-I--T-_-'--;"'--'r---I
-b I/,......;.-+---i--+-~--I
DDOUT r

I I I
LRDY

I
!~ Wl I

I I i

1
I I I

9-48 Video Timing and Screen Refresh

Video RAM Control

Do not use the video-capture feature with midline reloads. The register­
to-memory cycle overwrites an entire VRAM row from the VRAM serial regis­
ter. In the case of the first midline reload that follows the end of horizontal blank­
ing, not all the bits in the serial register would need transferring-only those
shifted in since the end of blanking.

9.13.6 Disabling Screen Refreshes

In order for the TMS34020 to perform screen-refresh memory cycles initiated
by the video-timing logic or the midline-reload logic, SRE[DPYCTL] (screen
refresh enable) must be set to a 1. While it is 0, the TMS34020 still increments
the screen-refresh address during horizontal blanking, but no actual screen­
refresh memory cycles occur.

This can be useful for inserting a video image from another source onto the
image generated by the TMS34020. If a section of the screen image is to be
provided by another source, SRE is set to 0 during the line immediately preced­
ing the inserted image. The TMS34020 then stops refreshing the screen,
allowing another device to perform this function.

To revert to the TMS34020-generated image, set SRE to 1 again during the
last line of the inserted image. The TMS34020 then restarts screen refreshes,
beginning in the horizontal-blanking interval immediately following the last line
of the inserted image. Because the screen-refresh address is incremented
every line, regardless of the value of SRE, the first line displayed will be the
same line that would have been displayed at this time if the screen refreshes
had never been switched off.

If midline-reload screen refreshes are also used, the SSV bit should be set to
1 at the same time as the SRE bit. However, you should note that if the
TMS34020's SCLK input is clocking during the last line of the inserted image
after the SSV bit has been set to 1, a midline-reload screen refresh could occur
before the end of the line. Holding the SCLK input low while the inserted image
is being output to the screen eliminates this problem.

9-49

Scheduling Screen-Refresh Cycles

9.14 Scheduling Screen-Refresh Cycles

The horizontal-blanking period should be long enough to ensure that the
TMS34020 has completed the serial-register transfer by the time blanking
ends and data starts shifting out to the screen again. The delay from the start
of horizontal blanking until the start of the screen-refresh memory cycle is
called the screen-refresh latency and is determined by the TMS34020's
memory controller. It consists of 2 elements:

Q The time necessary to synchronize and recognize the screen-refresh
request from the video timing logic, and

Q The time to complete the memory cycle currently in progress when the
request is recognized.

The synchronization and recognition time is, at worst, 3.5 machine states and,
at best, 2.5 machine states. Table 9-1 shows the maximum and minimum
screen-refresh latency.

Table 9-1. Screen-Refresh Latency

9-50

Measurement

Minimum screen-refresh latency

Maximum screen-refresh latency:

[J DRAM refreshes enabled

[J DRAM refreshes disabled

~ T local clock period

Value

2.5T

(5.5 +N)T

(4.5 + N)T

N maximum number of wait states per memory cycle

Page mode bursts are terminated by the screen-refresh request and restart
after the screen-refresh cycle from the next address in the sequence. In this
way, they do not delay the start of the screen-refresh cycle.

A new memory access (in which the full address is output on the LAD bus) that
starts, or is in a wait state, in the machine state just before the screen refresh
is recognized cannot be aborted until the first word of data has been trans­
ferred. This, therefore, delays the start of the screen refresh by 1 +N machine
states. However, a DRAM refresh (which takes three machine states mini­
mum) will delay the start of the screen refresh by 2+N machine states.

The length of time taken for the screen refresh to complete, once started,
depends on the number of wait states used. The minimum time is 2 machine
states. For systems using split-serial-register VRAM midline reloads, the hori­
zontal-blanking screen-refresh cycle is actually 2 distinct memory cycles (see
Section 8.13.2). In this case, the minimum duration of the horizontal-blanking
screen refresh is 4 machine states, and both of the memory cycles can have
wait states inserted. The maximum possible time from the beginning of
horizontal blanking to the end of the screen-refresh cycle defines the minimum
horizontal-blanking duration. Table 9-2 summarizes this.

Video Timing and Screen Refresh

Scheduling Screen-Refresh Cycles / Generating Screen-Refresh Addresses
;:;-;:;:;:;;;:;~..x::z.~~X;:WH;:;x:;:;:;.::::~r$»~~mx::xx::;:;;xx::::~~.::m;x::::.:::;~~;r..z:;~~wm::::-;~~xx;:::;:::::~~::.:;::~~~;~~~~::-;.:;~~~x:;-.::::;-,;:;~..:=~;~~x~:;-;::~~~~~:::."X::-,,::%~»~~-:;~~%~::~~~~::::x~~~~~:::~:::::~X::X~;;;';;~;;;;;;;;;;:::::;;:::::W.o!

Table 9-2. Minimum Horizontal-Blanking Duration

Measurement

Minimum horizontal-blanking duration
(without split-serial-register VRAM reloads):

I:l DRAM refreshes enabled

I:l DRAM refreshes disabled

Minimum horizontal-blanking duration
(with split-serial-register VRAM reloads)

I:l DRAM refreshes enabled

I:l DRAM refreshes disabled
Key: T local clock period

Value

(7.5 + N)T

(6.5 +N)T

(9.5 + 2N)T

(8.5 + 2N)T

N maximum number of wait states per memory cycle

9.15 Generating Screen-Refresh Addresses
This section describes methods for programming the TMS34020 to generate
the addresses for all types of screen refreshes.

The address output during a screen-refresh cycle identifies the first of a series
of pixels to be output to the monitor. In the case of a horizontal-blanking screen
refresh, this is the first pixel on the next scan line. For a midline reload, it is the
first pixel of the next row of VRAM. The TMS34020 outputs a 28-bit logical ad­
dress on LAD31-LAD4. This address can be broken down into several fields:

£:I the 16-bit word select on bit 4,
£:I the column-address and row-address fields, and
£:I a bank-select field or fields (optional). The bank-select field(s), if required,

can be at either end of the address (less significant than the column
address, or more significant than the row address, or both).

The precise positioning of all these fields (except for the 16-bit word-select bit),
must be determined by system requirements. Figure 9-24 shows this.

Figure 9-24. Screen-Refresh Address Fields

(a) Bank select at the most
significant end of the
address

(b) Bank select at the least
significant end of the
address

Notes: 1) The screen refresh status code is output on LAD3-LADO.
2) The S bit is always 0 unless dynamic bus sizing is employed to access 16-bit wide VRAMs, and is al­

ways 0 during screen-refresh cycles.
3) The address may not extend all the way to address bit 31 as shown. In a typical system, the full address

range is unlikely to be required.

9-51

Generating Screen-Refresh Addresses

The row address output during the screen-refresh cycle specifies the row in
memory to be loaded into the serial register internal to the VRAM. The column
address determines which bit of that row is shifted out of the VRAM serial regis­
ter first.

9.15.1 Horizontal-Blanking Screen-Refresh Addresses

9-52

The portion of the display memory actually output to the monitor is referred to
as on-screen memory. To generate the appropriate address for each horizon­
tal-blanking screen refresh, it is necessary to know

Q The starting location of the on-screen memory.

Typically, the starting location of the on-screen memory is the address of
the pixel appearing in the top left-hand corner of the display. Load this
address into SRST[DPYST].

Q The difference in 32-bit memory addresses between 2 vertically adjacent
pixels on the screen; this is called the screen pitch.

Screen pitch is the difference between the memory addresses of the first
pixels of 2 consecutive scan lines. For systems not using midline reload,
this is also the width of the display memory because each row of VRAM
must contain all the information for a whole scan line. Load the screen pitch
into SRINC[DINC].

In some systems, the screen may be refreshed starting from the bottom of
the screen. If this is the case, load SRINC with the 2s complement of the
screen pitch so that the screen-refresh address is decremented between
each horizontal-blanking screen refresh.

Q The vertical magnification (Y-zoom) of the display. This is the number
of times each scan line in the display memory will be displayed on the
screen. Typically, each line is displayed only once; the remainder of this
discussion assumes this is the case. For more information about the
V-zoom feature, refer to Section 9.15.5 on page 9-56.

Q Whether or not the display is interlaced (NIL[DPYCTL] = 0).

The TMS34020 automatically calculates the address required for each screen
refresh and stores the address in SRNX[DPYNX].

The DPYMSK register is required for midline-reload screen refreshes (see
Section 9.15.4 on page 9-55). However, if you are not using midline reload,
there is no need to program DPYMSK.

Video Timing and Screen Refresh

Generating Screen-Refresh Addresses

5) In the horizontal-blanking period just before the first line of the odd field,
the address contained in SRINC is output to the VRAMs during the
screen-refresh cycle. Then, twiceSRINC is added to SRNX, and the result
is loaded back into SRNX. SRNX then points to the first pixel on the fourth
scan line.

6) During the next horizontal-blanking period, the contents of SRNX are out­
put during the screen-refresh cycle. Twice SRINC is then added to this,
and the result is loaded back into SRNX. This process then repeats during
all subsequent horizontal-blanking periods until the end of the field.

Figure 9-25. Screen-Refresh Address Generation Flow

Interlaced?

9-54 Video Timing and Screen Refresh

Generating Screen-Refresh Addresses
"""","""",_======'=-=====::=::~"""'=_=_'_ft~""rM'f_t'~""t-tu"," .. t~"""'_M'r"""rl'r=-rl'r:i$=r~"""fr~·:$:::~:~~::;:;.: ($'~I'w· .. w~w .. :w WM~~~

9.15.4 Midline-Reload Screen-Refresh Addresses

If midline-reload screen refreshes are enabled, the column address part of the
logical address must be identified, so that

Cl SCOUNT can be loaded with the VRAM tap-point to enable it to correctly
schedule the midline-reload screen-refresh cycles.

Cl The correct row address can be isolated and output during the
midline-reload screen refreshes.

DPYMSK stores a mask of contiguous 1 s ,which correspond to the column
address portion of SRST[DPYST] or SRNX[DPYNX] .

This mask determines which bits of the logical address are loaded into
SCOUNT. SCOUNT is loaded with the tap-point portion of the address loaded
into SRNX whenever SRNX is loaded during horizontal blanking.

256Kx4 (1 Mbit) VRAMs have 9 column address bits and 9 row address bits
(512 rows and 512 columns), but because they also have split serial registers,
each row of VRAM is conceptually split into 2; each midline-reload screen­
refresh cycle loads only half a VRAM row into the relevant half serial register.
Thus, the address must be incremented at the most significant column­
address bit, rather than the least significant row bit (to select between the 2
halves of the VRAM). Therefore, when considering midline reload and
DPYMSK, the most significant column-address bit of the VRAM is not consid­
ered as being part of the tap point, but as the least significant half-row address
bit.

When a midline-reload screen refresh occurs, the address output to the
VRAMs is the address ofthe first pixel in the next half-row of VRAM. Therefore,
the column portion of the address is o.
The mask stored in DPYMSK is also used to isolate the half-row address from
the full logical address (all bits more significantthan that mapped to by the most
significant 1 in DPYMSK are considered to be the half-row address). A non
user-accessible register is loaded with the row address portion of the address
loaded into SRNX whenever SRNX is updated during horizontal-blanking
screen refreshes. This address is then incremented to point to the next VRAM
half-row atthe bit position mapped to the rightmost 0 at the most significant end
of DPYMSK.

If a midline-reload screen refresh occurs, this address is output to the VRAMs
and then incremented to point to the next half row. All address bits less signifi­
cant than the half-row address are masked by DPYMSK, so that they are out­
put as Os. This corresponds to a tap-point address of 0, thus pointing to the first
pixel in the next half row. This procedure then repeats every time a mid­
line-reload screen refresh is scheduled on the current scan line.

There is a 5-bit offset between DPYMSK and the logical address. Thus, if the
column address is 8 bits long, starts at bit 7 of the logical address, and ends

9-55

Generating Screen-Refresh Addresses
l';~~~~~~w..x:;~:;:;~:;:;~~:;::XW":;:;W.4W~XX~X~~X~~~~~:l';:;:;xx~:;::~~~~x~:;:;:;:;:,::;x~z:;:;~m~7;::~~~~m::::~~:;:;~Z~~~~:::;XX::~~~~~:::;~$:::;r..xzzzzz:;--":::::;~~~$$~XXXXZ;:':;X::;;:;$~~:;::::W..:;~X:l';wx::~~m::~xw'«::;:;$;;:;xx:::;x~~w ... ;z~~:;x::::::m~~:::::;::xxm::::mx::::::::::::»>x%m:::;:;:::;m::~::::::;;x:::

Table 9-3.

Q If YZCNT:;cO during the horizontal-blanking screen-refresh cycle, 0 is
added to SRNX or SRST instead of SRINC, 2xSRINC, or SRINC/2 (as
outlined in Figure 9-25) after the horizontal-blanking screen refresh cycle.
During each vertical-blanking interval, YZCNT is reset to YZINC.

Y-Zoom Control

YZINC Zoom
4 3 2 1 0 Factor Description

0 0 0 0 0 0 No repetitions of scan lines

0 0 0 0 2 Repeat scan line 2 times

0 1 0 0 0 4 Repeat scan line 4 times

0 0 1 0 0 8 Repeat scan line 8 times

0 0 0 1 0 16 Repeat scan line 16 times

0 0 0 0 32 Repeat scan line 32 times

Clearing YZINC to 0 causes no V-zoom because YZCNT is always O.
Conversely, when YZINC=1, YZCNT equals 0 only once every 32 horizon­
tal-blanking intervals.

If YZINC is set to an odd value (such as 31), YZCNT will never be 0, and the
scan line will be repeated indefinitely. This could be useful if you wish to clear
the screen temporarily while transferring a new image to the display memory.
A particular line could be transferred to the entire screen without the need for
bulk erasing the VRAMs of the display memory.

To ensure that YZCNT + nxYZINC (where n is the zoom factor) always over­
flows to 0, YZCNT should always be cleared to 0 when YZINC is changed. This
is the only time it should be necessary for you to write to YZCNT.

9.15.6 Panning the Display

By changing the value of the column-address portion of SRST[DPYST]
between frames, you can pan the on-screen image horizontally across the
display memory. By changing the value of the row-address portion of SRST
between frames, you can pan the on-screen image vertically up and down the
display memory.

SRST is loaded into SRNX[DPYNX] at the beginning of vertical blanking. To
affect the position ofthe screen image in the display memory forthe next frame,
SRST should be changed before the beginning of vertical blanking at the end
of the current frame.

9-57

9-58 Video Timing and Screen Refresh

Related .'-iInI'1.<1I<:

10.1 Related Signals

10-2

The coprocessor interface uses a subset ofthe local-memory interface signals.
Although these are primarily local-memory signals, their functions may differ
when used for the coprocessor interface. Chapter 2 describes these signals
in detail; they are summarized below for your convenience.

Signals
ALTCH

Descriptions I/O

is the address latch signal. ALTCH's high-to-Iow transi- 0
tion latches the current coprocessor instruction (and
status code) or address. During data transfers from the
coprocessor to TMS34020 memory, a high level on
ALTCH enables data to the LAD bus.

BUSFLT is the bus-fault signal.lf external logic detects an error
or fault in the current cycle, it asserts BUSFLT high.
BUSFLT is used with LRDY to generate bus-retry
cycles. A coprocessor must monitor this signal to
determine the status of cycle termination.

CASO-CAS3 are the column-address strobe signals. They can be 0
connected to a coprocessor to control data transfers.

LADO-LAD31 form the multiplexed local address/data bus. The I/O
coprocessor interface uses this bus to transfer
coprocessor instructions, data, and the memory
addresses that are used for the transfers.

LCLK1, are the local output clocks. These signals drive the 0
LCLK2 coprocessor logic, providing control signals that are

synchronous to the TMS34020.

LINT1, LlNT2 are the TMS34020's local interrupt requests that a
coprocessor can use to interrupt the TMS34020.

LRDV

SF

is the local ready signal. External circuitry (which may
be controlled by a coprocessor) can drive LRDY low to
prevent the TMS34020 from completing a local­
memory cycle. LRDY is used with BUSFLT to indicate
retries and bus faults. A coprocessor must monitor this
signal to determine the status of cycle termination.

is the special function signal that coprocessors monitor 0
to distinguish between instruction cycles and address
cycles.

is the write-enable signal that identifies the direction of 0
a data transfer.

Communicating with a Coprocessor

Overview of the Coprocessor Interface
::;~:X~~;W.~~M~~~~~~::-,"7,~-::Y;~~~:"'~~;;;'~~::;~~'%:."X:;:'-:::::;:;:::;:::::;-,"!l';::-,-:;~w;-;~::::-;w.~~:::;~:;;;x::~~:::;~~~;;~}-:;::~::::~~;;:;~~::~~~~~~;;;;:;~;;;;;;~;;:;;;~;;~;;;;:;;;;;~;;:;;;~;;;;~::~~;;::~;;::r.::~::;;::::%;;:;::::::~::;;::;;::::::;;:~;;;::::::::~<~~::;::::::::::~:::.:::::::~~ ~.:::~< <~::~~:.;:::::::;::::::xx:::;w.::::::::::::::::::::::::::::::::::w.:::::::::::::::::.:::.:::.:::.: .:.;;:;:::::.:::::::::;::::::::::::::::::::::::::::::::::::%::::::::~

10.2 Overview of the Coprocessor Interface

The coprocessor interface provides both software and hardware features that
help the TMS34020 communicate with a coprocessor. These features take the
form of extensions to the TMS34020's instruction set and local-memory inter­
face. Special coprocessor instructions may be used, which, in turn, invoke
special local-memory interface cycles to pass commands and data between
the TMS34020, local memory, and a coprocessor.

The instructions fall into two categories:

!J Generalized instructions for use with any coprocessor.

The TMS34020 supports several instructions that allow you to pass
commands and data (when appropriate)to a coprocessor, in order that the
coprocessor can execute the command. You pass commands and data as
parameters to the TMS34020 instruction. Available coprocessor com­
mands depend upon your coprocessor's requirements and upon the oper­
ation you wish it to perform. Table 10-1 lists these TMS34020 instructions;
Chapter 13 describes them in detail.

!J Specialized instructions for use with the TMS34082 floating-point
processor.

These are special cases of the generalized instructions, where the
TMS34082 command is explicitly coded into the instruction opcode. Chap­
ter 14 describes the TMS34082 instruction set.

Note:

The term instruction refers to an assembly-language instruction that the
TMS34020 executes. The terms command and coprocessor command refer
to assembly-language instructions that a coprocessor supports and
executes.

Table 10-1. TMS34020 General Coprocessor Instructions

, Mnemonic Description

CEXEC Execute coprocessor internal operation

CMOVCG Move, coprocessorto TMS34020

CMOVCM Move, coprocessor to local memory

CMOVCS Move, coprocessor to status register

CMOVGC Move, TMS34020 to coprocessor

CMOVMC Move, local memory to coprocessor

10-3

Overview of the Coprocessor Interface

10-4

The coprocessor instructions can invoke five types of local-memory coproces­
sor cycles. Each cycle passes a command to the coprocessor; four of these
cycles also transfer data. With a single instruction, the TMS34020 can pass a
com mand to a coprocessor, and any associated data transferred to or from the
coprocessor.

Q The coprocessor internal command cycle passes a command to a
coprocessor.

a The TMS34020 to coprocessor transfer cycle passes a command to a
coprocessor, then performs one of the following data transfers between
the TMS34020 and the coprocessor:

II Move one 32-bit parameter

!!II Move two 32-bit parameters

II Move one 64-bit parameter

Q The coprocessor to TMS34020 transfer cycle passes a command to a
coprocessor, then performs one of the following data transfers between
the coprocessor and the TMS34020:

II Move one 32-bit parameter

II Move two 32-bit parameters

II Move one 64-bit parameter

II Move 4 bits to the N, C, Z, and V bits ofthe TMS34020's status register

Q The memory to coprocessor transfer cycle passes a command to a
coprocessor, then performs one of the following data transfers of up to 32
32-bit words between the local memory and the coprocessor:

• Move the number of 32-bit words specified in the coprocessor instruc­
tion using postincrement

III Move the number of 32-bit words specified in the coprocessor instruc­
tion using predecrement

.. Move the number of 32-bit words specified in a register using post­
increment

Q The coprocessor to memory transfer cycle passes a command to a
coprocessor, then performs one of the following data transfers of up to 32
32-bit words between the coprocessor and the local memory:

II Move the number of 32-bit words specified in the coprocessor instruc­
tion using postincrement

II Move the number of 32-bit words specified in the coprocessor instruc­
tion using predecrement

Communicating with a Coprocessor

Format of Commands Passed to a c;oj')rol':Jessor

10.3 Format of Commands Passed to a Coprocessor

The TMS34020 passes a command to a coprocessor over the LAD bus. The
command replaces the address usually output during a local-memory cycle's
address/status subcycle. In addition to the actual coprocessor command,
some auxiliary control bits and the coprocessor operation status code are also
output at this time, as Figure 10-1 shows.

Figure 10-1. Coprocessor Instruction Format

~~~ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
s 111111:1111 

10 coprocessor command i 11111111111 I S BeST 
z 1111111111 
e 1IIIIIn 

~ 10 3-bit coprocessor 10 field size Parameter size field 
I Coprocessor parameter index bit S 16-bit word select 
BCST 4-bit bus status (always 0 for coprocessor cycles) 
Coprocessor command 21-bit instruction for the coprocessor 
~ Reserved for use by future TMS340 family devices; is currently output as o. No coprocessor 

should use this bit. 

The information forthe 10, the command, and the size bit are provided as argu­
ments to the coprocessor instruction. The precise form of this information is 
determined by your processor's requirements and the operation you wish it to 
perform. 

10.3.1 Coprocessor 10 

The 10 bits allow you to address multiple coprocessors within a system. Each 
coprocessor should respond to commands only when the 10 output matches 
the coprocessor's assigned 10. If you do not supply an 10 argument with the 
coprocessor instruction, the default 10 is 0002. You can change the default 10 
with the .coproc assembler directive (refer to the TMS340 Family Code Gener­
ation Tools User's Guide for information about .coproc). 

Table 10-2 lists suggested 10 code assignments. Using these IDs promotes 
compatibility across different hardware configurations. 

000~112 Use the first 4 coprocessor 10 numbers to identify up to 4 
TMS34082 floating-point processors. 

1002 Use as a broadcast 10 to which all coprocessors should 
respond. 

1012 & 1102 Reserve for compatibility with future devices. 

1112 Use for addressing your own coprocessor (in a manner that 
conforms to the TMS34020 coprocessor interface). This allows 
the TMS34020 to provide control through custom instructions. 

10-5 



Format of Commands Passed to a Coprocessor 

Table 10-2. Suggested Coprocessor ID Assignments 

10 Description 

0002 TMS340820 is to execute a 
command 

0012 TMS340821 is to execute a 
command 

0102 TMS340822 is to execute a 
command 

0112 TMS340823 is to execute a 
command 

Note: 

10 Description 

1002 All coprocessors are to 
execute command 

1012 Reserved for future devices 

1102 Reserved for future devices 

1112 User-defined coprocessor to 
execute a command 

You can adopt other assignments as required; however, all coprocessors 
should respond to the broadcast ID (1002). 

10.3.2 Coprocessor Command 

The identified coprocessor uses the 21-bit coprocessor command to deter­
mine what operation it should perform. The command itself is specific to the 
coprocessor that must execute the command. 

Some coprocessors may not require all 21 bits to fully specify a command. If 
this is the case, other information (such as data, status, or other coprocessor 
control) may also be coded into this area. 

At least part of the command should inform the coprocessor of what type of 
datatransfer is to follow the command (if any) and the number of 32-bit words 
to be transferred. 

10.3.3 Coprocessor Parameter Size (size) 

10-6 

During direct data transfers between the TMS34020 and a coprocessor, data 
is transferred during the data subcycle (immediately following the command). 
Section 10.4.2 (page 10-8) discusses direct and indirect data transfers in 
more detail. You can transfer 0, 1, or 2 32-bit words. The size bit identifies 
the size of the parameters passed to or from the coprocessor: 

size=O Transfer 1 or 2 32-bit parameters. 

size=1 Transfer 1 64-bit parameter. 

If no data is transferred following the command, size=O. 

In either case, the data can be an integer or floating-point value. You can use 
size in conjunction with other bits of the coprocessor command to specify which 
of these formats is appropriate for the data. 

Communicating with a Coprocessor 



Format of Commands Passed to a Coprocessor 
;~:;w·~~~x':::;:;~$:Om»m5::::~~:;:;~m$5~.~5::::~$~f.~$~~$~$::5$$$$~5$55::$$~$$5:::::\::~-$$Sm$$$SS$$$~$$$S:::;S$Xf.$::::::s: .. w.$~·W';:':;$0::S$$X:;:;:;:;f'::S~S$S$S$$:\::mS$S$$$S;;:;:::'::$S$::$$:;:;$$::$$S::$S::$S::S$::$f'::$;;:;::':::;':;:;:;SS;:;;$:::::;%X'::S::::::$::::$$W'::::$::$S%$$$::::$::$~·$::$:;:::;$::'::::$r.::$$S::$::::S$::$S::~'::$:::;:r.::X:;:;;;:;S$$X::::::$::::$$$S::W.$::$S:;$::$S$::~ 

10.3.4 Coprocessor Parameter Index (I) 

During direct data transfers between the TMS34020 and a coprocessor, data 
is transferred during a data subcycle (immediately following the command). 
Section 10.4.2 (page 10-8) discusses direct and indirect data transfers in 
more detail. You can transfer 0, 1, or 2 . 32-bit words. The I bit identifies which 
of the words are transferred: 

1=0 The first (and possibly only) 32-bit word are transferred immediately 
following the command. 

1=1 The second 32-bit word are transferred immediately following the re­
issued command. 

If no data is transferred following the command, 1=0. 

Initially, I is output as a O. It is output as a 1 only when two 32-bit words are 
transferred. If the second transfer cannot be made using page mode. In this 
case, a complete memory cycle (consisting of address/status and data 
subcycles) must be generated for the second 32-bit word to be transferred. 
During the address/status subcycle for this transfer, I is 1 . The rest of the com­
mand is the same at this time. 

The second transfer cannot be performed using page mode if 

o The coprocessor does not support page-mode operation and asserts 
PGMD high during the first data transfers. 

o A high-priority local-memory request (such as a VRAM serial-register 
transfer) is requested while the first 32-bit word is being transferred; it is 
performed before the second 32-bit word is transferred. 

10.3.5 16-Bit Word Select (S) 

The S bit output on LAD4 at the beginning of the coprocessor cycle is always 
o (low). The S bit is 1 during cycles in which the TMS34020 accesses 16-bit 
memory devices; however, the TMS34020 does not support coprocessor ac­
cesses to 16-bit-wide memory devices. TMS34020-controlled coprocessor 
cycles are restricted to memory accesses of 32-bit memory devices. 

10.3.6 Coprocessor Status Code (BCST) 

This code is 00002. It is output during the address/status subcycle of all 
local-memory coprocessor cycles. 

10-7 



Local-Memory Coprocessor Cycles 

10.4 Local-Memory Coprocessor Cycles 

This section describes the local-memory coprocessor cycles for interfacing to 
a coprocessor. A coprocessor must be able to recognize these cycles in order 
to properly receive and transmit data through the coprocessor interface. Dur­
ing the address/status subcycle of these cycles, the TMS34020 outputs the 
coprocessor operation status code (00002) on LADO-LAD3. 

In these examples, the TMS34020 controls the local-memory interface and 
provides all controls necessary for transferring commands and data to and 
from a coprocessor. If you want the coprocessor to control the local-memory 
interface through the TMS34020's multiprocessor interface, refer to Chapter 
11. 

10.4.1 Passing Commands to a Coprocessor 

As Section 10.3 describes, the TMS34020 passes a command to a coproces­
sor over the LAD bus during the address/status subcycle. The coprocessor 
must distinguish a command from an ordinary memory address by 

Q the status code of 00002 output on LADO-LAD3 and 
Q a high level on the SF pin. 

The command should be latched on ALTCH's high-to-Iow transition when the 
these conditions occur. Because a coprocessor command is output on the LAD 
bus in essentially the same manner as a normal memory address, parts of the 
command are also output on the RCA bus in the same manner as the row and 
column portions of a regular address. 

10.4.2 Transferring Data to or from a Coprocessor 

10-8 

After passing a command to a coprocessor, data can be transferred using one 
of these methods: 

Q Direct transfer between the TMS34020 and a coprocessor. This transfers 
data (via LAD) in the data subcycle, immediately following the command. 

Q Indirect transfer between local memory and a coprocessor. The 
TMS34020 provides the addresses and control signals for the memory. No 
data is transferred immediately after the command; the TMS34020 gener­
ates another memory cycle sequence, beginning with an address/status 
cycle in which the memory address for the transfer is output. 

Note: 

All local-memory coprocessor cycles are implemented as 32-bit data transfer 
operations. The TMS34020 does not support data transfers between 16-bit 
memory and a coprocessor (using the TMS34020's dynamic bus-sizing fea­
ture). The TMS34020 ignores the state of the SIZE16 pin during 
local-memory coprocessor cycles. However, SIZE16 should still be asserted 

! at a valid level (high or low) at the time it is sampled by the TMS34020. 

Communicating with a Coprocessor 



· Local-Memory Coprocessor Cycles 
~~:~'~:~:==~::;,~~~~~:~~:~;:::::.~~:;:.~~,<:;;:~~=~,.,~~:»,~~:::::,<,:.;.::>!,::::.':'.<:~~=:m:':l~"~~~'~~~~';;;=~)l';'~~«:=~,«:;:::;:,!;~:::>::m,*..l:>'m~~~'=;;"':i:·:~~=:~;::;.';O;';.u.:~::;.:.~;w.~=~:':1~=~~~-======~ 

10.4.3 Data Transfer Sequences to or from a Coprocessor 

When more than one 32-bit word of data is to be transferred, the TMS34020 
uses page mode unless either the coprocessor or the local memory indicates 
that they do not support page mode (this is accomplished by asserting the 
PGMD pin high at the appropriate time). 

If page mode is not supported, the TMS34020 outputs an address/status sub­
cycle before each data transfer. During direct data transfers, the command is 
output again (with I=1 to indicate that the second 32-bit word is about to be 
transferred) . 

Even if page mode is supported, high-priority local-memory requests (such as 
a VRAM serial-register transfer) can interrupt a page-mode sequence; the 
cycle restarts from the next word after the high-priority request is serviced. The 
sequence restarts with an address/status subcycle, outputting either the 
address of the appropriate location in memory (during an indirect transfer), or 
the command with I=1 (during a direct transfer). 

Because of this, a coprocessor must be able to tolerate an interruption of a 
data-transfer sequence, and must be informed in advance of the number of 
words of data to be transferred. This information could be included as part of 
the coprocessor command that precedes the data transfer. 

10.4.4 Ending a Local-Memory Coprocessor Cycle 

During local-memory coprocessor cycles, the TMS34020 samples the LRDY 
and BUSFLT pins (just as it samples them for other local-memory cycles). This 
is how the TMS34020 determines when and how the memory cycle ends. For 
a detailed discussion of how the TMS34020 responds to these inputs, see Sec­
tion 8.6, Ending a Local-Memory Cycle (page 8-12). 

a Inserting wait states. You can extend a coprocessor data transfer, as 
required, by inserting wait states. If the coprocessor is not ready to perform 
a data transfer when the local-memory cycle is initiated, it can control 
LRDYand BUSFLT to insert wait states. 

a Retrying local-memory coprocessor cycles. A coprocessor data trans­
fer may be retried. If this occurs, the memory cycle is performed again in 
the same manner as a regular access. Any data on the LAD bus during a 
retried memory cycle should be considered invalid and should not be 
latched or used by the coprocessor. 

a Bus faults on local-memory coprocessor cycles. A coprocessor data 
transfer may be bus faulted. As the CPU initiates local-memory coproces­
sor cycles, the bus-fault interrupt is taken when a bus fault occurs. Any 
data on the LAD bus during a bus-faulted memory cycle should be consid­
ered invalid and should not be latched or used by the coprocessor. After 
the bus-fault interrupt is serviced, the memory cycle is performed again in 
the same manner as for a retry. 

10-9 



Local-Memory Coprocessor Cycles 

10.4.5 Coprocessor Command Cycle 
Performed when Passing a command to a coprocessor (see Figure 10-2). 

No other data is transferred. 

Indicated by • DDIN is low and 
• RAS, TR/QE, and SF are all high while ALTCH is low 

Caused by CEXEC instruction 

Status code 00002 

The command typically causes the coprocessor to execute some internal func­
tion. However, the coprocessor command could also be used to pass values 
to the coprocessor. 

Figure 10-2. Coprocessor Command Cycle 

10-10 

:...----Command CyCI9,----; ...... 1 
I 

011 021 031 041 01 I 
I I 

I I I 
WEV II I' I I 
~ I I I 

TRIOE I I I I I 

SF * +,--1-1 ---JL...--I--+--I----I----l.I~~ 
ODIN" I I I I I I 

I I I I I I I 
DDOUT V I 1'--1-.!I~-+--.----t-~Ic:--I:::::I 

I I I I I J 
LRDY 

I :~ ~l I 

I I 

I T BUSFLT 
I I I I 

AO I I I '-I.......II_..I-...J---lilf 

A1 : ~ ~ ~ / : :'\'-I--!----l 
Note: Although the coprocessor command cycle never requires the use of page­

mode cycles, you should still assert PGMD at a valid level (high or low) at the 
time it is sampled by the TMS34020. 

Communicating with a Coprocessor 



Local-Memory Coprocessor Cycles 
~~ P'*x:W*' .... _" .... N .... "" ...... "n"«W~~~~ .... ~*-~~ .... ~~~,:,.~~'9.:::~'l:l;~*'~~~-:::: .... ::::-;:l'"..::::::-~~~*-~ .... ~ .... ~~ .... ~ 

10.4.6 Transferring Values from TMS34020 Registers to a Coprocessor 

Performed when Passing one ortwo parameters from TMS34020 registers 
to a coprocessor. Figure 10-3 shows two words being 
transferred using page mode. 

Indicated by RAS and SF are high while ALTCH is low 

Caused by CMOVGC instruction 

Status code 00002 

Figure 10-3. Transferring a TMS34020 Register to a Coprocessor 
1.-1 Command ~: 4 Data Transfe~ Data Transfer...! 

I I I I I I I I I I I I I 
1~lrul~IOOI~lrul~IOOI~lrul~IOOI~lru 

LCLK1 I I I I I 

I 

ALTCH P 1 I 1 1 1 
1 I 1 1 I 

TRlQEPI I i i 

SFF}-t i i 
ODIN l 1 I I I I 

~ I 1 I I I I I I I 1 

'OO"'~:"':~ 
:~:: 

SIZE16 

BUSFLT~I~ 
Fio I 1 1 1\ I I I I I 1 I 1/ I I I 

Fi1: : : :1 I I : 1 I 1 I 1\: : I 
I I I I I I I I I I I I 

Key: LAD (TMS34020) Output to the LAD bus by the TMS34020 
operands 1 & 2 Data to the coprocessor 

One or two 32-bit words may be transferred. If two words are transferred, the 
size bit determines whether the coprocessor should treat the words as two 

10-11 



Local-Memory Coprocessor Cycles 

32-bit parameters or one 64-bit parameter. If two words are transferred but 
page mode cannot be used, the I bit equals 1 when the command is reissued 
before transferring the second word. 

A coprocessor should latch the data from the LAD bus on the low-to-high transi­
tion of CAS. 

10.4.7 Transferring Values from a Coprocessor to TMS34020 Registers 

10-12 

Performed when Passing one or two parameters from a coprocessor to 
TMS34020 registers. Figure 10-4 shows two words be­
ing transferred using page mode. 

Indicated by • RAS, TR/QE, and SF are high while ALTCH is low 
• ODIN is low 

Caused by • CMOVCG, which transfers one or two 32-bit words. 
!!! CMOVCS, which transfers one 32-bit word. The 

TMS34020 ignores the 28 LSBs of this word; howev­
er, the 4 bits of data output on LAD28-LAD31 are 
transferred to the N, C, Z and V status bits. 

Status code 00002 

One or two 32-bit words may be transferred. If two words are transferred, the 
value of the size bit (output as part of the command during the address/status 
subcycle) depends on whether the TMS34020 treats the words as two 32-bit 

. parameters or one 64-bit parameter. If two words are transferred but page 
mode cannot be used, the I bit equals 1 when the command is reissued before 
transferring the second word. 

During this type of cycle, a coprocessor should not assert data onto the LAD 
bus until the high-to-Iow transition of CAS. 

Communicating with a Coprocessor 



Local-Memory Coprocessor Cycles """"""""", __ = __ m_",,,,,,"=, =""''''''_===, == __ =_~$=zz::m="_", ... "",,,,,sm_:nS"X='.""·zz_:::,sm_sm"",,$m~ __ """" _____ ~ .. mmm% .. ;=frrrrrZrmrf$mm::::::x::: 

Figure 10-4. Transferring from a Coprocessor to a TMS34020 Register 

I.- Command ~ I.. Data Transfe~ Data Transfer -.I 
I I I 1 

1~lrul~lool~lrul~lool~lrul~I~I~lrul 
LCLKl ~ I II 1 1\ 1 1/ I 1\ 1 In 

LCLK2~ i II: :, I :1 I :UJt: lill 
Gi~I~:~ 

LAD (TMS34020) i=?-t rmmtnd :>-t-r-+-t-j-t-+-jl 
LAD (coprocessor) I--t - + - +--1- -+ - a erand 1 -t - 0 erand 2 +- --I 

I 1 
CAMo~~~~~~~~~~~~~~~~~~~ 
RCAH..- ~ 

_:::-rl -!-I 
ALTCH jl I I I I II 1 i 

RAS V: : : I: I ::: 
CASY: : :\:~ :~ 
WEV I I I I I I : 

L., I 1 I 1 1 I I 
TRlQE jl I I I I I I I 
~JJ II I I "---I 

SF r----r I I I I I I 
ODIN" I I I I I II I I I I I I I I 

r I I I I I I I I 1 I I I I 
ooOUT V I I, I II I : I I 1 I I IlL_I 

LRoy~:.:~ 
PGMO_ 

""" 
BUSFLT !"'~"""l''''''''''I'''''''9'''''''>T'''''''''''''''-'--'''''9'''''''''I'''''''''F''''I'''''''''''F''''''I''''''''9''"""",! 

I I I 
Fio I I 1 1\ I I I I I I I II I I I 
-: : : : 1 1 I I I I I 1 I I 1 
Rl ,I I I I I I I I I' I I ! 

~ LAD (TMS34020) Output to the LAD bus by the TMS34020 
LAD (coprocessor) Output to the LAD bus by the coprocessor 
operands 1 & 2 Data from the coprocessor 

10-13 



Local-Memory Coprocessor Cycles 
m~;; ............... :::,~~:::,sm 

10.4.8 Transferring Values from Local Memory to a Coprocessor 

Performed when Passing up to thirty-two 32-bit words from the local 
memory to a coprocessor. Figure 10-5 shows two words 
being transferred using page mode. 

Caused by CMOVMC instruction 

Status code 00002 

Figure 10-5. Transfer Memory to Coprocessor 

14 Command Cycle - i 4 Address -I .. Data Transfe~ Data Transfer i . 
1~lilll~lool~lilll~lool~lilll~lool~lilll~lool~1 illl~lool~lilll 
~IIIII 111111111111/"1 

LCLKt I I I II I I \ I II I I \ I II I I \ I II I I \ I I I 

=;'~!ml~'~ ""~ ~_Ltzt ~-I-+-.J-.-'- !>--I-+-+--I--+-+-f---I-~ 
I I I I I 1 I I I I 

(mem~~ ~-I--+-+--I---1--t-t--I---1-+-+--I---1- +- +---1 

CAMD 

~ ~ 
ALTCH It I I I I I I.r--r! 

I I I I I I----.LJ 
RAS P I 1\ I I I I I IfTI 

CAS V i\ i i i\ irH' irt-i 
WE ~ I I I I I I I I I It I I I I I I I I I I ! 

TRlQE I I I I I 1 I I I I I I 1\ I I In I I 1'1"1 
r---\-I I 1 I I I I I I I I I I I I I I I I I 

SF r-r T' I I I I I I 1'-1' I I I I I I I I I I ,'j 
ODIN 1\ I I I i I I I I I I I I I II i 1\' I~ I i 

~ 1 I I ,I I , I I , I I I Iii I l---r--j 
DDOUT 1 1\ I II I I I , , 1\ I 1/ I I ii' I I , I""", 

LRDV~i$rl~i~ 
,:: 
BUSFLT. 

RO ii' 1\ I I I II I I I 1\ I I II 1 I I II I I i 
Rl I : : : I I 1 I 1\ I I I II I I I I I I I 1\ I I I 

I I I I I I II I I I I I I I I I I I 

~ LAD (TMS34020) 
LAD (memory) 
operands 1 & 2 

Output to the LAD bus by the TMS34020 
Output to the LAD bus by the memory 
Data to the coprocessor 

10-14 Communicating with a Coprocessor 



Local-Memory Coprocessor Cycles 
~$mwm .... '"l$' ~~m::_w-~""'. >==;,~w,*:mw'w.::::::w"::==--'""'"'=="'="""'="""'(~"w ...... """ww""''''''''''''''''''??WX''''?'o/' z :rz..:..-::rw-;.:; .... ·'t's .. m ............ ~f;:":;:;:::'~..m~ 

Transferring data from local memory to a coprocessor requires explicit 
addressing of the memory. Because of this, no data is transferred immediately 
after the command. After the command cycle completes, the data-transfer se­
quence begins with another address/status subcycle. During this subcycle, the 
address of the memory location to be transferred to the coprocessor is output. 

This data-transfer sequence is identical to an ordinary data read from memory, 
except that the status code is 00002' A coprocessor should latch the data from 
the LAD bus on the low-to-high transition of CAS. 

If page-mode operation is not supported (by either the coprocessor or the local 
memory), a complete memory cycle is generated for each word transferred. 

A page-mode sequence may also be interrupted by a high-priority memory 
request. In this case, the data transfer resumes with the next word in memory 
following the high-priority request. The address of that location is output, along 
with the coprocessor operation status code; the command is not reissued. 

10.4.9 Transferring Values from a Coprocessor to Local Memory 
This cycle is used to pass up to thirty-two 32-bit words from a coprocessor to 
local memory. Figure 10-6 shows 2 words being transferred using page mode. 

This cycle requires the memory to be explicitly addressed. No data is trans­
ferred immediately following the command. After the command cycle 
completes, the data transfer sequence begins with another address/status 
subcycle. During this subcycle, the address of the location in memory to be 
written to by the coprocessor is output. In this case, however, data is not trans­
ferred immediately after the address/status subcycle of the data-transfer 
sequence. An extra machine state is inserted to separate the address/status 
and data subcycles of the transfer cycle. This spacer subcycle is inserted to 
ensure that the TMS34020 can set its LAD bus drivers to the high- impedance 
state before the coprocessor starts to drive data onto the LAD bus. This is 
necessary because the coprocessor must assert data onto the LAD bus follow­
ing the high-to-Iow transition of WE during this type of cycle, so that the LAD 
bus contains valid data for the memories on the high-to-Iow transition of CAS. 

Note that whereas data is asserted onto the LAD bus after the falling edge of 
WE during this type of cycle, it must not be asserted onto the bus before the 
falling edge of CAS during a direct coprocessor-to-TMS34020 transfer (see 
Section 1 0.4.6). To enable the coprocessor to distinguish between the two and 
assert data onto the LAD bus at the appropriate time, ALTCH is driven high at 
the end of the spacer subcycle. 

This data-transfer sequence is identical to an ordinary data write to memory, 
except that the status code is 00002, the spacer subcycle is inserted, and 
ALTCH is high while data is transferred. 

If page-mode operation is not supported (by either the coprocessor or the local 
memory), a complete memory cycle (including spacer) is generated for each 
word transferred. 

10-15 



Local-Memory Coprocessor Cycles 

A page-mode sequence may also be interrupted by a high-priority memory 
request. In this case, the data transfer resumes from the next word in memory 
following the high-priority request. The address of that location is output, along 
with the coprocessor operation status code; the command is not reissued. 

The CMOVCM instruction causes this type of cycle. 

Figure 10-6. Transferring from Coprocessor to Memory 

GI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I I I I I 

(TMS34~~ r-, , cornman t-+--I--, I addr ss t j-r---,--1--+--l-j-4--I--1- I 

(m~~:±ii=S3CY5f±0±i±i 
h I I I .A.i:TcH ji I I 1\ I I I 1/ I I 1\ I 11'--'1-+1 -11-'1"1 -11"--'1"1-1-1 -""'1---11 

I I I I I I I I I I I I I II I I I I I I 
RASV II I I I I I I I I I 1\ I I I I I I I I 10 

I I I I I I I I I I I I I I I I I I 
CAS I I I I I I I I '--I--V 

17 I I I I I 1--1 I I I 
WE r i I I I I' I (1\ I Vi 

-- I I I I I I I I I I 'I 
TRlQE V I I I I I I I I I I I I SF ~+' I'--h I I I I I I Ir--, 
~I II I I III II 

ODIN 0 I I I I I I I I I I I I I I I I I I I I 
h I I I I I I I I I I I I I I I I I I I 

DDOUT ji I I\.....LJ/ I I I I I I'-L-V 1\ I I Vl\ I I Irj 

LRDY~ 1"1~ .. :-+LLLLLJ .I~ 
PGMD I~ 

SiZE16 *1 
BUSFLT~1 :~ 

RO I I 1 1\ I I I II 1 1 1 I' I I I I I I I I I I I 1m 
- I I I I I I I 1\ I I I 1/ I I I I I I I I I I I I,! ! 
R1 I I I I I I I I' I I I I- 1 1 1 1 1 I I I I 1 1 1-,--, 

Key: LAD (TMS34020) 
LAD (memory) 
operands 1 & 2 

10-16 

Output to the LAD bus by the TMS34020 
Output to the LAD bus to the memory 
Data to the coprocessor 

Communicating with a Coprocessor 



Coprocessor Aborts and Status Checks 
~~~~~~m::s:'~~mm*'f~~_' ====_~'·""~*,~= .. ""::::,,~:m::::w..::mm:=,:,:::::::::;:;:;:=."";;:-~_::::m.,.'.","''' ",,"",,=_r·~'m::x;X-~lX;:=%'~m:;s.:;s:~;:::;::::~~~~,"X:m~~~m~~ 

1 0.5 Coprocessor Aborts and Status Checks

All coprocessors should recognize at least two coprocessor command cycles
and provide the appropriate response, even if busy. These cycles would be
recognized as:

abort The abort should terminate all coprocessor activity, restoring
the coprocessor to a known state so that it is available for
further commands from the TMS34020. The abort allows the
TMS34020 to regain control of the coprocessor in the event of
a system fault that may involve the coprocessor.

status check The response to the status check command should be to pro­
vide information regarding the coprocessor's operating condi­
tion. The MSB output in response to the status check should
be set high if the coprocessor is busy. Other bits in the
response word may be used for other information concerning
the coprocessor status. The TMS34020 can use the status
check command to determine if a coprocessor is currently
busy when multiple tasks are competing for the coprocessor.
Thus, the TMS34020 does not have to enter an extended wait
state to obtain access to the coprocessor, but may continue
with another task not requiring the coprocessor.

The actual encoding of the coprocessor command field forthe abort and status
check cycles depends on the requirements of the specific coprocessor.

10-17

System Configuration

10.6 System Configuration

10-18

Some applications execute the same software on two systems-one with a
coprocessor and one without. The TMS34020 does not support this directly.
However, you can accomplish this in a number of ways by building configura­
tion information into the system hardware, such as a wire jumper or switch, and
setting it one way or the other. depending on whether a coprocessor is present.
A number of possible approaches can then be taken.

IJ Depending on the state of the jumper of switch, different values can be
returned based on the value at a system-defined memory location. This
would allow the software to configure itself to execute code that either did
or did not use the coprocessor instructions.

IJ If the jumper or switch indicated that a coprocessor was not present in the
system, external logic could be used to detect memory cycles that output
the coprocessor operation status code and to generate a bus fault accord­
ingly. The bus-fault service routine could then determine what type of oper­
ation the coprocessor instruction was trying to perform and emulate it in
software.

By using more switches or jumpers, you could easily extend these mecha­
nisms for use in systems in which the number of coprocessors varies.

Communicating with a Coprocessor

Chapter 11

Multiprocessing and System Architecture
::m::~.:; :wmer&1:HtifflKmwx:' Ni:;::m':::$.mwg.~ ~. ¥'11W=~~w.{:m-mm.~&o,:.~.~.:;:: .. ::::;. =s::m.::::=::::r-:!:~~t!:w::::~r-:w

The TMS34020 can share its local-memory resources with other processors
by means of a 3-wire interface. This multiprocessor interface allows multiple
TMS34020s (as well as other processors) to share the same local-memory
space. In order to accomplish this, these processors must support a conven­
tional hold/hold-acknowledge protocol. This chapter includes these topics:

Section Page

Basic information includes a 11.1 Related Signals 11-2
review of related signals and an 11.2 Overview 11-2

overview of the multiprocessor 11.3 Basic Multiprocessor System Configuration .. 11-3
interface.

Advanced information discusses 11.4
specific communications protocols

Protocols for Communicating in
a Multiprocessor System

and provides several examples. 11.5 Arbitration Logic Requirements

11.6 Multiprocessor Arbitration Examples

11.7 Initializing Multiple TMS34020s

11-5

11-13

11-15
11-14

11.8 Configuration with a Host Processor 11-20

Advantages of a 3-wire interface ------------------­

The TMS34020's 3-wire multiprocessor interface provides more flexibility than
the conventional2-wire hold/hold-acknowledge interface supported by many
other processors. The RO and R1 request pins provide information about how
urgently a TMS34020 requires access to the local-memory bus. They continue
to provide this information, regardless of whether the TMS34020 is currently
controlling the bus or not This allows external arbitration logic to allocate con­
trol of the local-memory bus to the processor most in need.

This chapter uses the following terms:

Q Bus master refers to the device that currently controls the local-memory
interface. If the bus-master TMS34020 generates a high-priority request
code, the arbitration logic can ensure that the TMS34020 maintains control
of the bus.

Q Bus requestor refers to a device that does not currently control the local­
memory interface, but is requesting control. If a bus-requestor TMS34020
generates a high-priority request code, the arbitration logic can take the
appropriate steps to ensure that the requestor obtains control of the
local-memory bus as soon as possible.

11-1

Related ,rJI'l:<,'" / Overview

11.1 Related Signals

11.2 Overview

11-2

Chapter 2 describes the multiprocessor-interface signals in detail; these sig­
nals are summarized below for your convenience.

Signals

GI

RO, R1

Descriptions 1/0

is the grant-input signal. When active low, GI informs
the TMS34020 that it is the bus master, which means
that it must drive the local-memory bus and that it con­
trols the next memory cycle. When driven inactive
high, GI informs the TMS34020 that it should terminate
the current memory access as soon as possible and
relinquish bus mastership.

form the bus-request code output by the TMS34020. 0
External arbitration logic uses this encoded informa-
tion when determining which processor should receive
an active-low signal on its GI pin.

The multiprocessor interface supports a general protocol that can be used with
external arbitration logic to form a system of multiple processors sharing a
common local-memory space. The TMS34020 provides a mechanism for syn­
chronizing multiple TMS34020s to the same local clock (LCLK) phase. The in­
terface signals are timed to allow multiple, synchronized TMS3020s to share
the local-memory bus without wasting memory cycles when passing control
from one TMS34020 to another.

When multiple TMS34020s share local memory, performance should increase
because of the large internal program cache that can allow long time intervals
during program execution where no external memory accesses are required.
This memory bandwidth can then be used by another TMS34020.

In theory, there is no limit to the number of devices that can be configured to­
gether. However, it is doubtful that performance would increase significantly
if a system included more than three TMS34020s. It is likely that the perform­
ance difference between one processor and two processors will be greater
than the performance difference between two processors and three proces­
sors, and so on. Once the local-memory bandwidth is completely used, no per­
formance benefit arises from adding extra processors.

Multiprocessing and System Architecture

Basic Multiprocessor System Configuration
~m.... "':' $:::-;W$ wtr'~~

11.3 Basic Multiprocessor System Configuration

This section contains general information about connecting and synchronizing
multiple processors within a single system.

11.3.1 Connecting Multiple Processors Together

All the local-memory control pins, address pins, and data pins should be wired
in parallel between the processors. (This includes LADQ-LAD31,
RCAQ-RCA12, SF, AlTCH, RAS, CASQ-CAS3, WE, TR/QE, DDIN, and
DDOUT.) If your system contains a non-TMS34020 device, wire the equivalent
signals common. If you wish, you can wire the local-memory input pins (CAMD,
lRDY, BUSERR, PGMD, and SIZE16) common. How you choose to wire
HDST and HOE depends on your system architecture and on how you wish
to connect a host processor. Section 11.7 describes this in detail.

All TMS34020s in the system should share the same RESET and ClKIN
inputs. Do not wire the local clock outputs (lClK1 and lClK2) together. Use
one TMS34020's outputs as the local clocks for the entire system.

11.3.2 Synchronizing Multiple TMS34020s at Reset

To allow multiple TMS34020s to share control of the local-memory interface
without losing any memory bandwidth, the TMS34020s must be synchronized
to the same local clock phase. The TMS34020 achieves this with special inter­
nallogic that detects the rising edge of the RESET pin at the end of reset. In
a typical single-TMS34020 system, RESET is not required to be synchronous
to ClKIN. However, to allow synchronization of multiple TMS34020s in a sys­
tem, the rising edge of RESET must meetthe setup and hold requirements with
respect to ClKIN. This ensures that all TMS34020s respond to RESET on the
same quarter phase (refer to the TMS34020 Data Sheet for details).

Figure 11-1 shows the four possible conditions for the state of the TMS34020
at the time RESET goes high. Within 10 ClKIN cycles after RESET goes high,
all TMS34020s will be synchronized to the same quarter phase through the
extension of the Q1 phase.

11-3

Basic Multiprocessor System Configuration
$~.@"'#..:::::::.~..r~;XX7,~..::r":::::::::::='::X~:;:;'7.l'.:-.:-.::;::-;:::::::~n::-m:;-;-;:;:;:;:::;::::-;::-... .:-»z:ox::::::::::::::-.::::~~~w..::::%:wQ.:::-.:::::::m:=.::w /..r~:~:::r..::::-;:I'..r/..::~:::~..::::~::-;~:::I$';::~..:;r..:::.~~::-;:::::;::::: .. ::::::-~::::-j>.l:i:W5m;~::::::m;*':::>';:::;::n:::;r..:::::::1;:::::zr.$».:::

Figure 11-1. Synchronization of Multiple TMS34020s

I I I I I
CLKIN I I I I I I I I I I

RESET V I I I I I I I I I
I I I I I I I I I I

Case 1 I 01 02 I 03 I 04 I 01 I 02 I 03 I 04 I 01 01 I 02 I
LCLK1 r 1\ I I; I 1\ I II I 1,,-

I I 1 I I I 1 I I I
LCLK2 L-J/ I 1\ 1 II I 1\ I II 1

I I I I I I I I I I
Case 2

I 02 03 I 04 I 01 I 02 I 03 I 04 I 01 I 01 01 I 02 I
LCLK1

I \ I I; I 1\ I I; I I 1,,-
I I I I I I I I I I

LCLK2 V 1\ I 1/ 1\ I I II I
I I I I I I I I

Case 3 I 03 04 I 01 I 02 I 03 04 I 01 I 01 I 01 01 I 02 I
LCLK1 ~ II I 1\ II I I I 1,,-

I I I I I I I
LCU(2 t--"'1\ I II I 1\ I I II I

I I I 1 I I I I I
Case 4

I 04 I 01 I 02 I 03 I 04 I 01 01 I 01 01 01 I 02 I

W I :\ I II I I :"-LCLK1 I I I I I
LCLK2 ~ I II I 1\ I I II I

I I I I I I I I

Note: This figure does not imply timing dependences of LCLK1 and LCLK2 relative to CLKIN or RESET.

Kn;. Case 1 Extension of 01 for 1 quarter phase.
Case 2 Extension of 01 for 2 quarter phases.
Case 3 Extension of 01 for 3 quarter phases.
Case 4 Extension of 01 for 4 quarter phases.

11-4 Multiprocessing and System Architecture

Protocols for Communicating in a Multiprocessor System
~;~%~"'>:::«0»:'.?"':::,'»m~~~~~~·:::>'«0~~~~":~·l>::.~;:.:::..~~~::m:~~~~'::';:-l'~=~:::;::»~'<'@::~::::M.<7.W;:,;:;::,~~::;.'::::"~~-mm=~';~:>'mW~::>=:>':;;=';:;;:'=""~=lW.;m=~~~~~~~::"~~=0»>'~=::;'~=:~~,:;"'=~~

11.4 Protocols for Communicating in a Multiprocessor System

This section provides details of how the TMS34020 requests, is granted, and
relinquishes control of the local-memory bus and control signals.

11.4.1 How a Processor Requests Control of the Local-Memory Bus

The multiprocessor interface provides encoded information on RO and R1.
These codes indicate whether or not the TMS34020 wishes to use the local
memory and, if so, how urgently. Table 11-1 describes this coding.

Table 11-1. Bus Request Codes for the Multiprocessor Interface

RO R1

o o

o

o

Code and Description

High-priority request. The TMS34020 is requesting or using the bus to perform a high-priority
memory access. High-priority memory requests are issued for accesses that must be performed
urgently. They include

[J VRAM serial-register transfer initiated by the video control logic.

[J 12 or more DRAM refreshes pending.

[J Accesses initiated by a host processor.

Low-priority request. The TMS34020 is requesting or using the bus to perform a low-priority
memory access. A low-priority request is an access requested by the TMS34020's CPU or a
DRAM refresh (when less than 12 refreshes are pending).

Access termination. The TMS34020 will terminate the current memory access in this machine
state. When performing multiple accesses using page mode, the access-termination code is
output during the last data access of the sequence only.

No request. The TMS34020 does not require access to the local memory in the next machine
state. This code is output during host-default states when the next machine state will be another
host-default state.

Section 8.5, Local-Memory Cycle Status Codes (page 8-1 0), details the differ­
ent types of local-memory cycles and their relative priorities; the request code
depends on the cycle's priority.

Q Cycles with priorities 2 through 5 generate a high-priority request code.

a Cycles with priorities 6 through 8 generate a low-priority request code.

Q The host-default cycle can generate either a no-request or low-priority
request code.

11.4.2 How a Processor Releases Control of the Local-Memory Bus

If external bus-arbitration logic drives the bus-master TMS34020's Gl pin inac­
tive high, the TMS34020 releases the local-memory bus as soon as possible:

Q No-request or access-terminate code. lfthe TMS34020 is currently out­
putting either of these codes, it relinquishes control of the bus and sets all
its local bus outputs to high impedance during the second quarter phase
(02) of the next LCLK cycle. (DDOUT is setto high impedance during 01.)

11-5

Protocols for Communicating in a Multiprocessor System -
Il Low-priority or high-priority request code. If the TMS34020 is currently

outputting either of these codes, it terminates the current memory access
as soon as possible. This occurs after the current access completes.

• If the TMS34020 is partially through a sequence of page-mode
accesses, the sequence is broken. When bus mastership is regained,
the TMS34020 continues from the next address in the sequence.

• If the TMS34020 is partially through a memory operation that requires
multiple memory accesses (such as a read-modify-write or an access
to 16-bit memory), the current access completes. When bus master­
ship is regained, the operation resumes with the next memory access
in the sequence.

The current access is allowed to complete in the manner determined by the
LRDYand BUSFLT pins. A detailed discussion ofthe function ofthese pins is
given in Section 8.6, Ending a Local-Memory Cycle (page 8-12).

During the last machine state of any memory access, the TMS34020 issues
the access-termination code. If GI is driven inactive at this time, the TMS34020
will relinquish control of the local-memory bus at the beginning of the next
machine state.

11.4.3 Passing Control of the Local-Memory Bus

When bus control is passed from one TMS34020 to another (or to/from another
type of device), it is necessary to avoid conflicting driven outputs. However, it
is also desirable that the shared local-memory bus and control signals are not
left undriven; floating signals are prone to noise and can make the system unre­
liable. You could use external pull-up resistors to hold the undriven signals at
a good voltage level, butthis is undesirable because the resulting circuit board
is larger and more expensive to produce. The TMS34020's multiprocessor
interface allows signals to be driven to the same level by both processors
involved in the exchange, avoiding all of these problems. When different
TMS34020s pass control ofthe local-memory bus, the following steps happen
automatically:

Step 1: The TMS34020 that becomes bus master drives the local bus and
control pins to their inactive levels from the beginning of the LCLK
cycle after its GI pin is asserted.

Step 2: The TMS34020 that releases control of the bus sets its local bus and
control pins to high impedance during Q2 of the LCLK cycle after its
GI pin is driven inactive. This provides one quarter phase of overlap
where both TMS34020s are driving the signals inactive, and there­
fore no pull-up resistors are necessary. The only exception to this is
DDOUT, which is not driven inactive by the releasing device during
01, as the acquiring device may drive it active low during 02.

11-6 Multiprocessing and System Architecture

Protocols for Communicating in a Multiprocessor System
m"~...::~w...s::~~~X::::::~::XX:>'M:l:;m:;:W/M~%~~~::-4m:;:;~::::::~~m~~t.:;::m:;::~WR;s~m~X:::;::Yh:=w..:::::::::::::;~x::m-~%~$~;::~~:::;~"::'::;:'::'::::":::;:;:;:'~::~~~:'::;:'::::::'~~-::::-;::~:::;O~:."::::::~:~:~~:::::::.::-;~:.~~::~~~~~:?~:;x;~~~~~x~>~»::~»~~~~:;~::~::f.>:;:::;:;:;:;;;:;~,>x>:;>:::.»>,;;>;;»»»»::::::~::>s>:;:;:

Depending on inter-TMS34020 clock skew, this may result in a short
period when DDOUT is undriven. This is preferable to having the pin
driven to conflicting levels, however. DDOUT will never be undriven
for more than a few nanoseconds, and so external resistors should
not be necessary.

If your system contains a non-TMS34020 processor, you must ensure that this
processor drives aI/the local-memory control and bus pins from the beginning
ofthe memory cycle when it assumes control of the bus and that it stops driving
them at the end of the last memory cycle when it releases control of the bus.

11.4.4 Functional Timing Examples

The following diagrams show various examples of the TMS34020 obtaining
and releasing control of the local-memory bus and control signals. The
TMS34020 samples the GI pin on the rising edge of LCLK1 (at the end of 04).
RO and R1 change on the falling edge of LCLK1 (at the beginning of the 03
phase of the machine state). Refer to the TMS34020 Data Sheet for the
preCise timing relationships of these pins.

Figure 11-2 shows the TMS34020 outputting the no-request code and releas­
ing the bus during 02 of the LCLK cycle, immediately after GI is driven high.

11-7

Protocols for Communicating in a Multiprocessor System
;~~WM~~~~~~~~%m~z~~~w,~~~=w~~:;:;:;:;~~w,.m~m:;:;:;:;$zm~::mmw,~~~"X~~hW~~:;:;~~:;:;~~$~$:;:;~~:;:;~~7.:;:;~~z~~m~~:;-;~~7.~wmm$~$~~~7.~m:;:;~~zz~~~~:::;;zmZm;~Z$;$$~;Z$$$;~Z;$;;;;;~;;;~z;;z;;m$;~w,z;~o$;;$:::;..xZ~;:;$;Z$:;:.:::;;'Xm$$X$$:

Figure 11-3 is identical to Figure 11-2 except that the TMS34020 is outputting
the access-termination code at the end of a low-priority write cycle. Note that
GI may be sampled at either level while the low-priority request code is being
output. The TMS34020 cannot relinquish control of the local-memory interface
until it completes the memory access (at which time it issues the access-termi­
nation code).

Figure 11-3. Releasing Control of the Local-Memory Bus and Control Signals
(GI Driven High at the End of a Write Cycle)

I-- End of Write cycle-1

1~1~1~lool~I~I~lool~i
LCLKI I I I I I

L I 1 I I I
LCLK2 j\ II 1 II I 1\.....1

1 I I I
LAD +- -i HI-Zt--,

+- -i HI-Zt-J
I I I I

I lr-riH,-zr-l
-I I I I I I I I LI
ALTCH I I I I II I i'-l HI-ZI ""1

RAS i I I I I.r+---i-'-...J HI_ZI--,1 FR+=H-t-I I I I
CAS I 1 I -I HI-Zt-....J
~III~III
WE~'1HI-zr-l

I I I I I I I I I
TRiOE I I I 1 I I 1 '-l HI-Zr ""1

ODIN I I I I I I I,-..J HI-Zl--,I
I I I I I 1 I I

DDOUT I I 1ri'-+--lHI zt-...J I -
1 I I I

LRDY

SIZE16

BUSFLT

1'1\25
[JOC

~
~

I
/Wj I
01(

~T I

~I
!

HOE I I~-t HI-Z~-I
I 1 I I I

HOST i-I -7-!--~-!---!-~I'-i HI-Zr-i

11-9

Protocols for Communicating in a Multiprocessor System
'WX'7't1'W(~ 0/"'" W(t*·~::VX:;'S~t~t::W:::':::'ttm:x·mw~~:;::$(.x::x::.:::.::

Figure 11-5 shows GI being driven inactive just after the TMS34020 has
started a sequence of page mode accesses. The TMS34020 breaks the
sequence and issues the access-termination code. If GI had remained active,
this code would not have been generated until the sequence completed.

Figure 11-5. Releasing Control of the Local-Memory Interface
(GI Driven High During a Page-Mode Sequence)

I End 01 Read Cycle ~ palj:f;:de~

1~1~1~lool~I~I~lool~I~I~lool~1
LCLKl L!J I I, I II I I, I II I I~

II I I I I I I I I~
LCLK2 1\ I II I I 1/ I I I/r-t-I ~I\..J
~II III 11111

LAD ~+- 1--1- ,-I-+-t--j
GJ I

RCA I---v-....L.:--.--L:-____ ---Jv-..L::--:~~---'I._ 1" - -I HI-Z 1--1
I I I I I I I I

SF i---+I-!-I --I----JII---!-I--II-.l...--!-I--I!"-T"-I HI-ZI--
ALTCH 1 I II II I II II 1'-.1 HI-zl_~

I I I I I I I I I
RAS ~ I I I I I II I 1'--_1 HI-zl--,

I I I I I I I I I I I
CAS 1 : 1''-..1...-...1111 1 :''-+--1'11 1 1'--1 H'-ZI-'
WE I I I I I I I I 1'---1 HI-zl--l

LL I I-I I I I I I I I
TRlQE I j\ I Ifj\ I I' I 1'--"1 H'-ZI--l

ODIN 11--.;..1 ---fIll 1\ I 1/ 1\ I 11,.1 H,-zl-~
I I I I I I I I

ODour II/ I I I I 1,-1._·1 HI-ZI-..J
I I I I I I I

LRDY
SIZE16

BUSFLT

1'2S

~
m

~i I
~I

&>..1 I

&>..1
I I I

'-HOE I I .HI Z 1--1
I I I I I HOST 1-1 --10 _____ -1--..... --1----1-_"---'--""""---"1'-- IHI-Z r"!

11-11

Protocols for Communicating in a Multiprocessor System
"""

In Figure 11-6, the TMS34020 regains bus mastership as soon as its GI pin
is driven active low. RO and R1 could be outputting any of the codes with the
exception of the access-termination code.

Figure 11-6. Regaining Control of the Local-Memory Bus and Control Signals

CAMD'~=~~m~~~~~~~
I

RCAj-4HI-ZI--4--t-+- Row
L I I I I I I I I

SF jHI-Zrj-.,-j-T' I I I
_IILI...l~11 ALTCHI-'lHI-Z -,- - I

I I I I I I I
RASI-...JH1-ZI- L-I._u I I I'Ll

I I I I I I I I I
CASr -4 HI-ZI--4--t - +'''''''';-I-r--tl---;I

I I I I I I I I I
WELjH,-Zrj-.,.-T" I I I I

__ I I I I ...l I I I I I
TRlQEI-..,HI-Z-..,- -1" I

I I I I I I· I
DDINj...JHI-ZI-...J--I.-~ I I I I

I I I I I J,....l ! i~
DDOUTr-4H'-ZI--4--t-T : '--t--f--!

LRDY
1 !~

SIZE16

PGMD
.I J

J
BUSFLT

.!
HOEI--4HI-ZI--4--i--+' I

I I I I I I
HDSTjj HI-Z1j-,-i',..-+-~----!---r

11-12 Multiprocessing and System Architecture

Arbitration Logic Requirements =-___ """"'==w~r~~::::::«:"":i'~"~::c::::::wx::::f«~~:::~~.::::.::xz::::~~:::::::::::::::::::::::~~:::%::c:x.~.:;::::::::::.:::::::'.::::::::::x::::::::::::::::::-'nm -'?'w-,*xxn':::;-,~$;:';;:::;-,-,::::::*:::-,:;:;:;;;::';~~

11.5 Arbitration Logic Requirements

A multiprocessor system's external arbitration logic must generate the GI out­
puts to each processor for the next cycle. To do this, it uses each processor's
RO and R1 outputs in conjunction with the current value of each processors'
GI input. The arbitration logic must never assert the GI pins of more than one
TM834020 simultaneously, though there may be times when none of the pro­
cessors has an active GI.

11.5.1 Passing Control of the Local-Memory Bus

When passing control of the local-memory bus from one processor to another,
the arbitration logic must not assert the acquiring processor's GI pin until the
current master processor indicates that it will relinquish control of the
local-memory bus at the end of the current machine state. This is the case
when the current bus master outputs either the no-request or access-termina­
tion code. These are easily identified by looking for an inactive high level on
RO.

Figure 11-7 shows a typical example for two TM834020s.

Q TM834020#1 starts off as the bus master. It finishes using the bus during
the fifth machine state (85), but continues to drive the bus inactive until
after TMS34020#2 requests the bus in the eighth machine state (88).

Q As TM834020#1 outputs the no-request code during 88, the GI pins of
both TM834020s can be changed simultaneously. TM834020#2 then
becomes bus master in 89. However, a high-priority request (in this case,
for a screen-refresh cycle) made by TM834020#1 during 811 causes
TM834020#2 to relinquish control of the bus at the end of 812. Note that
because TM834020#2 was busy when TM834020#1 first generated the
high-priority request, its GI is not asserted until TM834020#2 outputs the
access-termination code.

Q TM834020#2 continues to output a low-priority request and resumes con­
trol of the bus (at the beginning of 815) as soon as TM834020#1 finishes
and asserts the access-termination code.

Note that although TM834020 #2 is making a request, TM834020 #1 's
grant-in is not removed, because it is performing a high-priority request.
Also note that no bus cycles are lost. RO and R1 change sufficiently early
for the GI signals to change and allow back-to-back local-memory cycles
from different TM834020s.

11-13

Arbitration Logic Requirements

Figure 11-7. Passing Control of the Local-Memory Between Two TMS34020s

11-14

TMS34020 #11 81 I 82 I 83 I 84 I 85 I sa I 87 I 88 I 89 1810 1811 18121813 1 81418151816 I
-~ I I I I I I I I I ~ l,h I ALTCH I I 'I I '-r HI-Z-r- i "-t-JI -HI-Z l I I I I I I I I

Gi I I I I I I I I II I I I \I I II I I
I I I I I I I I I I I I I I I I I

ROI I I I I I I I I I I I \ I I I I I i I
-I I I I I I I I I I I I I I I~
Rll I I I I 4-11 I I I I' I I I I I I

RA8 I hi I I II I I I ,-.L-H1_Z -1---1'1-\1 tl-LHI_Z J
II 'I I I I I I I I I I - i 't--' I - I I

CAS +-HI-Z -+~HI-Z-I
I I I I I I I I I I

WEI 1'--r-H1-Z-t--'1 I I'-HI-Z.,
I I I ..!- II-. I I

TRlOE I I-H'-Z T-: \..1-1 I H1-Z l
I I I I

ODIN t-HjZ t-t U'" HII-Z ~
OOOUTI -j-HI-Z +~I HI-Z-I

I I I I I' I I I
HOE 'I '-T-HI-Z r...l'I· I '"j"'-HI-Z 1

I .L I I I I J I I I '- -HI-Z .L ... I I '-HI-Z
H08T I I I I I I I I I I I I I I I

----11- 4 I I ~ I I 1- I I I - I I I - I I I
TMS34020 #21 81 I 82 I S3 I S4 I 85 I 86 I 87 I 8a I 89 1810 1811 18121813: 814181518161

ALTCHL...,.I_L~HI zL-,I_.l_+..Jh! I ! rh...'I-Z-T i ~
I I '-I I I~I-nl !I!

Gil I l I l I I I 'I I I II I I ,I I I
- I I I I I I I I I I I I I I I I
ROI I I I I I I 1'1 I I 1m l I I I
- I I I I I I I I I 1 I I I I I i I
Rll I I I I I I I I I I I 4-' I I I I

RASr--+-t--1HI-Z~1--t-t~lr1~
CAS ~...j.-i--IHI-z~-I-~--I-~I-z-r+--tv1

I I I I I I I I I I I I I I I I I
WEr-t-r~HI-Zr-t-'1'-+....I1 1 I 1 I 4t1-z-' I I I

--L I L I L I .1 I. r!--l ..i J .i.. I ..L....i J TRlQE ...,.- ,HI Z -,- -T--j j'l-JjLlj'l-Jj '-HI-Z-'j Wj I I - I I I I I I I
OOINI-..l-.j...-IHI_ZI-.J-...j._l.~1 I I I I-Z'" I I nl

I I I I I I I I I ::C-L.J
OOOUTt--+-t--IHI-Zt---l--t-+ I I I-ZJfVII
-1'1 I I I I I I III I I I I I I
HOE r-r-riH'-zri-l'-j....l I I I I 14tI-z...I1 I I

HOSTL-4_.L_IH,_zL_L..L_l 1 II I II 14tI~z...I11 I II
I I I I I I I I I I I I I

Note: Each vertical division repre8ents one entire machine state (not one quarter
phase, as other diagrams show),

Multiprocessing and System Architecture

11.5.2 Wait States, Retries, and High-Priority Bus Requests

As previously indicated, if the TMS34020 is performing a memory cycle
extended with wait states when Gl is driven inactive, the TMS34020 will not
relinquish control of the local-memory interface until the access completes.
This could consume many machine states. (For instance, the TMS34020 could
be accessing a slow peripheral or possibly a location in the host's memory via
the system bus.)

This could cause a problem if one ofthe TMS34020s has a limited time in which
to perform high-priority accesses. For example, if the horizontal-blanking inter­
val is very short, the screen-refresh cycle scheduled at this time must be serv­
iced promptly (before the end of the blanking interval).

To circumvent this sort of problem, the arbitration logic can control LRDY and
BUSFLT to cause a retry of the slow, wait-stated access. If a retry code is
detected (LRDY low, BUSFLT high), the memory cycle will terminate (issuing
the access-termination code) and subsequently restart. Once the access­
termination code is issued, however, the arbitration logic can assign control of
the local-memory interface to another TMS34020.

If you wish to do this, you should ensure that the accessed memory location
can respond correctly to a retry. For example, a peripheral that increments an
internal address pointer when a cycle completes would need to be able to
distinguish a successful transfer from a retry, preventing the internal pointer
from being incremented after the retried access.

11.6 Multiprocessor Arbitration Examples

This section provides two examples of arbitration schemes; these examples
should help you to understand the multiprocessor interface.

I:l The first example shows a typical scheme for two TMS34020s.

I:l The second example shows a scheme for a TMS34020 and another (non­
TMS34020) device that uses a hold/hold-acknowledge protocol.

11.6.1 Arbitration Scheme for Two TMS34020s

This example describes a protocol between two TMS34020s, TMS34020A and
TMS34020B. Assume that only TMS34020A can make high-priority requests;
only these requests can cause TMS34020B'S Gl signal (GIB) to be driven inac­
tive when TMS34020B is not outputting the no-request or access-termination
code. In this way, only high-priority requests interrupt page-mode bursts.

Table 11-2 shows how the arbitration logic allocates active or inactive levels
forthe next machine state on the Gl pins of the two TMS34020s (GIA and GIB,
respectively). The values ofthe Gl pins forthe next machine state are sampled
on the rising edge of LCLK1, at the beginning of the next machine state.

11-15

Multiprocessor Arbitration Examples
:;::~: ::::':::<\:::~~;::~:::;'::::.::~~~~:::;~::~~:~;::~:~:~::.:.:::;~::~:;:::::~:~:;:<~~~%~~:;~:~:::::::x;:;~'::::X~f'::::~:::~;::::::~~:l'~~~~f,~~~~~:;::~::r.O::::;::f'::~4~:~:~~:;~~~::'::::::::::::~::~~:~:::!~~::::~::;::f,t-::::::::::,:;:;::~:::::::~:f,::::::::f~:::::::::f,::~f,:::~<\::::x:::::~::::;:;::::::~~::::z;::::::::~::%~::::~~~z;::::z;::::%~~:x::::::~~::%X';::f~;:;:;!-::::::%::::~~~:%:~;::::::f.::$::::%f':::::::::;:;:::::;:;:~~~~/.~:--":;!'7.4:::::;:'{<':::~~~w.

The decision is based on the present state of the bus request outputs from the
two TMS34020s (AOA, R1A, ROB, andR1 B) and the present state of the GI out­
puts (pGIA and pGIB). The bus-request pins become valid shortly after the fail­
ing edge of LCLK1, at the beginning of the 03 phase of the TMS34020s'
machine states. Assume that the pGIA and pGIB values are latched externally
on the rising edge of LCLK1.

The top and left side of Table 11-2 show the possible combinations of RO A,
R1 A, pGIA' and ROB, R1 B, pGIB. The resulting grid shows which GI (if any) is
asserted for the next machine state, given the current state.

Table 11-2. Arbitration Scheme for Two TMS3402020s
----~----------~--------------------

11-16

TMS34020A

p~IA 1 1 1 1 0 0 0 0
ROA 1 0 0 1 1 0 0 1

pGle ROe R1e R1A 1 1 0 0 1 1 0 0
1 1 1 - - - - A A A A
1 0 1 - - x - B A A B
1 1 0 - - - - - - - -
0 1 1 B A A - - - - -
0 0 1 B B X - - - - -
0 1 0 B A A - - - - -

Key: A Bus allocated to TMS34020A (assert GIA)
B Bus allocated to TMS34020B (assert GIB)
- Illegal combination
X No allocation (wait for cycle termination)

Table 11-2 can be summarized as follows:

Q Active GI is made to TMS34020A (GIA) if

• Active GI was already allocated to TMS34020 A and there is no request
from TMS34020B.

• Active GI was already allocated to TMS34020A and both devices are
requesting access (high or low priority).

• TMS34020A is requesting an access (high or low priority) and
TMS34020B is not requesting access or is terminating an access.

Q Active GI is made to TMS34020B (GIB) if

• Active GI was already allocated to TMS34020B and there is no request
from TMS34020A'

• Active GI was already allocated to TMS34020B and both devices are
requesting a low-priority access.

• TMS34020B is requesting a low-priority access and TMS34020A is
not requesting access or is terminating an access.

Q Active GI is made to neither TMS34020A or TMS34020B (GIX) if
TMS34020A requests a high-priority access but TMS34020B has not yet
terminated its access.

Multiprocessing and System Architecture

The following equations express these conditions.

GIA = (pGIA' ROB' R1 B) + (pGIA . ROA) + (pGIB . ROB' ROA)
GIB = (pGIB' ROA' R1A) + (pGIB' ROB' R1A) + (pGIA' ROB' ROA)
Glx = (pGIA' ROA . R1 A . ROB)

You could easily expand this protocol to include additional TMS34020s by add­
ing more slave devices, each with a successively lower priority.

11.6.2 Arbitration Scheme for One TMS34020 and a Hold Device

If a multiprocessor system contains a non-TMS34020 device that supports a
hold/hold-eJ,cknowledge protocol (known as ahold device), you can use a mo­
dified version of the arbitration scheme described in Section 11.6.1. In the mo­
dified version, the hold device replaces the slave TMS34020; however, the
non-TMS34020 processor's priority is raised so that hold has a higher priority
than a low-priority request from the bus-master TMS34020.

Table 11-3 shows which GI is activated for a given set of inputs in this situation.
The single TMS34020's signals have the suffix T. ROB and R1 B are replaced
by a single signal, HOLD. Bus mastership is allocated to the hold device
through the GIH signal.

Table 11-3. Arbitration Scheme for One TMS3402020 and a Hold Device
----------------~TM~S3~4~O~20~-------------

p~IT 1 1 1 1 0 0 0 0
!!Or 1 0 0 1 1 0 0 1

pGIH Hold R1T 1 1 0 0 1 1 0 0
1 0 - - - - T T T T
1 1 - X X - H X T H
0 0 T T T - - - - -
0 1 H H X - - - - -

Key: T Bus allocated to TMS34020(assert GIT)
H Bus allocated to the hold device (assert GIH)
- Illegal combination
X No allocation (wait for cycle termination)

Table 11-3 can be summarized as follows:

o Active GI is made to the TMS34020 (GIT) if

• Active GI was already allocated to the TMS34020 and there is no
request from the hold device.

• Active GI was already allocated to the TMS34020 and the TMS34020
is requesting a high-priority access.

• The TMS34020 is requesting an access (high or low priority) and the
hold device is not requesting an access.

11-17

11.7 Initializing Multiple TMS34020s

In asingle-TMS34020 system, power-up initialization ofthe device can be per­
formed in one of two ways.

Method 1: Store an initialization routine in ROM and bring the TMS34020
out of reset in the self-bootstrap mode. The TMS34020 will
immediately start executing the code from ROM.

Method 2: Bring the TMS34020 out of reset in the host-present mode. In
this situation, the TMS34020 is halted so that a host can down­
load code to local memory before clearing the HLT[HSTCTLH]
bit and allowing the TMS34020 to execute the code.

In a multiple-TMS34020 system, initialization is more complex. You can use
method 1, method 2, or a combination of both, with some modification to the
single-TMS34020 approach. Here are three alternatives:

t;J When operating in self-bootstrap mode, all the TMS34020s will fetch the
same code from the same reset vector unless you provide additional
mapping to point each processor to a different code. A mapper at the reset
vector address can, when read, output a different address, depending on
which GI pin is active at the time. In this way, each processor reads a differ­
ent value from the reset vector and therefore fetches code from different
locations.

t;J Alternatively, you can prevent each TMS34020 from fetching the reset vec­
tor and executing code by using the multiprocessor interface to inhibit
assertion of each TMS34020's GI pin. If each TMS34020 becomes bus
master in a predefined order at power-up, each can modify the reset vector
after loading its own code so that the vector points to the next processor's
code.

t;J You can use a host processor to download code to all the TMS34020s. If
you do this, be careful when using host-present mode; the host cannot
access the I/O registers of a TMS34020 to which it is not directly attached.
This means that if a TMS34020 is powered up halted in host-present mode
but is not directly connected to a host, there is no way to clear the HLT bit
except through RESET. The next section outlines the ways in which a mul­
tiple-TMS34020 system can be connected to a host.

11-19

Configuration with a Host Processor

11.8 Configuration with a Host Processor

11-20

If your multiple-TMS34020 system contains a host processor, there are a num­
ber of ways to configure the system. The configuration you choose depends
on the type of accesses the host needs to make and on the cost of the system.
For a general description of host communications, refer to Chapter 7; Section
7.11, Systems with Multiple TMS34020s (page 7-40), discusses the implica­
tions of the different configurations in detail.

The HOE and HOST pins support several different configurations.

Q Host connected to one TMS34020 only. In this case, the HOE and HOST
pins of the host-connected TMS34020 should be wired to the external
bidirectional data transceivers. There is no need to wire the HOE and
HOST pins of the other TMS34020s in parallel.

Q Host connected to more than one TMS34020 via one set of shared data
transceivers. In this case, the HOE pins from all TMS34020s sharing the
data transceivers should be wired together, as should the HOST pins.

Q Host connected to more than one TMS34020 via individual sets of data
transceivers for each TMS34020. In this case, each TMS34020 is con­
nected to the host via its own set of data transceivers. The HOST and HOE
pins should be connected between each TMS34020 and its associated
transceivers only.

When bus mastership is regained, HOST and HOE are set to high impedance
just like the local-memory control signals. However, unlike the local-memory
control signals, they both are attached to internal pull-up resistors. This allows
any ofthe above configurations to be implemented without requiring additional
external control circuitry; if HOST and HOE are not driven by another
TMS34020 (the first and third cases described above) they are held in the logic­
high state by the resistors. Yet, the· resistors are sufficiently large that they will
not prevent another TMS34020 from driving HOST and HOE subsequently
(the second case described above).

Multiprocessing and System Architecture

Chapter 12

:wmt !i ; m«;'m'?~~:W"m7~~~?;:~!i:i:;:X:;~~'-~mmu~~W'«:::~'~"W "!:::('~":':';7' 7: ; m&m!:mx!~~lM~«?$~X!:m':,.,§M~
: ::::::::::::'::::::::::m:mm::::::::::::::::::m:m:: t:: :t: m:::::::'m::::::: :::::::::::::::m:::::::::;:::::::::::::::m:::o)l@~":::mm'::::mm:::: : :::::~#:~m

The TMS34020 is especially useful in graphics systems because it has a large
set of graphics-specific instructions. In addition, the TMS34020 supports a
variety of special operations (such as windowing, transparency, and options
for combining pixels) that you can apply to graphics instructions. This chapter
contains four types of information:

Section Page

Overviews summarize the 12.1 An Overview of Graphics Instructions 12-2
instructions and operations. 12.2 An Overview of Graphics Operations 12-3

Instruction-specific information 12.3 Single-Pixel Instructions 12-6
describes the special capabilities of 12.4 Line Instructions .. 12-7

the various types. of grap'hics 12 5 A I . 12 8
instructIons. . rray nstructlons . -

12.6 Auxiliary Graphics Instructions 12-17

Operation-specific information 12.7 Windowing.......................... 12-19
describes the graphics operations 12.8 Pixel Processing 12-27_

and how they work for the
different types of graphics 12.9 Transparency........................ 12-36

instructions. 12.10 Plane Masking .. 12-39

Related topics discuss the ways 12.11
that graphics instructions work.

12.12

Setting Up the Implied Operands for
Graphics Instructions
Converting an XY Address
to a Linear Address

12-43

12-47

12-1

An Overview of Graphics Instructions
~~,:;~~~~~:;~::~:;~~~~:;:;~:=:;:;:;:;:;:;~~~~:;:;~%~~:~~m:;::::~:~~:::::::;::~:;:;::~$::~,:;::::::~:::::::::::::~::~«=:::::::::::::::;::::~%:::::;::::%X~m:::;::~%x;::::::~:::::::::;:::::;:.~~~~~~-:;~::~"X::::::x%*::.-=::::::~::~~:;%~~~~::-;::::::::::::~~::;::~~::~:::;~~X~~X:::::;:;::>XX%%xx:::wxm~"x~~~::0:::::::'");::~~;XX~~~~~~X::~::-;X::X:;~~~~~~~~::-~"X::::::::::::::::>::!'

12.1 An Overview of Graphics Instructions

The TMS34020 instruction set supports several fundamental graphics drawing
instructions. Table 12-1 lists these instructions by categories.

Table 12-1. Summary of Graphics Instructions

12-2

Instructions

These instructions draw single pixels.

DRAV (draw-and-advance) draws a single pixel at a specified address and then incre­
ments that address. This is useful for implementing incremental algorithms that
draw circles, ellipses, arcs, and other curves.

PIXT (pixel transfer) transfers individual pixels from one location to another. There
are several different versions of the P IXT instruction that use different address­
ing modes.

Refer to ...

page 12-6

These instructions draw single lines or set up the implied operands for drawing a line. page 12-7

LINE implements the inner loop of Bresenham's algorithm for drawing lines. Forthis
instruction, a line's endpoints are identified by XV addresses.

FLiNE

LlNIT

is a faster implementation of the LINE instruction. For this instruction, a line's
endpoints are identified by linear addresses.

initializes implied operands required by the LINE and FLiNE instructions.

These instructions draw 2-dimensional pixel arrays. page 12-8

PIXBLT (pixel block transfer) copies a 2-dimensional block of pixels from one area in
memory to another. There are several forms of the PIXBLT instruction.

FILL

PFILL

VFILL

VBLT

sets all the pixels in a pixel array toa known value.

fills a block with the pattern from the PATIERN register.

special fill that takes advantage of VRAM features.

special block transfer that takes advantage of VRAM features.

The TMS34020 supports several auxiliary instructions that extend the functions of the page 12-17
base set of graphics instructions

FPIXEQ searches for a pixel that is equal to the COLORO pixel.

FPIXNE searches for a pixel that is not equal to COLORO.

EXGPS

GETPS

RPIX

CLIP

CPW

TFILL

FPIXEQ and FPIXNE are useful for seed fills and data compression.

exchanges value in PSIZE with the value in a general-purpose register.

moves the value in PSIZE into a general-purpose register.

replicates a pixel value within a general-purpose register.

clips an array to fit within specified window dimensions.

compares a point to the window limits in WSTART and WEND.

fills a trapezoidal block by filling a series of horizontal lines.

Graphics Instructions and Operations

An Overview of Graphics Operations
~~;;x ::<:'::::%:l:l:;~x~rm~""" """"""""';;:::,"";m"","_s;;:~~~m;x~';s:~s:::::::::::::~~:::::~::: ~m ::x " ::::~~

12.2 An Overview of Graphics Operations

Table 12-2 summarizes the operations that you can apply to graphics instruc­
tions. These operations extend the functionality of the graphics instructions,
providing you with explicit control over where a pixel is drawn and how it is com­
bined with other pixels. Note that these operations affect only pixel transfers­
they do not affect data transfers by nongraphics instructions (such as MOVE).

Table 12-2. Summary of Graphics Operations

Description Refer to ...

The TMS34020's special window-checking hardware compares a pixel's XY address to page 12-19
the XY addresses within a defined rectangular window. The TMS34020 supports four
window-checking modes:

Q No window checking-you can ignore window-checking information.

Q Window hit detection draws no pixels, but generates an interrupt if a pixel lies inside
a window. This supports selection of screen objects that a cursor is pointing to.

Q Window miss detection draws pixels that lie within a window and generates an inter­
rupt if a pixel lies outside the window. This is useful for line clipping.

Q Windowc/ipping mode draws only pixels that lie within a window; it generates no inter­
rupts.

Most of the graphics instructions move pixels to locations in memory; some instructions
combine source pixels with pixels that are already at the specified destination address.
The pixel-processing options provide you with control over how the source and destina­
tion pixels are combined.

You can choose from 16 Boolean and 6 arithmetic pixel-processing options. The default
is simply to replace the destination pixels with the source pixels.

page 12-27

Sometimes you may want a background or an existing object to show through an object page 12-36
that you're drawing to the screen. The TMS34020 supports three modes for choosing
which of the pixels in an object are transparent:

Q Transparency on result = 0 inhibits the pixel write if zero will be written to the destina­
tion address.

Q Transparency on source = COL ORO inhibits the pixel write if the source pixel is the
same as the COLORO pixel.

I:::JJ Transparency on destination = COL ORO inhibits the pixel write if the original destina­
tion pixel is the same as the COLORO pixel.

The plane mask is a register that you can load with a mask value. The 1 s and Os in the
mask tell the TMS34020 which bits in a source or destination pixel can be modified.
Transparency and plane masking are similar but work at different levels. Transparency
works at the pixel level. preventing an instruction from writing entire pixels. Plane mask­
ing, however, works at the bit level, preventing an instruction from writing individual bits
within a pixel.

page 12-39

12-3

An Overview of Graphics Operations
~~::.::.M.:::::::r..:::::;w;~~~$::::~::%:'-:;~%~Z:;:;:::''1~:;:;m;~z:.:-.;::~ozx::~.::q..::~zz::::~~:::o:::;;;:;;;x::::::~::::::::~~~"Xz~::::::xx::.x::~~ w' "'~1U-N~:"::.x:":::;:":":::;:,.x~:"~~:;;:;:;~.x::'::':;:"::::~M:':-;:;:;::X:::::-.x:":~W';::::x:;-.m:;::.:::;.:;:":":::::::::":;:;:;:;:::::::;::-:;:":"~/..:::.-:;:=,..x:;<..x::::::zx:;:":"~,;::::~:":::::"::::::~~~::::"w..xx::x.<

Table 12-2. Summary of Graphics Operations (Continued)

12-4

Description Refer to ...

XV addressing is not an operation in the sense of transparency or pixel processing; how­
ever, using XV addresses instead of linear addresses can simplify program design.
Many of the graphics instructions allow you to choose whether you use XV or linear
addresses.

page 12-47

Because XV addressing allows you to specify an address in terms of Cartesian coordi­
nates, XV addressing is especially useful for manipulating 2-dimensional pixel arrays
and for writing pixel data to a screen. For certain instructions, the TMS34020 automati­
cally converts XV addresses to linear addresses for internal use.

Figure 12-1 shows how these operations interact when the TMS34020 trans­
fers a source pixel to a destination location, combining the source pixel data
with the destination pixel data. This is a general illustration; certain operations
are not performed if they are not enabled or selected.

As Figure 12-1 shows, source and destination pixels are first read from
memory and modified by the plane mask. Pixel processing is then performed
on the modified pixel values. The plane mask is applied to the result. Bits that
are 1 s in the PMASK are read as Os from the source array (however, these
same bits are protected during a pixel write), Transparency is applied, depend­
ing on the mode chosen.

Graphics Instructions and Operations

An Overview of Graphics Operations
~~:mmm~rm::!r:, m"ww¥~~~~~wx~~~x~~.zv..x.;;;::m" ~ :,m:,x:,:,~x """"............... ::::-;.:;~:,r~

Figure 12-1. Graphics Operations Interaction

Notes: 1) You can enable only 1 of the 3 transparency modes at any time.

2) If you're using the pixel-processing replace option, the TMS34020 does not read the destination pixel
unless you've enabled transparency-on-destination or plane masking.

12-5

Single-Pixel Instructions

12.3 Single-Pixel Instructions

Definition----------------------------

A single pixel is defined by

r:. its address, which can be a linear address (this is an absolute memory
address) or an XY address. Linear address.es must be aligned on pixel
boundaries.

Q its size (in bits), which is defined in the PSIZE register.

Instructions---------------------------

Two types of instructions draw single pixels.

Q The PIXT instructions transfer individual pixels from a source location to
a destination location. The PIXTs support three combinations of source-to­
destination transfers.

source

A- or B-file register

memory

memory

destination

memory

A- or B-file register

memory

Q The DRAV instruction draws a pixel that is identified by an XY address.
After drawing the pixel, DRAV advances the address by adding an XY
increment to the original XY address. The value written to the destination
pixel is the value in the COLOR1 register.

DRAV is especially useful for drawing circles, ellipses, arcs, and other
curves. Selecting an appropriate XY increment allows an incremental
algorithm to plot each pixel on a curve and then determine where the next
pixel will be drawn. The next pixel is usually one of the 8 pixels immediately
adjacent to the pixel just drawn.

You can also use DRAV for drawing straight lines; however, you can draw
lines more efficiently with LINE or FLiNE.

Graphics operations -----------------------­

You can use the following graphics operations with single-pixel instructions.

window checking You can use this when the destination pixel has an XY
address.

transparency Use any of the transparency modes.

plane masking You can set the plane mask.

pixel proceSSing Use any pixel-processing option, but remember that the arith­
metic options are valid only when the pixel size is at least 2 bits.

12-6 Graphics Instructions and Operations

Line Instructions

12.4 Line Instructions
Definition-----------------------------

A line is defined by these implied operands:

Q address of one of the line's endpoints
Q magnitude of the major and minor axes of the line
Q signs of the X and V increments
Q initial value of a decision variable
Q initial value of a count variable that monitors drawing progress
Q pixel values (in the COLORO and COLOR1 registers)
Q pixel size (in the PSIZE register)
Q pattern (in the PATTERN register)

Instructions----------------------------

Q The LINE instruction implements the inner loop of Bresenham's line­
drawing algorithm. The endpoint that you provide for LINE must be an XV
address. When drawing a line, you might typically

Step 1: Determine the XV coordinates of the line's endpoints.

Step 2: Calculate the implied operands listed above. For the most effi­
cient operation, clip the line to the dimensions of the display win­
dow before you calculate the implied operands.

Step 3: Draw the line with the LINE instruction.

Q The FLiNE instruction is a faster implementation of Bresenham's line­
drawing routine. FLiNE operates similarly to LINE, but the endpoint that
you provide for FLiNE must be a linear address. Because you cannot use
XV addressing with FLlNE, FLiNE does not support window checking.

Q The UNIT instruction initializes the implied operands that the LINE and
FLiNE instructions use. L1NIT provides you with a quick, simple method
for performing the initialization; L1NIT uses a line's XV endpoints to set up
the necessary B-file registers. L1NIT also sets the status bits so that you
can easily determine a line's location in relation to the current window, and
you can determine whether a line can be trivially rejected.

Graphics operations -----------------------­
Vou can use the following graphics operations with the LINE and FLiNE
instructions.

window checking You can use window checking with LINE; you can't use window
checking with FLiNE-FLINE doesn't support XY addressing.

transparency Use any of the transparency modes.

plane masking You can set the plane mask.

pixel processing Use any pixel-processing option, but rememberthatthe arithme­
tic options are valid only when the pixel size is at least 2 bits.

12-7

I-'tJO~/-.q,rrRV Instructions

12.5 Pixel-Array Instructions

Definition -----------------------------

A 2-dimensional pixel array is defined by these implied operands:

Q Starting pixel address. This is the address of the pixel with the lowest
address in the array (in a display, this is usually the pixel at the top left of
the array). Two registers supply starting array addresses; these addresses
can be linear addresses or XY addresses.

SADDR (80) identifies the starting address of a source array.

DADDR (82) identifies the starting address of a destination array.

Q Array width (DX) and array height (DY) in pixels (defined in the DYDX
register). The 16 LS8s of DYDX identify the array width; the 16 MS8s iden­
tify the height. Source and destination arrays use the same DYDX value.

r:!! Array pitch (the difference between the linear addresses of any two verti­
cally adjacent pixels in an array). Two registers supply array pitch values.

SPTCH (81) identifies the pitch of a source array.

DPTCH (83) identifies the pitch of a destination array.

a The pixel size is defined in the PSIZE register. Only one pixel size is valid
at a time, defining the size of all pixels in the array.

Instructions----------------------------

12-8

The TMS34020 supports two types of array instructions.

a The PIXBlT instructions are a powerful set of raster operations that com­
bine the pixels in a source array with the pixels in a destination array. The
TMS34020 copies each pixel in the source array to the corresponding
location in the destination array. The source pixel can simply replace the
destination pixel, or the two can be combined using any pixel-processing
option.The source and destination arrays must have the same width and
height, but they can have different pitches.

The TMS34020 supports several PIX8LT instructions,with variations in
the types of addresses that define the source and destination arrays.

source array destination array instructions

binary linear PIXBLT B, L VBLT

binary XY PIXBLT B, XY

linear linear PIXBLT L,L PIXBLT L,M,L

linear XY PIXBLT L,XY

XY linear PIXBLTXY,L

XY XY PIXBLT XY,XY

Graphics Instructions and Operations

Pixel-Array Instructions
=""""'=""·~~m-m=======-==,=_,=~~=·~..mm~~~~~~mm~~W'~~~

Q The FILL instructions fill a destination pixel array with the pixel value in
the COLOR1 register. You can think of a FILL operation as a special type
of PIXBLT that does not use a source array.

The TMS34020 supports two FILL instructions and two special-purpose
FILLs, PFILLand VFILL. PFILL is a pattern-fill instruction, and VFILL takes
advantage of VRAM block-mode accesses.

destination array

linear

XY

instructions

FILLL

FILLXY

VFILL

PFILL XY

Graphics operations -----------------------

You can use the following graphics operations with pixel-array instructions.

window checking You can use window checking whenever the destination array
is identified by an XY address.

transparency 1;1 You can use transparency with any array instruction ex-

plane masking

pixel processing

cept VBLT or VFILL..
1;1 The binary PIXBLTs do not apply transparency to unex­

panded source data.

1;1 You can use the plane mask with any array instruction.
Note that for VBLT and VFILL, the masking comes from
the VRAM write mask and not from the PMASK register.

1;1 The binary PIXBLTs don't apply the plane mask to the un­
expanded source data.

Q Use any of the pixel-processing options with the bas.ic
PIXBLTs.

Q You cannot use pixel processing with VBLT or VFILL.

12.5.1 PIXBLTs with XV and Linear Addressing

Some PIXBLTs allow you to specify the source and destination arrays' start
addresses in XY or linear format. You can use the following combinations of
XY and linear arrays.

Source Array

Linear
Linear
XY
XY

Destination
Array

Linear
XY
Linear
XY

Instruction

PIXBLT L, L
PIXBLTL, XY
PIXBLT XV, L
PIXBLT XV, XY

12-9

Pixel-Array Instructions
m::m~00%~~~.::::w#~M~,q/..::m::VffH'Q.::::'.::-/..:::::::;w#..%::::s:'.w..::.~::«.m::::s:'.x~~$~::::~~m-..:;w..::~..x:;::.%w~~.x::w~;:;::::::%x:::::;X:;~::::::::W"::~:;~~-::~f~<~::::~::~~:;:;::::::::::::::::::~~::W~~~~~~~~-:::::'-::~:::::~;~~9;::::~::::::t.~~~W~$::::~~(.~~~::::~~;::~$$::~$~~~::::~~~X(.$::::::::~$~~::::$::::~W"::s:'$"/.'::~':::;-;:;:~

12.5.1.1 Packed Linear Arrays

XV addressing provides a convenient method for manipulating on-screen ob­
jects. XV addressing supports both automatic window clipping and conversion
of Cartesian coordinates to memory addresses. When you store pixel arrays
off screen, however, you may use memory more efficiently if you use linear
addressing. For example, you can pack successive rows of a linear pixel array
into memory without gaps between the end of one row and the beginning of
the next. The pitch of a linear array is set to the product of the array width (in
pixels) and the pixel size (in bits). Figure 12-2 shows how storing an array in
packed linear format can save memory space.

Figure 12-2. How XY and Linear Arrays are Stored in Off-Screen Memory

To store an XV array in packed linear form, use the PIXBLT XV, L instruction;
to move a packed linear array onto a screen, use PIXBLT L,XV.

12.5.1.2 Selecting the Starting Corner for a PIXBLT

12-10

A PIXBLT's default starting address is the lowest pixel address in the source
array. As Figure 12-3 shows, however, some PIXBLTs can start at any of the
array's four corners. If the source and destination arrays overlap, it may be nec­
essary to change a PIXBLT's starting corner.

Table 12-3 lists the PIXBLTs that can use this corner-adjust feature; note that
for some PIXBLTs, the TMS34020 automatically adjusts the corner-for
others, you must manually adjust the corner.

Graphics Instructions and Operations

Table 12-3. PIXBLTs That Can Start from Any Corner

Automatic adjust

PIXBLT L, XY
PIXBLTXY, L
PIXBLT xv, XY

Manual adjust

PIXBLT L, L
PIXBLT L, M, L

Pixel-Array Instructions

By default, a PIXBLT first processes the pixel with the lowest address. The
PIXBLT then processes the remaining pixels from left to right within each row,
beginning at the top row and moving toward the bottom row. The pixel at the
lower right corner of the array is processed last.

When you manually adjust the PIXBLT's starting corner, you must control the
sequence in which pixels are moved when the arrays overlap, so that destina­
tion pixels do not write over source pixels that haven't been transferred yet.

Figure 12-3. Possible Starting Corners

As Figure 12-3 shows, the PBV[CONTROL] and PBH[CONTROL] bits de­
termine the starting cornerforthe PIXBLT. PBH controls horizontal movement;
PBV controls vertical movement.

PBH=O Pixels are processed from left to right (increasing X direction).

PBH=1 Pixels are processed from right to left (decreasing X direction).

PBV=O Rows are processed from top to bottom (increasing Y direction).

PBV=1 Rows are processed from bottom to top (decreasing Y direction).

A PIXBLT processes all the pixels in one row before moving to the next row.

You supply the arrays' default starting addresses in the SADDR and DADDR
registers. The starting corner adjustment is automatic or manual, depending
on the types of addresses that define the arrays.

E;;i When one or both arrays are XY arrays, the TMS34020 automatically
calculates the actual starting address identified by PBH and PBV from the
default starting address and the array size. As the PIXBLT executes, it
automatically adjusts SADDR and DADDR to the address of the corner
selected by PBH and PBV.

12-11

'-IXI~/-/-I,rn:iV Instructions

Q When you use an alternate starting corner with the PIXBLT L,L or PIXBLT
L,M,L instructions, you must adjust the addresses in SADDR and DADDR
to the corner selected by PBH and PBV.

12.5.2 Binary (Color Expanding) PIXBLTs

12-12

A bin~ry array is a 2-dimensional array of 1-bit pixels. You can use a binary
array for storing an object's shape information separately from attributes such
as color and intensity. The shape is stored in compressed form as a bitmap of
1 s and as. The color information is added as a PIXBLT draws the shape on the
screen: the 1 s in the bitmap are expanded to the COLOR1 value, and the as
are expanded to the COLORa value.

The TMS34020 supports two instructions that allow you to expand a binary
array to a linear or an XY array. These PIXBLTs are called binary PIXBLTs or
color-expanding PIXBLTs.

Source Array

Binary
Binary

Destination
Array

Linear
XY

Binary PIXBLTs provide several benefits.

Instruction

PIXBLT B, L
PIXBLTB, XY

Q You can easily change foreground and background colors by changing the
values in the COLORa and COLOR1 registers; this doesn't change the
source array.

Q When the destination pixel size is greater than 1 bit, some applications
(such as storing fonts off-screen in a binary format) require less memory
than you would need in a nonbinary format.

Q Font loading also takes less time-binary PIXBLTs execute quickly
because there is less source data to read.

Note:

Binary PIXBLTs expand the source data before performing any pixel process­
ing, transparency, or plane masking. They do not use the plane mask when
reading the source data.

Binary PIXBLTs are especially useful in applications that use bitmapped text.
Using the XY and linear PIXBLTs to draw and store bitmapped text is cumber­
some, requiring you to store a complete copy of each font in off-screen
memory. This could consume large amounts of memory. If, for example, you
needed each font in several colors, you would need multiple copies of each font
(one copy for each color).

Graphics Instructions and Operations

Pixel-Array Instructions

Binary PIXBLTs provide a better solution for this application.Typically, text
characters appear as a foreground color drawn on top of a background color.
Each text character can be stored in a binary bitmap where 1 s represent a fore­
ground color (COLOR1) and Os represent the background color (COLORO).
This way, you don't need a full bitmap representation of each character (where
each foreground and background pixel would require several bits of storage).
Figure 12-4 shows a sample character that is stored in a binary array and then
expanded using COLORO and COLOR1.

Figure 12-4. An Example of the Color-Expand Operation

Using binary PIXBLTs, you might follow these steps to write text to the display:

Step 1: Load the text font into memory as one table of binary bitmaps in
packed, linear form. (Array pitch = DX x pixel size; for binary arrays,
the pixel size =1, so the pitch for a binary array = DX.)

Step 2: Let COLORO contain the background color and COLOR 1 contain the
foreground color.

Step 3: Use a binary PIXBLT, which will copy the character from memory and
expand it onto the display bitmap.

Note:

As each character is drawn to the screen, the source array is set to
point to the appropriate letter in the binary table. The destination
array is defined as the next free space on the screen.

Set the PSIZE register to the size of the expanded destination pixels. Binary
PIXBLTs always treat source pixels as 1-bit pixels.

The expand function is also useful in applications that generate shapes or pat­
terns dynamically. During the first stage of this process, a compressed image
is constructed in an off-screen buffer area at 1 bit per pixel. The image is built

12-13

Pixel-Array Instructions

up of geometric objects such as rectangles, circles, or polygons. Patterns can
also be added. When complete, the compressed image is color-expanded onto
the screen. This method defers the application of color until the final stage.

12.5.3 Masked PIXBlT

The masked PIXBLT (PIXBLT L,M,L) is an extension ofthe PIXBLT L,L instruc­
tion. The masked PIXBLT uses a mask array, a 1-bit-per-pixel array that deter­
mines on a pixel-by-pixel basis whether the particular destination pixel is over­
written. In effect, the mask array controls which pixels are forced to be treated
as transparent, but this occurs independently of transparency.

The TMS34020 expands the bits in the mask array, then combines them with
the plane mask and transparency detection. This combination provides bit-by­
bit control of which destination bits are protected from overwriting.

The masked PIXBLT uses two B-file registers:

[J MADDR (B10) identifies the mask array's starting address.
[J MPTCH (B11) identifies the mask array's pitch.

The masked PIXBLT is useful for manipulating nonrectangular display win­
dows; .you could use the mask array to define the shape of the window. You
can also use the masked PIXBLT for manipulating patterned objects; load the
pattern into the source array and load the object's shape into the mask.

12.5.4 VRAM Block-Mode PIXBlT (VBlT)

12-14

The TMS34020 supports a PIXBLT that takes advantage of VRAM block
writes. The VBLT instruction is similar to the PIXBLT B,L instruction because
it expands a binary source array to a linear destination array; however, there
are several important differences.

[J VBLTworks only when the entire destination array lies in VRAM that sup­
ports block writes.

[J As VBLT reads the source array, its actions depend on the value of the cur­
rent source pixel.

pixel value = 0 VBLT does nothing; it does not alter the corresponding
destination pixel. VBLT can check an entire line in a
source array; if all the values in a line are 0, VBLT
doesn't write the line.

pixel value = 1 VBLT tells the appropriate VRAM to copy the contents
of the VRAM color register into the destination.

[J VBLT uses the contents of the VRAM color register to represent 1 s in the
source array. Before executing VBLT, use the VLCOL instruction to copy
the contents of the COLOR1 register into the VRAM color register.

Graphics Instructions and Operations

12.5.5 FILLs

Instructions

Q The VRAM color registers are a minimum of 4 bits wide; thus, VBLT
supports pixel sizes of 4,8,16, and 32 bits. (VBLT doesn't support 1- and
2-bit pixels.)

Q The source and destination array addresses in SADDR and DADDR must
contain linear addresses.

Q The destination array pitch must be an integer multiple of 128 (8016) bits.

Q VBLT executes approximately twice as quickly as PIXBLT B,L. The
TMS34020 normally writes 32 bits of data during each memory write cycle.
VRAM block mode enables the TMS34020 to write 128 bits during each
memory write cycle.

Q VBLT does not support pixel processing, transparency, XV addressing,
or window checking.

Q VBLT supports plane masking if VEN[CONFIG] is set to 1. VBLT uses the
VRAM write mask to perform plane masking.

The sequence of events required to use a VBLT might be

Step 1: Load the required COLOR1 value in B9.

Step 2: Execute VLCOL, copying COLOR1 into the VRAM color registers.

Step 3: Set up the remaining implied operands (SADDR, DADDR, etc.).

Step 4: Execute VBL T.

Note:

For more information about the VRAM block-write, color-mask, and write­
mask features, refer to Sections 8.11 (VRAM Write-Mask Local-Memory
Cycles. page 8-34) and 8.12 (V RAM Block-Write Local-Memory Cycles, page
8-37).

The FILL instruction fills a destination pixel array with the value in the COLOR1
register. A FILL is similar to a PIXBLT that uses no source array. The source
pixel value used in pixel processing is the value in the COLOR1 register. The
TMS34020 supports two basic FILL instructions; the destination array can be
specified in either XV or linear format.

12-15

Pixel-Array Instructions

12.5.6 Horizontal Pattern Fill (PFILL)

The PFILL instruction is an extension of the basic FILL instruction. Instead of
filling with solid COLOR1, PFILL expands the contents of the PATTERN regis­
ter (B13). PFILL replaces each a in the pattern with a COLORa pixel; PFILL
replaces each 1 with a COLOR1 pixel. PFILL uses this pattern of pixels to fill
each horizontal line of the destination array. The pattern repeats at least once
every 32 pixels (it may repeat more frequently, if you like).

For PFILL, the destination array address in DADDR should contain an XY
address. PFILL can use window checking.

12.5.7 VRAM Block Mode-Fill (VFILL)

12-16

The VFILL instruction is an extension ofthe basic FILL instruction. VFILL takes
advantage of VRAM block-mode memory accesses. VFILL's relationship to
the FILL instruction is analogous to VBLT's relationship to the PIXBLT B,L
instruction. Note that DADDR must contain a linear address; VFILL cannot use
XY addressing or window checking.

Unlike VBLT, VFILL does not need to read data from memory. Thus, VFILL can
use back-to-back block-mode writes. VFILL executes approximately four
times faster than the corresponding FILL.

One useful application of VFILL is to use it in combination with VBLT to write
text to a screen:

Step 1: Load the background color into the COLOR1 register.

Step 2: Execute VLCOL to copy the COLOR 1 value into the VRAM color reg­
isters.

Step 3: Set up VFILL's implied operands and execute VFILL to write the
background color to the screen.

Step 4: Load the foreground color value into the COLOR1 register.

Step 5: Execute VLCOL to copy the COLOR1 value into the VRAM color reg­
isters.

Step 6: Set up VBL T's implied operands and execute VBLT to write the text
character to the screen.

Note:

For more information about the VRAM block-write, color-mask, and write­
mask features, refer to Sections 8.11 (VRAM Write-Mask Local-Memory
Cycles. page 8-34) and 8.12 (VRAM Block-Write Local-Memory Cycles, page
8-37).

Graphics Instructions and Operations

12.6 Auxiliary Graphics Instructions

In addition to the single-pixel, line, and pixel-array instructions, the TMS34020
supports several auxiliary graphics instructions. These instructions do not
draw pixels; they help you to obtain information or set up implied operands for
the graphics drawing instructions. (An exception to this is TFILL.)

Q FPIXEQ and FPIXNE (find pixel value)

These instructions search through memory, comparing pixel values to the
pixel value in the COLORa register.

• FPIXEa stops searching when it finds a pixel that equals the COLORa
value.

• FPIXNE stops searching when it finds a pixel that doesn't equal the
COLORa value.

Usually, you will want to search through a pixel array in memory. You must
supply the starting address for the block of memory that will be searched.
The instructions can search forward or backward from the initial location.

These instructions are especially useful for seed fills and data compres­
sion.

Q GETPS and EXGPS (get and exchange pixel size)

The PSIZE register identifies the current pixel size. The GETPS and
EXGPS instructions provide you with easy methods for getting and chang­
ing the PSIZE value.

• GETPS copies the contents of PSIZE into a general-purpose register.

• EXGPS exchanges the contents of the PSIZE register with the con­
tents of a general-purpose register.

Q RPIX (replicate pixel)

The RPIX instruction replicates a pixel value within a general-purpose reg­
ister. RPIX uses the current pixel size to replicate the pixel value the correct
number of times to produce a 32-bit value within the register. For example,
if the current pixel size is 4, RPIX will replicate the pixel value 8 times to
produce a 32-bit value; if the current pixel size is 16, RPIX will replicate the
pixel value twice; etc.

Q CLIP (array clip)

The TMS34020 supports a CLIP instruction that adjusts an array specified
by the DADDR register and the DYDX register to fit within a window. The
adjusted values replace the original values.

12-17

Auxiliary Graphics Instructions
",,"pm ,*"'= ____ """"""""""""""""'"""''''''''"'''''"''"'"'''''''''''"''"''"'"''''www'"'"''''www _, ,, ___ ""'""'"'

Q TFILL (trapezoidal fill)

The TFILL instruction fills a trapezoidal area by drawing a series of hori­
zontallines. Figure 12-5 shows a trapezoid that is drawn to the screen.

Figure 12-5. A Trapezoidal Fill

12-18

X1 and x2 define the length and position of a horizontal line. TFILL draws a
line, adjusts x1 and x2 by a specified amount, and increments y to point to
the next position where a line could be drawn. Executing TFILL once draws
only one line; to draw a trapezoid, you must call TFILL an appropriate num­
ber of times.

Graphics Instructions and Operations

Window Checking
~~~~~~:::::::::,~::!r""" t"W(:;$~~~tr~$m~~~~;x~zx::::::::::::::x~~~~~~..u~f.f~ 

12.7 Window Checking 

The TMS34020 allows you to define a rectangular window and to determine 
if a pixel lies within the window. It does this by comparing the pixel's XY address 
to the window's starting and ending points. 

Window checking allows you to select an area of the screen that can or cannot 
be affected by pixel writes. Window checking does not affect data writes by non­
graphics instructions; it affects only pixel writes by the following instructions: 

DRAV 

FILL XV 

PIXBLT L, XV 

Note: 

PIXTs 

PFILLXV 

PIXBLT Xv, XV 

LINE 

TFILL 

PIXBLTB, XV 

Window checking works with XY addresses only-you cannot define a win­
dow with linear addresses, nor can you compare a linear address to a window. 

The TMS34020 supports four window-checking modes, selected by the value 
in W[CONTROL]. Note that the four modes affect single-pixel, line, and pixel 
array instructions in different ways. 

Figure 12-6. Setting the Ih[[ CONTROL]) Bits to Select a Window-Checking Mode 

Window-Checking 
Mode 

Q-disables window checking 

1-enables window-hit mode 

2-enables window-miss mode 

3-enables window-clip mode 

Note: For a complete illustration and description of CONTROL, refer to Chapter 4. 

12.7.1 Defining a Window 

To define the window, you must 

[;;I Load the window's starting corner (minimum XY address) into WSTART. 
[;;I Load the window's ending corner (maximum XY address) into WEND. 

Window start and end coordinates are signed 16-bit values. 

12-19 



Window Checking 

Figure 12-7 illustrates a window in relation to display memory (a screen) and 
identifies the window's starting and ending points. 

Figure 12-7. Specifying Window Limits 

Figure 12-7 shows that a pixel with coordinates (X,Y) lies within the window 
if XstartS;XS;Xend and Ystarts;Y s;Yend. If a pixel does not meetthesecondi­
tions, it lies outside the window. 

The window is empty when Xstart > Xend or Y start > Yend (that is, the 
window contains no pixels). In this case, window checking detects all destina­
tion pixel addresses as lying outside the window. 

Note that the condition Xstart = Xend and Y start = Yend identifies a window that 
contains a single pixel. 

12.7.2 Window-Violation Interrupt 

12-20 

A window-violation interrupt is requested by setting WVP[INTPEND] to 1 ; this 
happens when either of these situations occurs: 

IJi W=1 and a pixel lies inside the window. 
IJi W=2 and an attempt is made to write to a pixel outside the window. 

The interrupt occurs if WVE[INTENB] = 1 and IE[Sl]] = 1. Even if the 
window-violation interrupt is disabled (IE=O or WVE=O), you can detect a win­
dow violation by testing the value of WVP[INTPEND]. 

When a window-violation interrupt occurs, the current graphics instruction 
aborts. The registers that change during these instructions contain the inter­
mediate values that existed at the time the violation was detected. 

Graphics Instructions and Operations 



Window Checking 
~-m~"",'1mm='====~W-;-~":;:;:2;:,.'?"~m.:-mm~ ~~~m-;:::::;:::::'*':::::'~tX~~":x~=::m'7ttWo/~ 

12.7.3 Window Checking for Single-Pixel Instructions 

Table 12-4 describes the window-checking modes for single-pixel instruc­
tions. 

Table 12-4. Window-Checking Modes for Single-Pixel Instructions 

Mode Effect 

a Ignore window-checking information 

1 Window hit. The instruction draws no pixel, but it requests an interrupt if the pixel is inside the 
window. (This is a useful pick mode for mice.) 

2 Window miss. The instruction draws a pixel only ifthe pixel lies inside the window; the instruction 
requests an interrupt if the pixel lies outside the window. 

3 Window clip. The instruction draws a pixel only if the pixel lies inside the window; however, the 
instruction requests no interrupts. 

The V[Sl] (overflow) bit identifies the pixel's relationship to the window. When 
window checking is turned off (window mode 0), the V bit is unaffected. When 
window checking is enabled (mode 1, 2, or 3), here's how V is affected: 

Q If the pixel is outside the window, V is set to 1. 
Q If the pixel is inside the window, V is cleared to O. 

12.7.4 Window Checking for Pixel-Array Instructions 

Table 12-5 describes the window-checking modes for pixel-array instructions. 

Table 12-5. Window-Checking Modes for Pixel Array Instructions 

Mode Effect 

a Ignore window-checking information 

Window hit. No pixels are drawn, but the specified destination array is clipped to lie within the 
window. If any pixel lies within the window, a window-violation interrupt is generated; the DADDR 
and DYDX registers are adjusted to be the starting address, width, and height that define the 
intersection of the destination array with the window. This window-checking function is useful 
for determining the intersection of any two rectangles on the screen. 

2 Window miss. DADDR and DYDX are compared to the window dimensions. If any pixel in the 
array lies outside the window, the instruction aborts, and a window-violation interrupt is 
requested. Unlike window mode 1, however, DADDR and DYDX are not altered as a result of 
the window comparison (DADDR will change as pixels are drawn). If the entire array lies within 
the window, then the instruction proceeds. 

3 Window clip. The instruction draws only those pixels that lie inside the window and requests no 
interrupts. No time is wasted attempting to draw pixels outside the window. DYDX is not 
changed. 

The V[Sl] (overflow) bit identifies the array's relationship to the window. 
When window checking is turned off (mode 0), V is unaffected. 

12-21 



Window Checking 
::e'~rr~~~ 

12.7.4.1 Detecting a Window Hit (Window-Checking Mode 1) 

You can use window-checking mode 1 to pick an object on the screen by 
moving the cursor to the object's position and selecting it. The actions taken 
depend on the array's location in relation to the window. 

IJi If the array lies completely outSide, 
• V is setto 1 and 
• no interrupt is requested. 

IJi If any part of the array lies inside, 
• V is cleared to 0 and 
• an interrupt is requested. 

To determine which object the cursor is pointing to, a program first sets the 
window to a small region surrounding the position of the cursor. The program 
then steps again through the same display list used to draw the current screen 
until one of the objects causes a window interrupt. The object causing the inter­
rupt should be the object that the cursor is pointing to. If no object causes an 
interrupt, the pick window can be enlarged and the process repeated until the 
object is found. If two objects cause interrupts, the size of the pick window can 
be reduced until only one object causes an interrupt. 

12.7.4.2 Detecting a Window Miss (Window-Checking Mode 2) 

Window-checking mode 2 permits a PIXBLT or FILL instruction to be aborted 
if any pixel in the destination array lies outside the window. The actions taken 
depend on the array's location in relation to the window. 

IJi If any part of the array lies outside, 
• V is set to 1, 
• the instruction aborts, and 
• an interrupt request is generated. 

IJi If the array lies completely inside, 
• V is cleared to 0, 
• no interrupt request is generated, and 
• the entire destination array is written. 

12.7.4.3 Window Clipping (Window-Checking Mode 3) 

12-22 

In this mode, the TMS34020 draws pixels that lie inside the window. The 
actions taken depend on the array's location in relation to the window. 

IJi If the array lies completely outside, 
• V is set to 1 and 
• no interrupt is requested. 

IJi If the array lies partly inside and partly outside, 
• V is set to 1, 
• no interrupt is requested, and 
• the portion of the destination array lying within the window is written. 

Graphics Instructions and Operations 



Window Checking 
~ .......................... w=rx~«m"·W'iW~~~«'$~~S:::'$~~«~:~·~r~"::::::'::::·~::::::~~x.m~-..mz~~::::::W~:$:"~~::::::~;~~;::$::-w~m»;«~«::::::w~ 

Q If the array lies completely inside, 
• V is cleared to 0, 
• no interrupt is requested, and 
• the entire destination array is written. 

When the instruction begins executing, the destination array is automatically 
preclipped to lie within the window before the first pixel is transferred. No 
execution time is lost attempting to write destination pixels that lie outside the 
window. In the case of a PIXBLT, the source array is also preclipped to fit the 
adjusted dimensions of the destination array before the transfer begins. 

12.7.4.4 Clip Instruction for Preclipping a Pixel Array 

The TMS34020 supports a CLIP instruction that adjusts the array specified by 
the DADDR register and the DYDX register to fit within a window. The adjusted 
values replace the original values. The status bits are set as follows: 

Z set to 1 if the array lies entirely outside the window, 
cleared to 0 if any part of the array lies within the window. 

V set to 1 if any part of the array lies outside the window, 
cleared to 0 if the array lies entirely within the window 

The CLIP instruction is especially useful when there is a possibility that the 
array could overflow the maximum X and/or Y dimensions of the screen; such 
an array is called an overflowing array. 

CLIP is the only instruction that can handle window overflows. If you think that 
executing a particular instruction could cause a window overflow, do not use 
a PIXBLTwith an XY destination address. Instead, use CLIP, CVXYL, then a 
PIXBLT with a linear destination address. 

12.7.5 Window Checking for the LINE Instruction 

Table 12-6 describes window-checking modes for the LINE instructions. 

Table 12-6. Window-Checking Modes for the LINE Instruction 

Mode Effect 

o Ignore window-checking information 

2 

3 

Window hit. Points on the line are calculated, but no pixels are drawn. As soon as the line moves 
inside the window, V is cleared, the line-draw aborts, and the instruction requests an interrupt. 
(V is cleared to 0 if part of the line lies inside the window; otherwise, V is set to 1.) 

Window miss. Points on the line are calculated and drawn. As soon as the line moves outside 
the window, V is set to 1, the line aborts, and the instruction requests an interrupt. (V is set to 
1 if part of the line lies outside the window; otherwise, V is cleared.) 

Window clip. All points on the line are calculated; points that lie inside the window are drawn. 
V is cleared to 0 if the last pixel on the line lies inside the window; otherwise, V is set to 1. 

12-23 



Window Checking 

12.7.5.1 Line Clipping 

The TMS34020 supports two methods for clipping a straight line to the bound­
aries of a rectangular window. 

[J In postclipping, each pixel on the line is compared to the window limits 
just before being drawn. If the pixel lies outside the window, the write is 
inhibited. W=3 window-checking mode is selected; window checking is 
automatically performed in parallel with execution of the LINE instruction, 
so no overhead is added to the time to draw a pixel. However, unless this 
form of clipping is used carefully, another type of overhead may become 
significant. For example, in a CAD environment, if only a small portion of 
a system diagram is displayed at once, a great deal of time could be spent 
performing calculations for points (or entire lines) that lie off screen. 

Q Preclipping determines, before drawing, which pixels in a line lie within 
the window. The algorithm draws only these pixels and makes no attempt 
to write pixels outside the window. A preclipped line may take less time to 
draw since no drawing calculations are performed for pixels lying outside 
the window. Preclipping is usually faster than postclipping, depending on 
the likelihood of a line lying outside the window. 

The first step in preclipping a series of lines is to identify any lines that lie either 
entirely inside or outside the window. This is accomplished by using an outcode 
technique similar to that of the Cohen-Sutherland algorithm. 

[J Lines lying entirely outside the window are trivially rejected and consume 
no more processing time. 

[J Lines lying entirely inside the window are drawn. 

[J Any remaining lines cross one or more window boundaries and require 
intersection calculations to identify portions lying within a window. 

The Cohen-Sutherland method for determining where a line lies in relation to 
a window uses outcodes that identify the location of the line's endpoints in 
relation to the window. Figure 12-8 illustrates the outcodes assigned to an 
endpoint that falls within certain window regions. 

Figure 12-8. Outcodes for Line Endpoints 

12-24 Graphics Instructions and Operations 



Window Checking 
====-=<="""",,",,,,==",,=,,,,,._t:::::"~g~rMm~,,,,,;sz.:;""'m;;;;""==;;;;;;;;;;=m..x:::z~~s~~ 

In this method, each region is assigned a 4-bit outcode. When an endpoint of 
a line falls within a particular region, it is assigned the outcode for that region. 
The outcodes determine the treatment of the lines. 

Q The outcode within the window is 00002. If the two endpoints of a line both 
have outcodes 00002, the line lies entirely within the window and is drawn. 

Q If the bitwise-AND of the outcodes of the two endpoints ;to 00002, the line 
lies entirely outside the window and is rejected. 

Q Lines that fall into neither of these categories may be partially visible within 
the window. Visible portions must be identified and drawn. 

The TMS34020's CPW (compare point to window) instruction is a single-cycle 
instruction that compares an endpoint to all sides of the window. 

Midpoint subdivision is an efficient method for finding the in-window portion 
of a line that crosses a window boundary. This method ensures that drawing 
calculations are performed only for pixels lying within the window. Figure 12-9 
illustrates the midpoint-subdivision technique. 

Figure 12-9. Using Midpoint Subdivision to Determine Which Portion of a Line Lies Within a Window 

Window 

In Figure 12-9, line AB lies partially within the window. Here's how midpoint 
subdivision finds the portion that lies within the window. 

Step 1: Determine the coordinates of the line's midpoint at C. 

Step 2: Comparing the outcodes of Band C shows that segment BC lies en­
tirely outside the window and can be trivially rejected. 

12-25 



Window Checking 

Step 3: Subdivide the part of segment AC that lies within the window. 

Step 4: Determine the coordinates of point D, which is the midpoint of AC. 
Point D lies within the window. 

Step 5: Now invoke the LINE instruction twice, once for segment DC arid 
again for segment DA. Point D is the starting point for both cases. 
Window-checking mode 2 is used while drawing both segments, but 
the window-violation interrupt is disabled. When each line crosses 
the window boundary, the TMS34020 detects this and aborts the 
LINE instruction. Thus, the LINE instruction performs drawing calcu­
lations for only those portions of DA and DCthat lie within the window. 

12.7.5.2 Using LlNIT and FLiNE for Preclipped Line Drawing 

12-26 

The TMS34020's LlNIT instruction uses the XY coordinates of a line's end­
points (Xo, Yo and X1, Y 1) to determine the operands required for the LINE and 
FLiNE instructions. LlNIT also sets up the status bits as follows. 

Status bit 
set to... When ... Notes 

N = 1 Xo = X1 

C = 1 CPW (Xo,Yo) AND CPW (X1,Y1);C 0 

Z=1 YO=Y1 

V = 1 (Xo,Yo) or (X1 ,Y 1) lies outside the window 

The line is vertical 

The line lies entirely out­
side the window 

The line is horizontal 

After you execute the LlNIT instruction, you can examine the status bits to iden­
tify the following types of lines. 

Q a line that lines entirely outside a window (C=1) 

Q a horizontal line (Z = 1) 

Q a vertical line (N = 1) 

Q a point (Z=1 and N=1) 

Q a line that lies partially within a window (you can then use the midpoint 
subdivision and the LINE instruction) 

Q a line that lies entirely inside a window (use FLINE to draw the line) 

Graphics Instructions and Operations 





Pixel Processing 

Table 12-7. Pixel-Processing Options (Continued) 

Code Operation 

10000 Source + Destination -7 Destination 
10001 Source ADDS Destination -7 Destination 

10010 Destination - Source -7 Destination 
10011 Source SUBS Destination -7 Destination 

Code Operation 

10010 MAX(Source, Destination) -7 Destination 

10101 MIN(Source, Destination) -7 Destination 
10110-11111 Reserved 

Pixel-processing options 100002 and 100102 correspond to standard 2s com­
plement addition and subtraction. A result that overflows the specified pixel 
size causes the pixel value to wrap around within its 2-, 4-, 8-, 16-, or 32-bit 
range. Carry bits, however, are prevented from propagating to adjacent pixels. 

12.8.1 Boolean Processing Examples 

Figure 12-11 illustrates the effects of five commonly used Boolean operations 
when applied to 1-bit pixels. Black regions contain Os, and white regions con­
tain 1s. Figure 12-11 (a) and (b) show the original source and destination 
arrays. The source operand in (a) is the letter A. The destination in (b) is a calli­
graphic-style X. 

Figure 12-11. Examples of Operations on Single-Bit Pixels 

12-28 Graphics Instructions and Operations 



Pixel Processing 
:::~.wf.f.::::~::.-:::~...:::::::::-<.;:;-.;'«-:;:-,-::::I:(';;::::::::~:;:::;;;:;;;:;:::::::::::::-';;::::::~~::::m7..::;:~;:::X~';:::::::::::::~~::::~f.~::::::::::::~::~::::::--,.:;.:;z.~:;::::~~·7;:::::;-'::;~~~~~::::~:l';::~:::;:;~::-;::~::m::::::::::::::::::::::::::::::::::~~::7..x::~:;::::::::::::::::::~~::::::::::::7.':;:;;;<";;:;:::::::::;::::::::,..x::::::::::::::~::::::::::::::~:::::::::;::::::::::::::::::::~::;::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.:;.:;.::::::::::~.;;::: 

Q Replace destination with source. A simple replacement operation over­
writes the pixels of the destination array with those of the source. 
Figure 12-11 (c) shows the letter A written overthe center portion of a larg­
er X using the replace operation. The rectangular region around the letter 
A obscures a portion of the X lying outside the A pattern. Other operations 
allow only those pixels corresponding to the A pattern within the rectangle 
to be replaced, permitting the background pattern to show through. These 
are the logical-OR and logical-AND-NOT (NOT source AND destination) 
operations. The replace-with-transparency operation performs similarly in 
color systems. 

Q Logical-OR of source with destination. Figure 12-11 (d) illustrates the 
use of the logical-OR operation during a PIXBLT. For a 1-bit-per-pixel 
display, the OR function leaves the destination pixels unaltered in locations 
corresponding to Os in the source pixel array. Destination pixels in posi­
tions corresponding to 1 s in the source are forced to 1 s. 

Q Logical-AND of NOT-source with destination. Logically ANDing the 
negated source with the destination is complementary to the logical-OR 
operation. Destination pixels corresponding to Os in the source array 
remain unaltered, but those corresponding to 1 s in the source are forced 
to Os. Figure 12-11 (e) shows an example ofthe AND-NOT PIXBLT opera­
tion (notice the negative image of the letter A). For comparison, 
Figure 12-11 (f) shows the result of simply ANDing the source and desti­
nation. 

Q Exclusive-OR of source with destination. The XOR operation is useful 
for making patterns stand out on a screen in instances where it is not 
known in advance whether the background will be 1 s or Os. At every point 
where the source array contains a pixel value of 1 , the corresponding pixel 
of the destination array is flipped; that is, a 1 is converted to a 0, and vice 
versa. XOR is a reversible operation; by XORing the same source to the 
same destination twice, the original destination is restored. These proper­
ties make the XOR operation useful for placing and removing temporary 
objects such as cursors, and in rubberbanding lines. As Figure 12-11 (g) 
shows, however, the object may be difficult to see if both the source and 
destination arrays contain intricate shapes. 

12-29 



Pixel IJYI1,"""'c,cmrr 

12.8.2 Multiple-Bit Pixel Operations 

The Boolean operations described in Section 12.8.1 are sufficient for single-bit 
pixel operations. However, they may be inappropriate for multiple-bit pixel 
operations, especially when you are using color. For example, the result of a 
bitwise-OR operation on a black-and-white (1-bit-per-pixel) display is easily 
predicted: ORing black and white yields white. However, the result of this oper­
ation is less intuitive when applied to multiple-bit pixels. For example, in a 
population-density map, colors may be used to represent numeric values. If 
one color, such as red, represents one level of population density, and blue rep­
resents another, what happens when the two colors are bitwise-ORed? When 
pixels represent numeric values, numerical operations such as addition and 
subtraction yield more useful results. 

Boolean operations are usually inadequate for merging antialiased objects into 
a single bitmapped image. Older graphics systems that are limited to Boolean 
operations on pixels are incapable of supporting many practical applications 
on multiple-bit-per-pixel images. For instance, where two antialiased lines 
cross, AND and OR operations yield chaotic pixel intensities that defeat the 
purpose of the antialiasing. However, merging the two lines by means of the 
TMS34020's MAX operation (for white on black) or MIN operation (for black 
on white) yields a smooth and aesthetically pleasing image. 

12.8.2.1 Examples of Boolean and Arithmetic Operations 

12-30 

Figure 12-12 illustrates Boolean and arithmetic operations on multiple-bit 
pixels. 

Q Figure 12-12 (a) illustrates the source array, which contains a red letter 
A. The red pixels have the value 8 (10002) and the black background pixels 
have the value 0 (00002)' 

Q Figure 12-12 (b) shows the destination array, which contains a yellow X 
The yellow pixels have the value 12 (11 002) and the pixels in the blue back" 
ground pixels have the value 2 (00102)' 

Boolean operations can be applied to multiple-bit pixels by combining the 
corresponding bits of each pair of source and destination pixels on a bit-by-bit 
basis according to the specified Boolean operation. Figure 12-12 (c) through 
(g) shows the effects of combining the source and destination arrays using the 
replace, OR, AND-NOT, AND, and XOR PIXBLT operations. Compare these 
to Figure 12-11 (page 12-28). 

Arithmetic operations treat 2-,4-,8-, 16-, and 32-bit pixels as unsigned binary 
numbers. An n-bit pixel represents a positive integer in the range 0 to 2n-l (all 
1 s). Examples of arithmetic operations on source and destination pixels are 
shown in Figure 12-12 (i) through (n). 

Graphics Instructions and Operations 



Figure 12-12. Examples of Boolean and Arithmetic Operations 

(a)Source (b)Destination 

(c)Source replaces destination (d)Source OR destination 

(i)Add (j)Subtract 

(I)Subtract with saturation (m)MAX 

Pixel Processing 

(e)Source AND destination 

(k)Add with saturation 

12-31 



Pixel Processing 

12-32 

Q Figure 12-12 (i) and (j): Simple addition and subtraction. m shows the 
result of adding the source and destination arrays, using simple binary 2s 
complement addition. When the sum of the two pixels exceeds the maxi­
mum pixel value, the result overflows. Figure 12-12 (j) shows the result 
of subtracting the source array from the destination array. Underflow oc­
curs for those pixels whose calculated difference is negative. 

Simple addition and subtraction are complementary operations. They are 
reversible operations In the same sense as the XOR operation: by adding a 
source pixel to a destination pixel, and then subtracting the same source 
pixel, the original destination pixel is recovered. 

Q Figure 12-12 (k) and (/): Add and subtract with saturate. The arithme­
tic add and subtract operations are binary 2s complement operations that 
allow overflow and underflow. An add-with-saturate operation stops the 
result at the maximum unsigned value without allowing the result to over­
flow. For example, with 4 bits per pixel, adding 00102 to 11102 produces 
11112. Similarly, a subtract-with-saturate operation stops the result at 0 
without allowing it to underflow. 

Figure 12-12 (k) and (I) illustrates addition with saturation and subtraction 
with saturation. In these examples, the pixel size is 4 bits. By dedicating a 
different color to each value, the effects of each PIXBLT operation become 
more visible. 

An alternate method of encoding 4-bit pixels uses the 16 values 0 to 15 to 
represent increasing intensities of a single color component: red, green, or 
blue. The addition and subtraction operations now have obvious meaning: 
increasing or decreasing the intensity by specified amounts. At 12 bits per 
pixel, 4 bits of intensity can be dedicated to each of the three color compo­
nents. Arithmetic operations are then performed on the corresponding 
components of each pair of source and destination pixels. 

Figure 12-13 (page 12-33) presents examples in which the pixel values 
represent intensities of a gray from black to white. 

Q Figure 12-12 (m): Maximum. MAX compares two pixel values and 
replaces the destination pixel with the larger value. I A some respects, MAX 
is the arithmetic equivalent of the Boolean OR function (compare 
Figure 12-12 (m) with Figure 12-11 (b)). The use of MAX in gray-scale 
and color displays is similar to that of OR in simple black and white. 

If the MSBs in each pixel are assigned to represent object priority (whether 
an object appears in front of or behind another object), the MAX operation 
can be used to replace only those pixels of the destination array whose 
priorities are lower than those of the corresponding pixels in the source 
array. This allows an object to be drawn to the screen so that it appears 
either in front of or behind other objects previously drawn. In Figure 12-12 
(m), the red A has a numerical value that is greater than that of the blue 
background, but less than that of the X. 

Graphics Instructions and Operations 



Pixel Processing 

The MAX function is also useful for smoothly combining two antialiased 
objects that overlap. 

Q Figure 12-12 (n): Minimum. Figure 12-12 (n) illustrates the results of the 
MIN operation on the source and destination arrays. MIN compares two 
pixel values and replaces the destination pixel with the smaller value. MIN 
is similar to the Boolean AND function: MIN can be used with priority­
encoded pixel values, similar to MAX, but the effect is reversed. In 
Figure 12-12 (n), the priorities of the two objects are reversed from that 
of the MAX example shown in Figure 12-12 (m). The MIN operation also 
has uses similar to those of MAX in smoothly combining antialiased ob­
jects that overlap. 

12.8.2.2 Operations on Pixel Intensity 

Figure 12-13 illustrates the visual effects of various PIXBlT operations on two 
intersecting disks. In these examples, each pixel is a 4-bit value representing 
an intensity from 0 (black) to 15 (white). Before the PIXBlT operation, only a 
single disk resides on the screen, as Figure 12-13 (a) shows. The intensity of 
the disk is greatest at the center (where the value is 12), and gradually falls off 
as the distance from the center increases. Figure 12-13 (b) through (f) shows 
the effects of combining a second, identical disk with the first. Figure 12-13 (b) 
through (e) is produced using arithmetic operations; (f) is the result of a logical­
OR of the source and destination. 

Figure 12-13. Examples of Operations on Pixel Intensity 

(a)Original disk 

• 
(d)Add with saturate 

(b) Replace with (c)Add 

(e)MAX (f)OR 

The gradual change in intensity at the edge of the disk in Figure 12-13 (a) is 
similar to the result produced by antialiasing techniques that reduce jagged­
edge effects. A text font might be stored in antialiased form, for example, to give 
the text a smoother appearance. When two characters from the font table are 

12-33 



Pixel Processing 
""" 

12-34 

PIXBLTed to adjacent positions on the screen, they may overlap slightly. The 
particular arithmetic or Boolean operation selected forthe PIXBLT determines 
the way in which the antialiased edges of the characters are combined within 
regions of overlap. 

[J Figure 12-13 (b): Replace with transparency on result. A second disk 
is PIXBLTed into a position near the first disk, using replace-with-transpa­
rencyon result=O. Those pixels of the first disk that lie within the rectangu­
lar region containing the second disk, but are not part of the second disk, 
remain intact. Visually, the second disk (at the right) appears to lie in front 
of the original disk (at the left). However, assuming that the gradual change 
in intensity atthe perimeter of the disks is done forthe purpose of antialias­
ing, the sharp edge that results where the second disk covers the first 
defeats this purpose. In other applications, this sharp edge may be desir­
able; for example, it might be used to make a text character or a cursor 
stand out from the background. The replace-with-transparency-on-result 
operation also supports object priority by writing objects to the screen in 
ascending order of priority. 

[J Figure 12-13 (0): Add with overflow and subtract with underflow. A 
second disk is PIXBLTed into an area overlapping the first disk, using an 
add-with-overflow operation. In this example, when 1 is added to an inten­
sityof 15, the sum is truncated to 4 bits to produce the result o. The effect 
of arithmetic overflow is visible at the intersection of the two disks as 
discontinuities in intensity. 

This effect is useful for making objects stand out against a cluttered back­
ground. Add with overflow has an additional benefit: the object can be 
removed by subtracting (with underflow) the object image from the screen. 

[J Figure 12-13 (d): Add and subtract with saturation. The original disk 
is on the left. A second disk is PIXBLTed into a region overlapping the origi­
nal disk, using an add-with-saturate operation. Whenever the sum of two 
pixels exceeds the maximum intensity value, which is 15 for this example, 
the sum is replaced with 15. The bright region that occurs where the two 
disks intersect is produced when the corresponding pixels of the two disks 
are added in this manner. Subtract-with-saturate is the complementary 
operation; when the difference of the two pixel values is negative, the sum 
is replaced by the minimum intensity value, o. 
The add-with-saturate operation shown in Figure 12-13 (d) approximates 
the effect of two light beams striking the same surface; the surface is 
brightest in the area in which the two beams overlap. 

These operations can be used to achieve an effect similar to that of an air­
brush in painting. Consider a display system that represents each pixel as 
12 bits and dedicates 4 bits each to represent the intensities of the three 
color components, red, green, and blue. This method permits the intensity 
of each component to be directly manipulated. With each pass of the 

Graphics Instructions and Operations 



Pixel Processing 
'''''''''' _____ ":'xs_~Sc"~~~~~~X:: m·":';;:;:rx:zw#··~·mw::»'*"";.:mw;::;:;:·::-o:::~~m~.::~~.:.:::~::;:~:::..~~«.xx:;:'~:;::::::;:;:;::':;:::~~~~:f.:~::~::-.:::::;:;:;:::::;.<:::::~o:::::::::::::~::::::m:f.:::~::::;;:::::;::::~::~:'-:::::.-::::o:::~~:;:::::x:m~~~:f.:~~~ 

simulated airbrush over the same area of the screen, the color changes 
gradually toward the color of the paint in the airbrush. For example, 
assume that the paint is yellow (a mixture of red and green). Each time a 
pixel is touched by the airbrush, the intensity of the red and green compo­
nents is increased by 1, and the intensity of the blue component is 
decreased by 1. With each sweep of the airbrush, the affected area of the 
screen turns more yellow until the red and green components reach the 
maximum intensity value (and are not allowed to overflow), and the blue 
component reaches 0 (and is not allowed to underflow). 

£;;I Figure 12-13 (e): MAX and MIN operations. The original disk is on the 
left. A second disk is PIXBLTed into the rectangular region to its right using 
the MAX operation. In the region in which the disks overlap, each pair of 
corresponding pixels from the two disks is compared and the greater value 
is selected. This produces a relatively smooth blending of the two disks. 
Unlike add with saturate, the MAX function does not generate a hot spot 
where two objects intersect. 

The visual effect achieved using the MAX operation is desirable in an appli­
cation, for instance, in which white antialiased lines are constructed on top 
of each other over a black background. MAX also smooths out places in 
which the lines are overlapped by antialiased text. MAX is successful in 
maintaining two visually distinct antialiased objects, while the add-with­
saturate tends to run them together. 

MIN, which is complementary to MAX, can be used similarly to smooth the 
appearance of intersecting black antialiased lines and text on a white back­
ground. 

The MAX and MIN operations are particularly useful in color applications in 
which the number of bits per color gun is small (8 bits or less). Other opera­
tors could also be used to smooth the transition between the two overlap­
ping antialiased objects in Figure 12-13 (e), but any additional accuracy 
attained by using a more complex smoothing function would probably be 
lost in truncating the result to the resolution of the integer used to represent 
the intensity at each point. 

12-35 



Transparency 
~~l1'.m=_"''''';;;;===::z:o;;::::::_w"""="_",,,.;:;;;;_;;.%~~= ............... ===~~::.~~,;m:w::. ~M"'A~ .... ~~::.::::mm:::;~;;w..m:::::::;:;.~=*,';;~~;S~~~::""~f.;;~xx:;~;m~~ 

12.9 Transparency 

Transparency is a graphics operation that allows you to decide which pixels 
are visible. If you want to draw an object on a background or on top of another 
object, you can make pixels in the current object transparent so that the back­
ground or object beneath shows through. In some cases, several pixels in a 
rectangular pixel array that contains an object may not be part of the object 
itself; you can use transparency to hide the pixels that aren't part of the 
object.This is useful for ensuring that only the object, and not the rectangle 
surrounding it, is drawn on the screen. 

The CONTROL register controls transparency: 

01 T[CONTROL] (bit 5) enables transparency. 

Q TM[CONTROL] (bits 0-2) determines which transparency mode is 
selected when transparency is enabled. 

Figure 12-14. Enabling Transparency and Selecting a Transparency Mode 

(a) Setting the T bit to enable or disable transparency 

(b) Setting the TM bits to select the transparency mode 

Disables transparency 

Enables transparency 

Transparency Mode 
Transparency on result = 0 

Transparency on source = COLORO 

Transparency on destination = COLORO 

o 0 Reserved 

o 
o 

Note: For a complete illustration and description of CONTROL, refer to Chapter 4. 

12-36 Graphics Instructions and Operations 



Transparency 

Transparency works for any graphics instruction that writes pixels; transparen­
cy does not affect nonpixel data writes. 

Example 12-1 through Example 12-3 illustrate PIXT *Rs, *Rd instructions 
that use the three transparency modes. In these PIXT examples, both the 
source and destination are read, regardless of whether or not the source is 
transparent. Note that PIXBLTs operate similarly, but they read in a long word 
full of pixels and then test for transparency; if transparency-on-source=COL­
ORO is enabled and all the pixels read are transparent, then no destination read 
(or write) occurs. 

Example 12-1. Transparency on Result = 0 for PIXT *Rs, *Rd 

RM = O? If so, don't alter D; 
else, replace D with RM. 

12-37 



Transparency 
nm-:;:;::::-;:.~::.~::.,;~'X.::::-~-::::~.::::::::::::::::::xss::m,':.,;:::;:=-m~;:::::::;:::;.:;:;::::::::x:..~-m:-;::;,¢»~~:::::::::~h';~:.::::'q'h'.:::~::::~:::;-.:::::::XX!~~::~x::::::::::.'::x::.:::;!o~;:;::m_':.~~ww::::::~~::»,;:;m::x~:=!~::-;~~':.';:;:''9,w;:,w;:;m~$=*w;:;::m;::--''::~~»;~:'';:'»»'''::$!-'!.'X::9»,'!"/,W;:;W~~~'! 

Example 12-2. Transparency on Source = COLORO for PIXT "Rs, "Rd 

Example 12-3. Transparency on Destination = COLORO for PIXT "Rs, "Rd 

12-38 Graphics Instructions and Operations 



Plane Masking 
;.m-~~~..s:;xmx::%m-Q~/..:mm:::;:;.-..::m::%mz::~w~w..x~~zmrd..::-;:::y..w..::rm~M~~::::r..::X';::::::r..x;;:;::::::~m:;-;;;o;~~~::.::-.:x::::x::~::::X';::~m~~~~~~:;-;~~::::~~,~::::::'''::~X~~~::::~::::::;;::~~~~$$$~~~~:;~~::~~~.$~~;;.:;r"::~~~$;;o;x::::rh~mW"::~;;O;~~~~W·::::~~~::::~~~:;::~$:;;:~:~:~~~~::~; 

12.10 Plane Masking 
The plane mask protects certain bits within pixels; graphics instructions do not 
modify mask-protected pixels. 

The PMASK register contains the plane-mask value. Each bit in the plane 
mask corresponds to a bit position in a pixel. The 1 s in the mask identify 
protected bits; the Os identify modifiable bits. Pixel bits that are protected by 
the plane mask are always read as Os during read cycles and are protected 
from alteration during write cycles. No status or control bit enables or disables 
plane masking, but you can effectively disable it by loading PMASK with all Os 
(this is the default following reset). 

The width of a quantity in the plane mask is the same as the pixel size. To main­
tain a consistent effect on all the pixels within a destination region, regardless 
of their position within the destination words, you should replicate the mask for 
a single pixel to fill the entire 32-bit PMASK register. For example, if the pixel 
size is 4 bits, replicate the 4-bit mask 8 times. These 8 copies of the mask are 
applied to the 8 pixels in a long word written to or read from memory. Similarly, 
replicate the value 16 times for a 2-bit pixel, twice for a 16-bit pixel, etc. 

Figure 12-15. Replicating the Plane-Mask Value Through PMASK 

31-24 
8-bit 
value 

23-16 
8-bit 
value 

15-8 
8-bit 
value 

7-0 
8-bit 
value 

Replicate a 4-bit pixel 8 times 

Replicate an 8-bit pixel 4 times 

You can use the RPIX instruction to replicate the plane-mask value in a gener­
al-purpose register and then move the value into PMASK. 

The plane mask allows you to manipulate the bits within pixels as though the 
display memory were organized into bit planes (or color planes) that can be 
selectively protected from modification. The number of planes equals the num­
ber of bits per pixel. Consider an example in which the pixel size is 4 bits. The 
bits within each pixel are numbered 0-3 and belong to planes 0-3, respec­
tively. All the bits numbered 0 in all the pixels form plane 0, all the bits numbered 
1 in all the pixels form plane 1 , and so on. The plane mask allows you to manip­
ulate one or more planes independently of the others. If a display memory con­
tains four planes, for example, you can dedicate three of the planes to 8-color 
graphics and use the fourth plane to overlay text in a single color. You can set 
the plane mask so that the text plane can be modified without affecting the 
graphics planes, and vice versa. 

The plane mask affects only pixel accesses performed during execution of the 
PIXBLT, FILL, PIXT, DRAV, and LINE instructions. Data accesses by non­
graphics instructions are not affected. 

12-39 



Plane Masking 

Instructions use the plane mask differently during reads and writes: 

Q Pixel read. The Os in PMASK correspond to unprotected bits in the source 
pixel that are seen by the TMS34020 to contain the actual values read from 
memory. The 1 sin PMASK correspond to protected bits in the source pixel 
that are seen as Os by the TMS34020, regardless of the values read from 
memory. 

Q Pixel write. The Os in PMASK specify those bits in the destination pixel 
in memory that may be altered. The 1 s in PMASK specify protected bits 
in the destination pixel that cannot be altered. 

When a pixel is transferred from a source to a destination location, plane mask­
ing is applied to the values read from the source and destination locations 
(before pixel processing). As the operands are read from memory, the bits 
protected by the plane mask are replaced with Os before any pixel-processing 
operation is performed. Transparency detection can be applied to the masked 
data if the appropriate transparency mode is enabled. When the source and 
destination pixels have been combined to form the result, the plane mask is 
applied once more. If transparency-on-result=O is enabled, it is applied to this 
result. 

Source pixels that originate from registers are not affected by the plane mask 
and undergo pixel processing in unmodified form. Instructions that obtain their 
source pixels from registers include PIXT Rs, *Rd and PIXT Rs, *Rd.XY. 
Figure 12-16 shows how the TMS34020 applies the plane mask to pixel data 
during the read cycle of a PIXT *Rs.xY, Rd instruction. 

Figure 12-16. Read Cycle with Plane Masking, Transparency on Result = a 
(a) Original data in memory (4 pixels) 

12-40 

(b) Plane mask (PMASK) 

11 1 0 0 1 0 0 011 1 0 0 1 0 0 0 I 1 1 0 0 1 0 0 011 1 0 0 1 0 0 0 I 

(c) Data read into TMS34020 register 

I 0 000 0 ()~ol ~OO 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 0 A A 0 A A AI 
Notes: 1) This example assumes 8 bits per pixel. 

2) The pixel moved into the TMS34020 register is right-justified. All register 
bits to the left of the pixel are zero-filled. 

Graphics Instructions and Operations 



Plane Masking 

(a) shows a 32-bit word that contains four a-bit pixels. 

(b) shows the addressed pixel ANDed with the inverse of the plane mask. 

(c) contains the result, and shows that the bits within the data word that 
correspond to 1 s in the mask are cleared to Os. 

After plane masking, the designated pixel is loaded into the a LSBs of the 32-bit 
destination register, and the 24 MSBs of the register are filled with Os. 

Figure 12-17 shows the transfer of 4 pixels during the course of a PIXBLT op­
eration with transparency-on-result=O, pixel size = a bits, and the pixel-proces­
sing replace option. The inverse of PMASK is ANDed with the source data. 
Because the replace option is used, transparency is applied to the entire result­
ing pixel. In other words, the result controls the write in the manner described 
in the previous discussion of transparency. Since the 3 LSBs of the source pixel 
in bits 8-15 are Os, and the rest of the pixel is masked oft, the entire source 
pixel is interpreted as transparent. The memory interface logic generates an 
internal mask to govern which bits are modified during a write cycle. This mask 
contains Os in the bits corresponding to the transparent pixel. 

Figure 12-17. Write Cycle with Transparency on Result=O and Plane Masking 

(a) Original destination data in memory (4 pixels) 

$124231615876 
t A A A A A A A AlB B B B B B B BIA A A A A A A AI B B B B B B B B I 

(b) Source data in memory (to be moved) 

(c) Plane mask (PMASK register) 

j~~~~~~~~r~~~~~~~dj 1 1 1 1 1 a a a 11 1 1 1 1 . a a a It 

(d) Mask source data (SRC • PMASK) 

(e) Transparency mask based on the source data (see note 2) 

r 0000 oo~~f;111 111110000 00001111111111 

12-41 



Plane Masking 
~~ms~~~~m-..mmx~~:;:;Z~~7hw.:::?"h7/,!"q~~~~x~mm::::m::Wh%X~,q.;~m::$XW~~m:J'".Qh~~ 

Figure 12-17. Write Cycle with Transparency on Result=O and Plane Masking (Continued) 

(f) Combined mask (pMASK • transparency mask) 

12-42 

•••· •• ··I···········~······~······~······~···········~······~·····~······?f···~······~······~······~···········~······;·····;·····.··~······i·······?·····~·····~ ...... ~ ..... 0 0 o.?··j·····~······~····~· 0 ····~·····1·····;········;·····i· ••••••• 

(g) Resulting memory data after write cycle 
-...,..-;-----,--~ 

((combined mask. source data) + (combined mask. destination data)) 

Notes: 1) This example assumes 8 bits per pixel. 

(a) 
(b) 

(c) 

(d) 

(g) 

2) Because this example uses the pixel-processing replace option, the 
source data is effectively the destination data. 

shows the original data at the destination location. 

shows the source data. 

shows the source data is ANDed with the inverse of the plane mask. 

shows the intermediate result produced by (c). This result is used to 
generate the transparency mask in (e), which is ANDed with the 
inverse of the plane mask in (c) to produce the composite mask shown 
in (f). 

shows the result, produced by replacing with the source only those bits 
of the destination corresponding to 1 s in the composite mask in (f). 

Graphics Instructions and Operations 



Setting Up the Implied Operands for Graphics Instructions 
q' ............................ 'i>SU~ qm =m:t ~ ~t rr ~r'l 

12.11 Setting Up the Implied Operands for Graphics Instructions 

The TMS34020 graphics instructions use the 8-file registers and several of the 
I/O registers as implied operands. Just as the TMS34020 obtains information 
from regular instruction operands, the TMS34020 obtains information from 
these registers that it needs in order to properly execute the instruction. For 
example, when you use the ADD instruction, the TMS34020 expects you to 
supply some information: the values you would like to add. For the ADD 
instruction, you supply this information as operands to ADD in the same sou rce 
statement. Some graphics instructions, such as the PIXT instructions, use 
operands in this same manner. However, they also use implied operands. 
Some of the information that the TMS34020 needs is not supplied in the source 
statement with the instruction; the TMS34020 expects to find this information 
in the appropriate implied-operand registers. You must set up these implied 
operands before you can use a graphics instruction. 

The code segment in Example 12-4 shows how you might set up the implied 
operands for a FILL XY instruction. Figure 12-18 illustrates the area and di­
mensions of the fill. 

Figure 12-18. Filled Area for Example 12-4 

5,4 

t 
5 

! 

Note: 

Chapter 4 contains complete descriptions of all the 8-file and I/O registers. 

12-43 



Setting Up the Implied Operands for Graphics Instructions 

. Example 12-4. Setting Up Implied Operands for a FILL Instruction 

12-44 

Note: The purpose of this illustration is clarity, not efficiency. 

Some of these registers may contain values that you'll use for more than one 
graphics instruction; if this is the case, it isn't necessary to explicitly load the 
register each time you use a graphics instruction. For example, if you always 
use the same pixel size, you need to load the PSIZE register only once. Some 
instructions, however, use the contents of certain registers as scratch pads and 
alter the register contents. In this case, you cannot assume that the register 
will contain the value that you originally supplied. 

No single graphics instruction uses all of the implied operands. Table 12-8 
identifies which implied operands each graphics instruction uses. Table 12-8 
(a) lists the implied operands that are B-file registers; Table 12-8 (b) lists the 
implied operands that are I/O registers. A -V symbol indicates that an instruction 
uses the register as an implied operand. 

Graphics Instructions and Operations 



Table 12-8. Summary of Implied Operands Used by the Graphics Instructions 

(a) a-file registers 

6' (;j' ~ iii" a;- S 6' ....... M ,.... 
!!!. !!!. ~ !!!. 

,.... 
!!!. !!!. !!!. iD r::- !!!. !!!. Ii: !!!. !!!. 0 ,.... 

a: J: a: J: tii a: a: a: 
c 

~ 
c 

~ If j! c x 0 0 c 
c c z C ..J ..J C 
CI: c.. CI: II. en w > 0 0 CI: 
en en c c 0 3: 3: c (.) (.) :E 

BLMOVE .y .y .y 
CLIP .y .y .y .y 
CVDXYL .y 
CVMXYL 

CVSXYL .y 
CVXYL .y .y 
DRAV .y .y .y .y .y 
FILLL .y .y .y 
FILLXY .y .y .y .y .y .y 
FLiNE .y .y .y .y .y .y 
FPIXEQ .y .y 
FPIXNE .y .y 
LINE .y .y .y .y .y .y .y .y 
PFILL .y .y .y .y .y .y 
PIXBLTB, L .y .y .y .y .y .y .y .y 
PIXBLTB, XY .y .y .y .y .y .y .y .y .y .y 
PIXBLT L, L .y .y .y .y .y .y 
PIXBLTL, XY .y .y .y .y .y .y .y .y 
PIXBLTXY, L .y .y .y .y .y .y 
PIXBLT XV, XY .y .y .y .y .y .y .y .y 
PIXBLT L, M, L .y .y .y .y .y .y .y 
PIXT Rs, * Rd.XV .y .y .y .y 
PIXT *Rs.XV, Rd .y .y 
PIXT *Rs.XV, *Rd.XV .y .y .y 
SETCDP .y 
SETCMP 

SETCSP .y 
TFILL .y .y .y .y .y .y :..j .y .y .y 
VBLT .y .y .y .y .y 
VFILL .y .y .y .y 
VLCQL .y 

....... M-
6' ,.... ,.... 

!!!. ~ ,.... ,.... 
~ !!!. 

....... N' ,.... ,.... ,.... ,.... z 
~ I- J: !!!. ~ a: z 

~ 
w c.. 

::l ,.... C\I 

~ :E 
0 (.) (.) w 
(.) :E z Z 0.: I-

.y 

.y .y .y .y 
.y 
.y 

.y .y .y .y 
.y 

.y 

.y 

.y 

12-45 



Setting Up the Implied Operands for Graphics Instructions 
1rW;$~~mwm m ..... s:m!JsW<:im"in1f • 

Table 12-8. Summary of Implied Operands Used by the Graphics Instructions (continued) 
(b) 110 registers 

CONTROL 

" a. ]! " C!'E' a. a. - Gi " 
:I: == u::.a Q ::!! en ~ 

a. Gi .a .a > > > ~ w 
== ;;: ::c > zz z z Z N 0 .a ::!! ;;: OW 0 8 0 == (j) a. ~ 

III III 
o~ a. t- t- Il. a. 0 0 a. a. 

CVDXYL ..J ..J 
CVMXYL ..J ..J 
CVSXYL ..J ..J 
CVXYL ..J ..J 
DRAV ..J ..J ..J ..J ..J ..J ..J 
FILL L ..J ..J ..J ..J ..J 
FILLXY ..J ..J ..J ..J ..J ..J ..J 
FLiNE ..J ..J ..J ..J ..J ..J 
FPIXEQ ..J ..J 
FPIXNE ..J ..J 
LINE ..J ..J ..J 
PIXBLTB, L ..J ..J ..J ..J ..J 
PIXBLTB, XY ..J ..J ..J ..J ..J ..J ..J 
PIXBLTL, L ..J ..J ..J ..J ..J ..J ..J 
PIXBLT L, XY ..J ..J ..J ..J ..J ..J ..J ..J ..J ..J 
PIXBLTXY, L ..J ..J ..J ..J ..J ..J ..J ..J ..J 
PIXBLT XV, XY ..J ..J ..J ..J ..J ..J ..J ..J ..J ..J 
PIXBLT L, M, L ..J ..J ..J ..J ..J ..J ..J 
PIXT Rs, *Rd ..J ..J ..J ..J ..J 
PIXT *Rs, *Rd ..J ..J ..J ..J 
PIXT Rs, *Rd.XY ..J ..J ..J ..J ..J ..J ..J ..J 
PIXT "'Rs.XY, Rd ..J 
PIXT*Rs.XY, *Rd.XY ..J ..J ..J 
SETCDP ..J 
SETCMP ..J 
SETCSP ..J 
TFILL ..J ..J ..J ..J ..J ..J ..J ..J 
VBLT ..J ..J ..J 
VFILL ..J ..J ..J ..J 

12-46 Graphics Instructions and Operations 



:nm,'ClrrI",., an XY Address to a Linear Address 

12.12 Converting an XV Address to a Linear Address. 

The TMS34020 allows you to access a pixel by using its linear address or by 
using an XY address. It's usually easier and more natural to use XY addressing 
because screens are typically configured on an XY grid. 

Figure 12-19 (a) shows how an XY address is represented as a 32-bit quantity. 
The 16 MSBs form the Y coordinate and the16 LSBs form the X coordinate. 
Both coordinates are signed. Figure 12-19 (b) illustrates the relationship 
between an XY address and the position of a pixel in an array. 

Figure 12-19. How an XY Address Is Represented 

.(~)Howa~Xy~&dr~§~ Is represeQteqas 

.ii//a32;bitqiJantity • · •. ··i 

1f(~~B) 
I. Y Address . 1 X Address 

12.12.1 Manual XV-te-Linear Conversion 

Although the TMS34020 allows you to specify XY addresses, it usually con­
verts them to linear addresses before it uses them. When it does this, it uses 
the following equation. 

linear bit address = (Yx array pitch) + (Xx pixel size) + offset 

Note: 

All legal pixel sizes (1, 2, 4, 8, 16, and 32) are powers of 2. Thus, the 
X x pixel size portion of the XY -to-linear conversion equation can be reduced 
to a shift. 

In some cases, you may find it necessary to manually convert an XY address 
to a linear address. You can convert an XY address to a linear address by using 
one of these instructions. 

Q CVSXYL converts the address using the conversion value in CONVSP. 
Q CVDXYL converts the address using the conversion value in CONVDP. 
Q CVMXYL converts the address using the conversion value in CONVMP. 

12-47 



Converting an XY Address to a Linear Address 

In order to use any of these instructions, you must 

[J Load the XY address into a general-purpose register, and 

[J Load a conversion value into the appropriate CONVxP register; this 
conversion value is based on an array pitch. There are three CONVxP 
(conversion) registers; each is associated with a pitch register. Table 12-9 
lists the conversion registers and associated pitch registers. 

Table 12-9. TMS34020 Conversion (CONVxP) Registers 

12-48 

Array 

source 

destination 

mask 

Conversion Register 

CONVSP (COOO 0130h) 

CONVDP (COOO 0140h) 

CONVMP (COOO 0180h) 

Pitch Register 

SPTCH (81) 

DPTCH (83) 

MPTCH (811) 

The TMS34020 supports three instructions for loading the correct values into 
the CONVxP registers. 

[J SETCSP loads CONVSP according to the value in SPTCH. 
[J SETCDP loads CONVDP according to the value in DPTCH. 
a SETCMP loads CONVMP according to the value in MPTCH. 

The TMS34020 supports three categories of array pitch, allowing you to 
choose between conversion speed and flexibility in defining pitch values. 
These categories include 

o Power of 2. When the array pitch is a power of 2, then the Yx array size 
operation can be performed as a shift. Reducing both multiplications to 
shifts decreases the linear-address conversion referred to by the CVxXYL 
instruction to 3 cycles. This is the most efficient calculation. 

[J Two powers of 2. If the pitch can be expressed as the sum of two powers 
of 2 (for example, 1280 = 1024 + 256), then the Yx array pitch operation 
can be calculated by summing two shifts of the Yvalue. The CVxXYL con­
version time for this method is 4 cycles. 

[J Arbitrary pitch. A pitch can be any value. If the pitch is not a power of 2 
or cannot be reduced to a sum of powers of 2, then the Yx array pitch 
operation must be calculated with a full 16-bit-by-32-bit multiplication. The 
CVxXYL conversion time for an arbitrary pitch consumes approximately 
15 cycles. 

Figure 12-20 shows how the TMS34020 determines the contents of a 
CONVxP register from the appropriate pitch register. 

Graphics Instructions and Operations 





12-50 Graphics Instructions and Operations 





Addressing Modes and Operand Formats 

13.1 Addressing Modes and Operand Formats 
The TMS34020 instruction set supports eight addressing modes. Most instruc­
tions have register-direct operands or a combination of register-direct and 
immediate operands; however, the move and graphics instructiqnsuse more 
complex combinations of operands. This section discusses the TMS34020 
addressing modes and defines the symbols used in instruction syntax to indi­
cate an addressing mode. 

13.1.1 Immediate Values and Constants 

An instruction syntax may use one of these symbols to indicate an immediate 
source operand: 

IW is a 16-bit (short) signed immediate value. 
IL is a 32-bit (long) signed immediate value. 
K is a 5-bit constant. 

Instructions that have immediate source operands have register-direct desti­
nation operands. Many instructions that have an immediate value can use 
either a short or a long value. 

Figure 13-1 illustrates a MOVI (move immediate) instruction whose first oper­
and is·a 32-bit immediate value. This is the syntax for this MOVI: 

MOVI IL, Rd [, L] 

The instruction in Figure 13-1 is as follows: 

MOVI OFCOh, A2, L 

Figure 13-1 shows the object code in memory (at word n) and the effect of the 
instruction on the CPU registers. The value OFCOh is copied into register A2 
as a zero-extended 32-bit value. (Note that this is a 2-word instruction; the next 
instruction to be executed is at words n + 2.) 

Figure 13-1. An Example of Immediate Addressing 
Memory CPU Registers 

15 0 /-- ..... , 
MOVI OFCOOh,A2, L r--..... . ) L I I 

13-2 

{ n 09C2h 
n+1 FCOOh 

n+2 

I 

next 
instruction 

I I 
l ..... --J 
' ..... _-/ 

I 

31 0 
~ __________ ~ AO 

A1 
b··· .• ·.!'l':()I""\O~O~T~lj~F~e~\o~To~'C[h~·······.··~Ii A2 . 

I . 

I ~4 
I : 

814 
ST 
SP 

n PC PC' =n+ 2 

TMS34020 Assembly Language Instruction Set 





Addressing Modes and Operand Formats 
"""" 

13.1.3 Register-Direct Operands 

Figure 13-3. 

MOVE AO,Bl 

13-4 

An instruction syntax may use one ofthese symbols to indicate a register-direct 
operand: 

Rs 
Rd 

is a source register that contains the source data. 
is a destination register that will contain the result. 

When both operands of an instruction are register-direct operands, the regis­
ters must be in the same file. (The MOVE Rs, Rd instruction is an exception to 
this rule.) 

Figure 13-3 illustrates a MOVE instruction that has two register-direct 
operands. This is the syntax for this MOVE: 

MOVE Rs, Rd 

The example shows this instruction: 

MOVE AO, Bl 

Figure 13-3 shows the object code in memory (at word n) and the effect of the 
instruction on the CPU registers. The entire contents of register AO are copied 
into register 81. (Note that this is a 1-word instruction; the next instruction to 
be executed is at word n + 1.) 

An Example of Register-Direct Addressing 
Memory 

/ __ ..... ,0 

r--..... ) 
15 

I I 

{ n \--1 ~=':':':----I 4E01h 
next 

instruction n+1 

I 
I 
I I 
l ..... --J 
' .... _-/ 

CPU Registers 
31 0 

FCOOOCOOh AO 
I Ai 
I A2 

I I • 

i~,i~~4 
I I : 

1--------1 814 
1--____ --1 ST 
1--____ --1 SP 

n PC PC' = n + 1 

TMS34020 Assembly Language Instruction Set 



Addressing Modes and Operand Formats 
m::xw ~.(.~.~~m~z~~~~-:':;-;':'~9;~~m:=~~~::-flw.;::.:;w,;s:::;:;:;~:;:m:-.w,-;~:;:;:;::-:::"",,····-""????">(==_ 

13.1.4 Register-Indirect Operands 

An instruction syntax may use one of these symbols to indicate a register-indi­
rect operand: 

*Rs is a register that contains the address of the source data. 
*Rd is a register that contains the destination address. 

Note that the * character is entered as part of the operand (this distinguishes 
it from a register-direct operand). 

Figure 13-4 illustrates a MOVE (move field) instruction that has two regis­
ter-indirect operands. This is the syntax for this MOVE: 

MOVE *Rs, *Rd [, FJ 

For more information aboutfield moves, refer to Section 13.3.6 on page 13.3.6. 

The example shows this instruction: 

MOVE *A4, *A3 

Figure 13-4 shows the object code in memory (at word n) and the effect of the 
instruction on the destination address. The contents of register A4 specify the 
address of data to be moved; the contents of register A3 specify the destination 
address. Assume that the field size for the move is 16 bits; the 16 bits of data 
at * A4 are moved to the location at * A3. (Note that this is a 1-word instruction: 
the next instruction to be executed is at word n + 1.) 

Figure 13-4. An Example of Register-Indirect Addressing 
Memory CPU Registers 

MOVE *A4, *A3{ n 

n+1 

OOOOAOOOh 

oooocoaOh 

15 0 /--..... , r--..... ) 
aaa3h 
next 

instruction 

l ..... --J ' ..... _-/ 

r---' 
/-

..... --J 
-_/ 

31 0 

1-1 -----II ~O 
oooocoaOh 
OOOOAOOOh 

· A3 
A4 · 

1--------11 ~64 
I : · 1--------1 

1--_____ -1 814 
1--_____ -1 ST 
1--_____ -1 SP 
~ __ ~n __ ~ PC PC' = n + 1 

13-5 



Addressing Modes and Operand Formats 
~~~ ~~~t:::'*, ~:mm::'mwt~ m~;w 

13.1.5 Register-Indirect with Offset

An instruction syntax may use one of these symbols to indicate a register-indi­
rect operand that uses a signed offset:

*Rs(Offset) is a source address formed by adding an offset to the contents of
the source register.

*Rd(Offset) is a destination address formed by adding an offset to the con-
tents of the destination register.

The offset is used only to form an address - the contents of the register are
not affected. Note that the * character is entered as part of the operand.

Figure 13-5 illustrates a MOVE (move field) instruction; the first operand of
this instruction is a register-direct operand; the second operand is a register­
indirect operand with an offset. This is the syntax for this MOVE:

MOVE Rs, *Rd(offset) [, FJ

The example shows this instruction:

MOVE B5, *B7(32)

Figure 13-5 shows the object code in memory (at word n) and the effect of the
instruction on the destination location. The destination address is specified by
adding the offset (32 bits) to the contents of register B7; this yields a destination
location of 05020h. Assume that the field size for the move is 16 bits; the 16
LSBs in register B5 are copied into the destination location. (Note that this is
a 2-word instruction; the next instruction is at word n + 2.)

Figure 13-5. An Example of Register-Indirect with Offset Addressing
Memory CPU Registers

15 __ 0 ;::.31.:..... ____:;o

MOVE B5, *B7 (32) r--..... / ') 1-1 ------II ~O
I I •

13-6

L{n 8087h
n+1~-~0~0=20~h.:.....-,
n+2 next

instruction
..... --' _-/ /--..... ,

r--.....)
00005000h I I
~I I
00005020h

l --J
' _-/

I I ~b4
I •

1--------1
r-"""J-.:W~"§'s!..Q...!:l--l 85

~ __ ~~~~, 86
87

I :
~-----, .

814
~ _____ ~ 8T
~ _____ ~ 8P
'--__ ..:.:;n __ ---' PC PC' = n + 2

TMS34020 Assembly Language Instruction Set

Addressing Modes and Operand Formats
~@.:x~~:::;w,,:::;~""·~m'··;;:-'··:::'$$~·$··$:~$ ~..::::::::::.:w..::::m%~~"::::'::$:::::::::::-~:W":;:::;:;Z--$"::::'::~:;~~::::::~:::;xxm-~:~;:::::~..::m::::x:::::~:::::r /..xX:;:;:::;~:$~~.:''::::::::X::~::::::X::~-::~$~::::::~:;:::::::::::'~:::;:;::':~"""~miJ'M.~:

13.1.6 Register-Indirect with Postincrement

An instruction syntax may use one of these symbols to indicate a register-indi­
rect operand that is postincremented:

*Rs+ is a register that contains the address of the source data.
*Rd+ is a register that contains the destination address.

Note that the * and + characters are entered as part of the operand. After the
operation is performed, the contents of the specified source or destination reg­
ister are incremented by the field size used for the operation.

Figure 13-6 illustrates a MOVE (move field) instruction; both the source and
the destination operands are postincremented register-indirect operands. This
is the syntax for this MOVE:

MOVE *Rs+, *Rd+ [, FJ

The example shows this instruction:

MOVE *B4+, *B14+

Figure 13-6 shows the object code in memory (at word n) and the effect of the
instruction on the destination location and the CPU registers. The contents of
register B4 are the address of the source data; the contents of register B14
specify the destination address. Assume that the field size for the move is 16
bits; the 16 bits of data at the source address are copied into the destination
location. After the move, both registers are incremented by 16 bits (1 word).
(Note that this is a 1-word instruction; the next instruction to be executed is at
word n + 1.)

Figure 13-6. An Example of Register-Indirect with Postincrement Addressing

MOVE *B4+,*B14+

L{n
n+1

00001020h

C0000200h

Memory CPU Registers
15 0 31 0 /--..... , Ir=-:-------.; r--.....). I ~o

I I .
989Eh
next

instruction

l --J
' _-/

/-- ,
r--.....)

ABCDh

I I ;~4
I 00001 020 h I 84+10
I I
I I

C0000200h B14+ 10 =>
1-____ ---1 5T

I 00001020hl
after move

Icoobb0210hl
after move

. ·i ASCDfi i ... \.···· .. n
r------~ 5P

PC PC' = n + 1

l --J
' _-/

13-7

Addressing Modes and Operand Formats

13.1.7 Register-Indirect with Predecrement

An instruction syntax may use one of these symbols to indicate a register-indi­
rect operand that is predecremented.

Before the operation is performed, the contents ofthe specified source ordesti­
nation register are decremented by the field size used for the operation.

*-Rs the decremented register contents are the address ofthe source data.

*-Rd the decremented register contents specify the destination address.

Note that the * and - characters are entered as part of the operand.

Figure 13-7 illustrates a MOVE (move field) instruction; the source operand
is a register-direct operand, and the destination operand is a predecremented
register-indirect operand. This the syntax for this MOVE:

MOVE Rs, *-Rd [, F]

The example shows this instruction:

MOVE A4, *-A3

Figure 13-7 shows the object code in memory (at word n) and the effect of the
instruction on the destination location and the CPU registers. Assume that the
field size for the move is 16 bits. Register A4 contains the source data. The con­
tents of register A3, minus the field size (16 bits, or 1 word) form the destination
address 5150h. The 16 LSBs in A4 are copied to address 5150h. (Note that
this is a 1-word instruction; the next instruction to be executed is at word n + 1.)

Figure 13-7. An Example of Register-Indirect with Predecrement Addressing
Memory CPU Registers

15 0
/--..... , 31 0

MOVE B4,A3 r--......) I I ~O
L{ n t--___ A=08=3;.;.:.h_--1 A3 b0005160h 1-10h =:>b;I~IO~b~O~O~5~j~Ia~O~}hm!';:ldi A3

13-8

n+ 1 inS~~~ion before move ABC D 2 2 2 2 h ~4

00005150h

1--____ --11 ~~4
I :

1---------1 B14
1---------1 8T
1---------1 8P

n PC PC' = n + 1

TMS34020 Assembly Language Instruction Set

,m,.,.,,,,,",, Table

Machine 16-Bit Instruction Word
Syntax and Description Words States MSB LSB

ANON Rs, Rd
1 1 o 1 0 1 001 S SSSR DDD D

AND register with complement (32 bits)

ANDNIIL, Rd
3 2,3t 0000 1 0 1 1 1 0 0 R DDDD

AND not immediate (32 bits)

BLMOVE S, 0
1

complex
000 0 0000 1 1 1 1 OOSD

Block move instruction

BTST K, Rd
1 1 000 1 11K K KKKR DDDD

Test register bit, constant

BTST Rs, Rd
1 2 01 00 101 S SSSR DDDD

Test register bit, register

CALL Rs
1

3+(1)
0000 1 0 0 1 001 R DDDD

Call subroutine indirect 3+(4) :j:

CALLA Address
3 see 0000 1 1 0 1 o 1 0 1 1 1 1 1

Call subroutine address instruction

CALLR Address
2 3+(1)

0000 1 1 0 1 00 1 1 1 1 1 1
Call subroutine relative 3+(4) :j:

CEXEC size, instruction {, IOJ
3 2 (1) 0000 o 1 1 0 000 0 0000

Coprocessor internal operation execution, long 3 (1) t

CEXEC size, instruction (, /OJ
2 2(1) 1 1 0 1 1 000 oeee eees

Coprocessor internal operation execution, short

CLIP
1

complex
0000 1 000 1 1 1 1 001 0

Clip an array to fit within a window instruction

CLRRd
1 1 o 1 0 1 o 1 1 R DDD R DDDD

Clear register

CLRC
1 1 0000 00 1 1 001 0 0000

Clear carry

CMOVCG Rd1 {, Rd2 {size]], command {, /OJ
3 11 000 0 o 1 1 0 o 1 1 R DDDD

Move coprocessor to register

CMOVCM *Rd+, transfers, size, command {, IOJ
3

5+[cn1-1] 0000 o 1 1 0 1 0 1 R DD D D
Coprocessor to memory indirect (postincrement) 6+[cnt+1]t

CMOVCM -*Rd, transfers, size, command {, /OJ
3 5+[cn1-1] 000 0 o 1 1 0 1 1 0 R DDDD

Coprocessor to memory indirect (predecrement) 6+[cnt+1]t

CMOVCS command {, /OJ
3 4,5t 000 0 o 1 1 0 o 1 1 0 0000

Move from coprocessor to status register

CMOVGC Rs, command (, /OJ
3 2(1) 0000 o 1 1 0 001 R SSSS

One register to coprocessor 3(1)t

CMOVGC Rs1, Rs2, size, command (, /OJ
3

3(1) 000 0 o 1 1 0 01 0 R SSSS
Two registers to coprocessor 4(1) t

t
:j:

..
First value if immediate data is long-word aligned, second value If Immediate data I~ not long-word aligned
First value if the SP is long-word aligned, second value if the SP is not long-word aligned

11
§

13-10

See Section 15.1 page 15-2.
See Section 15.2 page 15-10.

TMS34020 Assembly Language Instruction Set

Table

Machine i6-Bit Instruction Word
Syntax and Description Words States MSB LSB

CMOVMC *Rs+, transfers, size, command [, /OJ
5+[cnH]

Memory indirect (postincrement) to coprocessor, 3 6+[cnt+1]t 0000 o 1 1 0 1 0 0 T TTTT
constant count

CMOVMC -*Rs, transfers, size, command [, /OJ
5+[cnt-1]

Memory indirect (predec) to coprocessor, constant 3 6+[cnl+1]t 0000 1 000 001 T TTTT
count

CMOVMC *Rs+, Rd, size, command [, /OJ
Memory indirect (postinc) to coprocessor, register 3 ~ 0000 o 1 1 0 1 1 1 R SSSS
count

CMP Rs, Rd
1 1 01 00 1 0 0 S SS S R DD D D

Compare registers

CMPI/W, Rd
2 2 0000 101 1 01 0 R DD D D

Compare immediate (16 bits)

CMPIIL, Rd
3 2,3 t 0000 1 0 1 1 o 1 1 R DD D D

Compare immediate (32 bits)

CMPK
1 1 00 1 1 01 K K KKKR DD D D

Compare to set status bits

CMPXY Rs, Rd
1 1 1 1 1 0 01 0 S SS S R DD D D

Compare X and Y half of registers

CPW Rs, Rd
1 1 1 1 1 0 o 1 1 S SS S R DD DD

Compare point to window

CVDXYL Rd
1 ~ 0000 101 0 1 0 0 R DDDD

Convert destination XY address to linear

CVMXYL Rd
1 ~ 0000 101 0 o 1 1 R DD D D

Convert mask address to linear

CVSXYL Rs, Rd
1 ~ 1 1 1 0 1 0 1 S SSSR DDDD

Convert source XY address to linear

CVXYL Rs, Rd
1 ~ 1 1 1 0 1 0 0 S SS S R DDDD

Convert XY address to linear

DEC Rd
1 1 000 1 o 1 0 0 001 R DDDD

Decrement register

DINT
1 3 0000 00 1 1 o 1 1 0 0000

Disable interrupts

DIVS Rs, Rd
1 ~ o 1 0 1 1 0 0 S SS S R DDDD

Divide registers signed

DIVU Rs, Rd
1 ~ o 1 0 1 1 0 1 S SS S R DD D D

Divide registers unsigned

t First value if immediate data is long-word aligned, second value if immediate data is not long-word aligned
:I: First value if the SP is long·word aligned, second value if the SP is not long·word aligned
~ See Section 15.1 page 15·2.
§ See Section 15.2 page 15·10.

13·11

Summary Table

Machine 16·Blt Instruction Word
Syntax and Description Words States MSB

DRAV Rs, Rd
Draw and advance

1 ~ 1 1 1 1 01 1 S SSSR

DSJ Rd, Address 2 no jump
Decrement register and skip jump

2 3 if jump 0000 1 1 0 1 1 0 0 R

DSJEQ Rd, Address 2 no jump
Conditionally decrement register and skip jump

2 3 if jump 0000 1 1 0 1 1 01 R

DSJNE Rd, Address 2 no jump
Conditianally decrement register and skip jump

2 3 if jump 0000 1 1 0 1 1 1 0 R

DSJS Rd, Address 2 no jump
Decrement register and skip jump, short

1 3 if jump 001 1 1 0 offset R

EINT
Enable interrupts

1 3 0000 1 1 0 1 01 1 0

EMU
Initiate emulation

1 iI 0000 0001 000

EXGF Rd, F FO 1
Exchal)ge fietasize

1 F12 1 1 0 1 01 F 1 OOOR

.----
EXGPC Rd

Exchange program counter with register
2 2 0000 0001 001 R

EXGPS Rd
Exchange pixel size

1 2(1) 0000 001 0 1 01 R

FILLL complex
Fill array with processed pixels, linear

1 instruction 0000 1 1 1 1 1 1 0 0

FILLXY complex
Fill array with processed pixels, XV

1 instruction 0000 1 1 1 1 1 1 1 0

FLiNE {O 11} 1 ~
Fast line draw with linear addressing

1 1 0 1 1 1 1 0 Z001

FPIXEQ complex
Find pixel equal to COLORO

1 instruction 0000 1 0 1 0 1 0 1 1

FPIXNE complex
Find pixel not equal to COLORO

1 instruction 0000 101 0 1 1 0 1

GETPC Rd
Get program counter into register

1 1 0000 0001 01 0 R

GETPS Rd
Get pixel size into register

1 2 0000 001 0 1 1 0 R

GETST Rd
Get status register into register

1 1 0000 0001 1 0 0 R

t
:I:
~
§

.. . .
~~rst value ~f Immedl~te data IS lonQ-word aligned, second value If Immediate data is not long-word aligned
Irst valu~ If the SP IS long-word aligned, second value if the SP is not long-word aligned

See SeclJon 15.1 page 15-2.
See Section 15.2 page 15-10.

LSB

DODD

DODD

DODD

DODD

DODD

0000

couni

DODD

DO DO

DODD

0000

0000

1 0 1 0

1 0 1 1

1 0 1 1

DODD

DODD

DODD

13-12 TMS34020 Assembly Language Instruction Set

Table

Machine 16·Blt Instruction Word
Syntax and Description Words States MSB LSB

IDLE
Wait for interrupt

1 11 0000 0000 o 1 0 0 0000

INC
Increment register

1 1 000 1 0000 001 R DODD

JAcc Address 3 no jump
Jump absolute conditional

3 4 if jump 1 1 0 0 code 1 000 0000

JRcc Address 1 no jump
Jump relative conditional, long

2 2 if jump 1 1 0 0 code 0000 0000

JRcc Address 2 no jump
Jump relative conditional, short

1 3 if jump 1 1 0 0 code x x x x x x x x

JUMP Rs
Jump indirect

1 2 0000 0001 01 1 R DODD

LINE {O 11} 1
Line draw

11 1 1 0 1 1 1 1 1 Z001 101 0

LlNIT
Line intialization

1 9 0000 1 1 0 0 o 1 0 1 o 1 1 1

LMO Rs, Rd
Leftmost one

1 1 o 1 1 0 101 S SSSR DODD

MMFM Rs, (, List]
Move multiple registers from memory

2 11 0000 1 0 0 1 1 01 R DODD

MMTM Rs, [, List]
Move multiple registers to memory

2 11 0000 1 0 0 1 1 00 R DODD

MODS Rs, Rd
Modulus signed

1 11 o 1 1 0 1 1 0 S SSSR DODD

MODU Rs, Rd 35
Modulus unsigned

1 3 if Rs = 0 o 1 1 0 1 1 1 S SSSR DODD

MOVB Rs, *Rd
Move byte, register to indirect

1 § 1 000 1 1 0 S SS S R DODD

MOVB *Rs, Rd
Move byte, indirect to register

1 § 1 000 1 1 1 S SSSR DODD

MOVB *Rs(offset), Rd
Move byte, indirect with offset to register

2 § 1 0 1 0 1 1 1 S SSSR DODD

MOVB *Rs(SOffset), *Rd(DOffset)
Move byte, indirect with offset to indirect with off- 3 § 1 0 1 1 1 1 0 S SS S R DODD

set

MOVB Rs, @DAddress
Move byte, register to absolute

3 § 0000 o 1 0 1 1 1 1 R SSSS

.. . . ! F!rst value !f Immedl~te data IS lonQ-word aligned, second value If Immediate data is not long-word aligned
~ First valu~ If the SP IS long-word aligned, second value if the SP is not long-word aligned
11 See Section 15.1 page 15-2.
§ See Section 15.2 page 15-10.

13-13

;"')WTImarv Table

Machine 16-Bit Instruction Word
Syntax and Description Words States MSB LSB

MOVS @SAddress, Rd
3 § 0000 o 1 1 1 1 1 1 R DO DO

Move byte, absolute to register

MOVS @SAddress, @DAddress
5 § 0000 00 1 1 o 1 0 0 0000

Move byte, absolute to absolute

MOVE Rs, Rd
1 1 o 1 0 0 1 1 MS SSSR DO 0 0

Move register to register

MOVE Rs, *Rd [, FJ
1 § 1 000 OOFS SSSR DODD

Move field, register to indirect

MOVE Rs, -*Rd [, F]
1 § 1 0 1 0 OOFS SSSR DODD

Move field, register to indirect (predecrement)

MOVE Rs, *Rd+ [, FJ 1 § 1 0 0 1 OOFS SSSR DODD
Move field, register to indirect (postincrement)

MOVE *Rs, Rd [, FJ
1 § 1 000 01 F S SSSR DODD

Move field, indirect to register

MOVE -*Rs, Rd [, F]
1 § 1 0 1 0 01 F S SSSR DODD

Move field, indirect (predecrement) to register

MOVE *Rs+, Rd [, FJ
1 § 1 0 0 1 01 F S SSSR DODD

Move field, indirect (postincrement) to register

MOVE *Rs, *Rd [, FJ 1 § 1 000 1 0 F S SSSR DO 0 0
Move field, indirect to indirect

MOVE -*Rs,-*Rd [, F]
Move field, indirect (predecrement)to indirect (pre- 1 § 1 0 1 0 1 0 F S SSSR DO 0 0
decrement)

MOVE *Rs+, *Rd+
Move field, indirect (postincrement) to indirect 1 § 1 0 0 1 10FS SSSR DO 0 0

(postincrement)

MOVE Rs, *Rd(offset) [, FJ
2 § 1 0 1 1 OOFS SSSR DO 0 0

Move field, register to indirect with offset

MOVE *Rs(offset), Rd [, FJ 2 § 1 0 1 1 01 F S SSSR DO 0 0
Move field, indirect with offset to register

MOVE *Rs(offset), *Rd+ [, FJ
Move field, indirect with offset to indirect (postin- 2 § 1 1 0 1 OOFS SSSR DODD
crement)

MOVE *Rs(SOffset), *Rd(DOffset) [, FJ
Move field, indirect with offset to indirect with off- 3 § 1 0 1 1 10FS SSSR DO 0 0

set

MOVE Rs, @DAddress [, FJ
3 § 0000 o 1 F 1 1 0 0 R SSSS

Move field, register to absolute

t First value if immediate data is long-word aligned, second value if immediate data is not long-word aligned
:j: First value if the SP is long-word aligned, second value if the SP is not long-word aligned
~ See Section 15.1 page 15-2.
§ See Section 15.2 page 15-10.

13-14 TMS34020 Assembly Language Instruction Set

Table

Machine 16-Bit Instruction Word
Syntax and Description Words States MSB

MOVE @SAddress, Rd {, FJ
3 §

Move field, absolute to register
0000 o 1 F 1 1 0 1 R

MOVE @SAddress, *Rd+ [, FJ
3 §

Move field, absolute to indirect (postinc)
1 1 0 1 01 F 0 OOOR

MOVE @SAddress,@DAddress [, F]
5 §

Move field, absolute to absolute
o 0 0 0 o 1 F 1 1 1 0 0

MOVI/W, Rd
Move immediate (16 bits)

2 2 0000 1 0 0 1 1 1 0 R

MOVIIL, Rd
Move immediate (32 bits)

3 2,3t 0000 1 0 0 1 1 1 1 R

MOVKK, Rd
Move constant (5 bits)

1 1 000 1 10K K KKKR

MOVX Rs, Rd
Move X half of register

1 1 1 1 1 0 1 1 0 S S8 S R

MOVY Rs, Rd
Move Y half of register

1 1 1 1 1 0 1 1 1 8 888 R

MPYS Rs, Rd
Multiply registers (signed)

1 5+F81 12 o 1 0 1 1 1 08 88 S R

MPYU Rs, Rd
Multiply registers (unsigned)

1 ~ o 1 0 1 1 1 1 8 S8 S R

MWAIT minimun
Memory wait

1 of 2 o 0 0 0 0000 100 0

NEG Rd
Negate register

1 1 o 0 0 0 00 1 1 1 0 1 R

NEGB Rd
Negate register with borrow

1 1 0000 00 1 1 1 1 0 R

NOP
No operation

1 1 0000 00 1 1 0000

NOTRd
Complement register

1 1 0000 00 1 1 1 1 1 R

OR Rs, Rd
OR registers

1 1 01 0 1 01 08 888 R

ORIIL, Rd
OR immediate (32 bits)

3 2,3t 0000 1 0 1 1 1 01 R

PFILL XY complex
Pattern fill

1 instruction 0000 101 0 00 1 1

PIXBLTB, L complex
Pixel block transfer, binary to linear

1 instruction 0000 1 1 1 1 100 0

t
:j:

..
~~rst value ~f Immedl~te data IS long-word aligned, second value if immediate data is not long-word aligned

Irst valu~ If the SP IS long-word aligned, second value if the 8P is not long-word aligned
See Section 15.1 page 15-2. ~

§ See 8ection 15.2 page 15-10.

LSB

DD D D

DD D D

0000

DDDD

DD D D

DDDD

DDDD

DD D D

DDDD

DD D D

0000

DDDD
\

DDDD

0000

DDDD

DDDD

DDDD

o 1 1 1

0000

13-15

Machine 16-Blt Instruction Word
Syntax and Description Words States MSB

RL K, Rd
Rotate left, constant

1 1 001 1 OOKK KKKR

RL Rs, Rd
Rotate left, register

1 1 o 1 1 0 1 0 0 S SSSR

RMO
Rightmost one

1 1 o 1 1 1 1 01 S SSSR

RPIX Rd
Replicate pixel

1 ~ 0000 00 1 0 1 0 a R

SETC
Set carry

1 1 0000 1 1 0 1 1 1 1 0

SETCDP
SetCONVDP

1 ~ 0000 00 1 0 o 1 1 1

SETCMP
SetCONVMP

1 ~ a a 0 a 001 0 1 1 1 1

SETCSP
SetCONVSP

1 ~ 0000 a a 1 a a 1 a 1

SETF FS, FE, F
Set field parameters

1 1 0000 a 1 F 1 01 F S

SEXT Rd,F
Sign extend to long

1 2 0000 a 1 F 1 OOOR

SLAK,Rd
Shift left arithmetic, constant

1 3 a 01 0 OOKK KKKR

SLARs, Rd
Shift left arithmetic, register

1 3 o 1 1 0 OOOS SSSR

SLLK, Rd
Shift left logical, constant

1 1 001 0 01 K K KKKR

SLL Rs, Rd
Shift left logical, register

1 1 a 1 1 0 a 01 S SSSR

SRAK, Rd
Shift right arithmetic, constant

1 1 001 0 10K K KKKR

SRA Rs, Rd
Shift right arithmetic, register

1 1 o 1 1 0 01 0 S SSSR

SRLK, Rd
Shift right logical, constant

1 1 001 0 11K K KKKR

SRLRs, Rd
Shift right logical, register

1 1 01 1 0 o 1 1 S SSSR

SUB Rs, Rd
Sl,Jbtract registers

1 1 o 1 0 0 01 0 S SSSR

t
:j:

..
~~rst value ~f Immedl~te data IS long-word aligned, second value if Immediate data is not long-word aligned
Irst valu~ If the SP IS long-word aligned, second value if the SP is not long-word aligned

See Section 15.1 page 15-2. 11
§ See Section 15.2 page 15-10.

LSB

DODD

DODD

DODD

DODD

DODD

001 1

1 0 1 1

a a a 1

SSSS

DODD

DODD

DO 0 0

DODD

DODD

DODD

DODD

DODD

DODD

DODD

13-17

Summary Table
:>,~"$:;:;:'":-~~:::;-»'::~:]O:;:;:>,;~~:>,~-:;:;:'~::;:;:;:;:::;Y"»::~~::~~~X~Y;:;~~::;X';:;:;:;::::~:::~W~~x.~:::~~::~,,:=:m::::::::::::::~::::::~~::::~~.:::~'Y':::~-::~:::::;:::::::~~:X::::~~::::~~:;;~:~::::::::~~~~:::;:::;::::~~%:::;:::'«::'{::;~~:~:::1::::::::~:~::::;:::::::::::~:::%:~~:::::::::::::::::~~::::::~~{:::::::::~:~:::::::::::::~9;~~::::::::::~~::::::::~'Y;::-;:::::;:~:::~:::~:~:~,~:~:~~;%Mf':;-"';~:::;~~:;~:;:::~;9,~:~;~~;::]O:~w;::::::~:::-.:;:::

Machine 16-Bit Instruction Word
Syntax and Description Words States MSB

SUBB Rs, Rd
Subtract registers with borrow

1 1 01 00 01 1 S SSSR

SUBI/W, Rd
Subtract immediate (16 bits)

2 2 0000 1 0 1 1 1 1 1 R

SUBIIL, Rd
Subtract immediate (32 bits)

3 2,3 :j: 0000 1 1 0 1 ODOR

SUBK K, Rd
Subtract constant (5 bits)

1 1 0001 01KK KKKR

SUBXY Rs, Rd
Subtract registers in XV mode

1 1 1 1 1 0 001 S SSSR

SWAPF Rs, Rd, 0
Swap field

1 ~ 011 1 1 1 1 S SSSR

TFILLXY complex
Trapezoid fill

1 instruction 0000 1 1 1 0 1 1 1 1

TRAPN
Software interrupt

1 ~ 0000 1 0 0 1 OOON

TRAPL
Software interrupt, signed

2 ~ 0000 1 000 0000

VBLT complex
Linear VRAM pixel block transfer

1 instruction 0000 1 000 o 1 0 1

VFILL complex
Linear VRAM fast fill

1 instruction 0000 1 0 1 0 o 1 0 1

VLCOL
Latch COLOR1 into the VRAM color registers

1 2(1) 0000 1 0 1 0 0000

XOR Rs, Rd
Exclusive OR registers

1 1 o 1 0 1 01 1 S SSSR

XORIIL, Rd
Exclusive OR immediate value (32 bits)

3 2,3t 0000 1 0 1 1 1 lOR

ZEXT Rd, F
Zero extend to long

1 1 0000 01 F 1 001 R

t
:t:
~
§

.. . .
F!rst value !f Immedl~te data IS lon~-word aligned, second value If Immediate data is not long-word aligned
First valu~ If the SP IS long-word aligned, second value if the SP is not long-word aligned
See Section 15.1 page 15-2.
See Section 15.2 page 15-10.

LSB

DDDD

DDDD

DDD D

DDD D

DDDD

DDDD

101 0

NNNN

1 1 1 1

o 1 1 1

o 1 1 1

0000

DD DD

DDDD

DDDD

13-18 TMS34020 Assembly Language Instruction Set

Move Instructions

13.3 Move Instructions Summary

The TMS34020 supports a variety of move instructions, allowing you to move
immediate values into registers, move data between registers, and move data
between registers and memory. Table 13-1 summarizes the various types of
move instructions.

Table 13-1. Summary of MOVE Instructions

Move Type Mnemonic

Register MOVE

Constant MOVK

MOVI

MOVI

XY MOVX

MOVY

Multiple register MMFM

MMTM

Byte MOVB

Field MOVE

Description

Move register to register

Move constant (5 bits)

Move immediate (16 bits)

Move immediate (32 bits)

Move 16 LSBs of register (X half)

Move 16 MSBs of register (Y half)

Move multiple registers from memory

Move multiple registers to memory

Move byte (8 bits, 9 addressing modes)

Move field to/from memory/register
(18 addressing modes)

13.3.1 Register-to-Register Moves

The MOVE RS,Rdinstruction is a register-to-register move; it moves a full 32
bits of data between any two general-purpose registers. This is the only MOVE
instruction that allows you to move data between register files A and B.

13.3.2 Value-to-Register Moves

13.3.3 XV Moves

The MOVI and MOVK instructions move immediate values into registers.
MOVK moves a zero-extended value into a register; the value must be in the
range of 1 to 32. The MOVI instruction has two forms; it can move a 16-bit or
a 32-bit immediate value.

The MOVX and MOVY instructions move values into the 16 LSBs or 16 MSBs,
respectively, of a register.

13-19

Move Instructions Summary
$$'$'$$ s;mmssmsruS'mSSm=""""""""'''''''''''''''''' =SSSX;,,,.,''''''''''''''''''''' __ '''''''''''''''''H;''''; ''''''''==""'m;_ ~_m~"'''~~Sili ~::m;::s:; ~ sm ~~~~ms

13.3.6.2 Memory-to-Register Moves

Figure 13-9 shows the memory-to-register move operation. The source mem­
ory location is the bit position pointed to by the source address. The address
consists of two portions: one defines the starting word from which the field is
to be read and the other defines an offset into that word, the bit address.
Depending on the bit address within this word and the field size, the source
location may extend into two or more long words. After the move, the destina­
tion register LSBs contain the right-justified field data (width is specified by the
field size). The registers's MSBs contain either all 1 s or all Os.

Figure 13-9. Memory-to-Register Moves

13-22

Move from Memory to Register

31 54 0

source memory address �L-______ w_or_d_a_dd_re_s_s ______ l--".o;.b;;.;..it~__'I _ address

source memory location

word address ~

o

L bit
size· address --...

31 '-------.:. o
destination register, FE=O I 0 0 0 0 •.•.••.•.....•.•.•.•... 0 0 0 I field data

31 Sign Bit] 0

destination register, FE=1 1~.==~::::::_-_-_S_ig_n_b_it _ _=__=__=__=_====~~L--__ f_ie_ld_d_at_a_----'I

field size = 1 to 32 bits
bit address = 0 to 31 bits

TMS34020 Assembly Language Instruction Set

Move Instructions QUI/III/,m

13.3.6.3 Memory-to-Memory Moves

Figure 13-10 shows a memory-to-memory field move operation. The source
memory location is the bit position pointed to by the source address. The desti­
nation location is the bit position pointed to by the destination memory address.
Depending on the bit addresses within the respective words and the field size,
either the source location or destination locations may extend into two or more
long words. After the move, the destination location contains the field data from
the source memory location.

Figure 13-10. Memory-to-Memory Moves

Move from Memory to Memory
31 54 °

destination memory address L..., _____ w_o_r_d_ad_d_re_s_s_A _______JIL--a::.:d:.:~;;.::~:.:s..::.s-II
word address A+32 \ word address A \

31 °131 °

source memory location ~ field data _

L field size --I.+~O-----bitS~d~~:ss----J
31

destination memory address word address B

word address 8-32 \ word address B \

destination memory location L... _____ +-_t_ie_ld_d_a_ta_-+-_________ -l

L fl"eld sl"ze _.1 ... ___ destination -.I
bit address

131 I °1
31 I 0,

field size = 1 to 32 bits
bit address = ° to 31 bits

13-23

Program-Control and Context-Switching Instructions
;:::;:;:;::}~;;:;::x::m~~::-;::x::::::::::::x~::-;;;x:::;~~~~~~":;~:;:;X:;:;$X:;:;:;x:::;x:;:;:;::-;~::~::~~::~x~::x~~m;%::~:::::::::::::;xz::~::~::~::::~~~::~~~:~:~~~~$::x::.x~~~~0';~~::::~~~~~::::-;:;::~~:~::;::~~::~::~:::::;:;~:::::::;%',::;::x:;:;:::::::::;:;::::%:;x~~:;:;::::x:;z:::::;~:::;:;::X:::::::::::::::::;:::;:::;: :::::::~::;:;;;:::;:::::::::::::::;:::~;:;:::::;:;:;~~;:::;-.::;:;:::::::;:;:~;:::::::~::::~;-;:;l

13.5 Program-Control and Context-Switching Instructions

The TMS34020 supports a variety of instructions that allow you to control pro­
gram flow and to save and restore information by letting you do the following:

[J call and return from subroutines
[J enable or disable interrupts
[J set software interrupts
[J set, save, or restore status information
[J use jump instructions to redirect program flow

Most of these instructions use register-direct or absolute operands; however,
several of them have no operands.

13.5.1 Subroutine Calls and Returns

The TMS34020 allows you to call a subroutine in three ways:

[J indirectly, by loading an address into a register
[J directly, by using an absolute address
[J relatively, by specifying an address that is an offset

The CALL instructions automatically save status information on the stack. The
RETS instruction pops status information off of the stack and returns control
to the program or routine that called the subroutine.

13.5.2 Interrupt Handling

The TMS34020's EINT and DINT instructions allow you to enable or disable
hardware interrupts by providing control of the IE status bit. The TMS34020
also supports a TRAP instruction that provides you with control over 32 soft­
ware interrupts. TRAPL allows 64K (-32,768 to +32,767) interrupts.

13.5.3 Setting, Saving, and Restoring Status Information

Although some instructions automatically save or restore status information,
you will often want explicit control over these functions. The TMS34020
supports several instructions that allow you to save and restore PC and ST
information. The TMS34020 also supports a SETF instruction that allows you
to set field-O/field-1 information in the status register.

13.5.4 Jump Instructions

The TMS34020 supports both conditional and unconditional jumps. The condi­
tional jumps use absolute operands or a combination of register-direct and
absolute operands.

[J There are four DSJ instructions.

• DSJ and DSJS decrement the contents of a register and jump to the
specified address if the new contents of Rd do not equal O. If Rd is
decremented to 0, then execution continues with the next instruction.

DSJ provides a jump range of -32,768 to +32,767 words; DSJS
provides a jump range of ±32 words (excluding 0).

13-25

Shift Instructions

13.6 Shift Instructions

13-28

The TMS34020 supports several instructions that left-rotate, left-shift, or
right-shift the contents of the destination register. These instructions use regis­
ter-direct operands or a combination of register-direct and immediate oper­
ands; the shift amount is specified by the value of a 5-bit constant or by the
value specified in the 5 LSBs of a source register. (Note that the SRA Rs, Rd
and SRL Rs, Rd use the 2s complement of Rd's 5 LSBs.)

!Ji The RL instruction left-rotates the contents of the destination register.
(This rotation is a barrel shift.) The bits shifted out of the MSB are shifted
into the LSB. The C (carry) bit is set to the final value shifted out of the MSB.

!Ji The SLA instruction left-shifts the contents of the destination register. Os
are shifted into the LSBs. The MSBs are shifted out through the C (carry)
bit so that the C bit is set to the final value shifted out of the MSB. If either
the N (sign) bit or any of the bits shifted out differ from the original sign bit,
tho \I (n\lorf1n,.,) hit iC! C!ot I.' "". V.V.I_ •• _ •• _ ".

!Ji The SLL instruction left-shifts the contents of the destination register. Os
are shifted into the LSBs. The MSBs are shifted out through the C (carry)
bit so that the C bit is set to the final value shifted out of the MSB. The main
difference between SLL and SLA is that SLL does not check to see if the
sign bit changes.

!Ji The SRA instruction right-shifts the contents of the destination register.
The value of the sign bit is shifted into the MSBs; this sign-extends the
value and preserves the original value of the sign bit. The LSBs are shifted
out through the C (carry) bit so that the C bit is set to the final value shifted
out of the LSB.

!Ji The SRL instruction right-shifts the contents of the destination register. Os
are shifted into the MSBs, beginning with bit 31. The LSBs are shifted out
through the C (carry) bit so that the C bit is set to the final value shifted out
of the LSB. The main difference between SRL and SRA is that SRL does
not preserve the original value of the sign bit.

TMS34020 Assembly Language Instruction Set

XY Instructions

13.7 XV Instructions

Table 13-3 summarizes the instructions that use XY addresses. This is useful
for specifying pixel addresses on the screen. Many of the graphics instructions
use XY addressing; the TMS34020 instruction set also supports several other
instructions that allow you to manipulate XY addresses.

An XY address is a 32-bit address that is divided into two parts. Within a regis­
ter, the 16 LSBs contain the X half of the address; the 16 MSBs contain the Y
half. The two parts are treated as completely separate values; for example,
when you use ADDXY, the X half does not propagate into the Y half.

Table 13-3. Summary for XY Instructions

Instruction

ADDXYI IL, Rd

ADDXY Rs, Rd

CPW Rs, Rd

CMPXY Rs, Rd

CVDXYL Rd

CVMXYL Rd

CVSXYL Rs, Rd

CVXYL Rs, Rd

DRAV Rs, Rd

FILLXY

LINE {O I 1}

LlNIT

Description Instruction Description

Add IL to register in XV MOVX Rs, Rd Move X half of Rs to X half of Rd

Add registers in XV MOVY Rs, Rd Move V half of Rs to V half of Rd

Compare point to window PFILL Pattern fill

Compare registers in XV PIXBLT B, XY Pixel block transfer (binary to
mode XV)

Convert destination XV ad- PIXBLT L, XY Pixel block transfer (linear to
dress to linear XV)

Convert mask to linear PIXBLTXY, L Pixel block transfer (XV to lin-
ear)

Convert source XV address PIXBLT XV, XY Pixel block transfer (XV to XV)
to linear

Convert XV address to Iin- PIXT Rs, *Rd.XY Pixel transfer (register to indi-
ear address rect XV)

Draw and advance PIXT *Rs.XY, Rd Pixel transfer (indirect XV to
register)

Fill array with processed PIXT *Rs.XY, *Rd.XY Pixel transfer (indirect XV to in-
pixels direct XV)

Line draw SUBXY Rs, Rd Subtract registers in XV mode

Line initialization TFILL Trapezoid fill

[J The PIXBLT and FILL instructions use XY source and/or destination
addresses.

Q The PIXT instructions use the contents of registers as XY addresses.

Q The LINE instruction draws a line along points that are calculated as XY
addresses.

Q The MOVXlMOVY instructions move the X or Y half of a source register
into the X or Y half of a destination register.

Q The arithmetic and logical instructions add, subtract, or compare the X and
Y halves of the registers separately.

13-29

Instructions New to the TMS34020

13.8 Instructions New to the TMS34020

The following is a list of new instructions for the TMS34020; these instructions
were not included with the TMS3401 o.

Instruction Name Instruction Name

ADDXYI IDLE

BLMOVE LlNIT

CEXEC, 2 versions MWAIT

CLIP PFILL XY

CMOVCG PIXBLT L,M,L

COMVCM, 2 versions RETM

CMOVCS RMO

CMOVGC, 2 versions RPIX

CMOVMC, 3 versions SETCDP

CMPK SETCMP

CVDXYL SETCSP

CVMXYL SWAPF

CVSXYL TFILL

EXGPS TRAPL

FPIXEQ VBLT

FPIXNE VFILL

FLiNE VLCOL

GETPS

13-30 TMS34020 Assembly Language Instruction Set

taVC'IIva Instruction Reference

13.9 Alphabetical Instruction Reference

The remainder of this section is an alphabetical reference of the TMS34020
assembly language instructions. Most instructions begin on a new page, and
contains the following information:

!:i Syntax: Shows you how to enter an instruction. (The Preface describes
the symbols used in instruction syntaxes.)

!:i Execution: Illustrates the effects of instruction execution on CPU regis­
ters and memory.

!:i Instruction Words: Shows the object code generated by an instruction.

a Description: Discusses the purpose of the instruction and any other gen­
eral information related to the instruction.

!:i Machine States: Lists the instruction cache-enabled cycle timing.

!:i Status Bits: Lists the effects of instruction execution on the status bits (N,
C, Z, and V).

!:i Examples: Show the effects of the instruction on memory and registers
using various sets of data and initial conditions.

Several instructions discuss additional topics; for example, the conditional
jump instructions list the conditions codes and mnemonics for various jumps,
and the graphics instructions list the implied operands that they use.

13-31

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

ABS Rd

IRdl -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rd

ASS stores the absolute value of the contents of the destination register back
into the destination register. This is accomplished by:

Q Subtracting the contents of the destination register data from 0 and

Q Storing the result back into Rd if status bit N indicates that the result is posi­
tive.

If the result ofthe subtraction is negative, then the original contents ofthe desti­
nation register are retained.

N Set to the sign of the result of 0 - Rd; typically, N=O if the original contents
of Rd are negative (unless Rd = 80000000h), 1 otherwise

C Unaffected
Z 1 if the original data is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise; an overflow occurs if Rd contains

80000000h (80000000h is returned)

Code Before After
A1 NCZV A1

ABS Al 7FFFFFFFh 1xOO 7FFFFFFFh
ABS Al FFFFFFFFh OxOO 0OOOOOO1h
ABS Al 80000000h 1 x 01 80000000h
ABS Al 80000001h OxOO 7FFFFFFFh
ABS Al 0OOOOOO1h 1xOO 0OOOOOO1h
ABS Al OOOOOOOOh Ox 1 0 OOOOOOOOh
ABS Al FFFAOO11h OxOO 0OO5FFEFh

13-32 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

ADD Rs, Rd

Rs + Rd -.. Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I 0 I 0 I Rs I R Rd

ADD adds the contents of the source register to the contents of the destination
register and stores the result in the destination register.

You can use the ADD instruction with the AD DC instruction to perform multiple­
precision arithmetic.

Rs and Rd must be in the same register file.

N 1 if the result is negative, 0 otherwise

C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise

V 1 if there is an overflow, 0 otherwise

Code Before After
A1 AO NCZV AO

ADD Al,AO FFFFFFFFh FFFFFFFFh 1 1 00 FFFFFFFEh
ADD Al,AO FFFFFFFFh 00000001h 01 1 0 OOOOOOOOh
ADD Al,AO FFFFFFFFh 00000002h 0100 00000001h
ADD Al,AO FFFFFFFFh 80000000h 0101 7FFFFFFFh
ADD Al,AO FFFFFFFFh 80000001h 1 1 00 80000000h
ADD Al,AO 7FFFFFFFh 80000001h 01 1 0 OOOOOOOOh
ADD Al,AO 7FFFFFFFh 80000000h 1000 FFFFFFFFh
ADD Al,AO 7FFFFFFFh 00000001h 1 001 80000000h
ADD Al,AO 00000002h 00000002h 0000 00000004h

13-33

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-34

ADDC Rs, Rd

Rs + Rd + C -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I 0 I 1 I Rs R Rd

ADDC adds the contents of the source register, the carry bit, and the contents
of the destination register and then stores the result in the destination register.
Note that the status bits are set on the final result.

Rs and Rd must be in the same register file.

N 1 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise

" v 1 if there is an oVerflow, 0 othervvise

ADDC AI,AO

ADDC AI,AO

ADDC AI,AO

Before
C A1

FFFFFFFFh
FFFFFFFFh
FFFFFFFFh

ADDC AI, AD FFFFFFFFh
ADDC AI, AD 1 FFFFFFFFh
ADDC AI, AD 1 FFFFFFFFh
ADDC AI,AO

AD DC AI,AO

FFFFFFFFh
7FFFFFFFh

AD DC Al , AD 1 00000002h
ADDC AI, AD 0 FFFFFFFFh
ADDC Al , AD 0 FFFFFFFFh
ADDC AI, AD 0 FFFFFFFFh
ADDC AI,AD 0 FFFFFFFFh
ADDC AI, AO 0 FFFFFFFFh
ADDC Al , AD 0 7FFFFFFFh
ADDC Al , AD 0 7FFFFFFFh
ADDC AI,AD 0 7FFFFFFFh
ADDC AI, AD 0 00000002h

AO
FFFFFFFFh
00000001h
00000002h
80000000h
80000001h
80000001h
80000000h
00000001h

After
NCZV

1 1 00
0100
0100
1 1 00
1100
0100
0110
1001

00000002h 0 0 0 0
FFFFFFFFh 1 1 0 0
00000001 h 0 1 1 0
00000002h 0 1 0 0
80000000h 0 1 0 1
80000001 h 1 1 0 0
80000001 h 0 1 1 0
80000000h 1 0 0 0
00000001 h 1 00 1
00000002h 0 0 0 0

AO
FFFFFFFh
00000001h
00000002h
80000000h
80000001h
80000001h
OOOOOOOOh
80000001h
00000005h
FFFFFFFEh
OOOOOOOOh
00000001h
7FFFFFFFh
80000000h
OOOOOOOOh
FFFFFFFFh
80000000h
00000004h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

16 Bits ADD!

ADDI IW, Rd [, W]

Rd + 16-bit immediate value ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0
0 I 0 0 1 I 0 I 1 I 1 0 I 0 0 R Rd

16-bit value

This ADDI instruction adds a sign-extended, 16-bit immediate value to the
contents of the destination register and stores the result in the destination
register. (The symbol IW in the syntax above represents a 16-bit, sign­
extended immediate value.)

The assembler uses the short (16 bit) add if the immediate value is previously
defined and is in the range -32,768 to 32,767. You can force the assembler
to use the short form by following the register operand with a W:

ADD! !W,Rd,w

If you use the W parameter and the value is outside the legal range, the assem­
bler discards all but the 16 LSBs and issues an appropriate warning message.

You can use the ADDI instruction with the AD DC instruction to perform mUlti­
ple-precision arithmetic.

Machine States 2

Status Bits

Examples

N 1 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before
AO

ADD! 1,AO FFFFFFFFh
ADD! 2,AO FFFFFFFFh
ADD! 1,AO 7FFFFFFFh
ADD! 2,AO 00000002h
ADD! 32767,AO 00000002h
ADD! OFFFFOOIOh,AO,W FFFFFFFOh

After
NCZV
01 1 0
0100
100 1
0000
0000
01 1 0

AO
OOOOOOOOh
00000001h
80000000h
00000004h
00008001h
OOOOOOOOh

13-35

ADDI Add Immediate, 32 Bits
~w:::;,~~~il':-m~~~~~.:::=-~_m~~~=m::>X*w-==;::I(W.=~_~.wI(~~~~::g""""""_~,,,

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-36

ADDI IL, Rd [, L]

Rd + 32-bit immediate value -'>0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010101011101 1 1 1 10101 1 1 R I Rd

16 LSBs of 32-bit value

16 MSBs of 32-bit value

This ADDI instruction adds a 32-bit, signed immediate value to the contents
of the destination register and stores the result in the destination register. (The
symbol IL in the syntax above represents a 32-bit, signed immediate value.)

The assembler uses the long (32 bit) ADDI if it cannot use the short form. You
can force the assembler to use the long form by following the register operand
with an L:

lI_DDI IL,Rd,L

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N 1 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AD NCZV AD

ADDI OFFFFFFFFh,AO FFFFFFFFh 1 1 00 FFFFFFFEh
ADDI BOOOOOOOh,AO FFFFFFFFh 0101 7FFFFFFFh
ADDI 80000000h,AO 7FFFFFFFh 1000 FFFFFFFFh
ADDI 3276B,AO 7FFFFFFFh 1001 80007FFFh
ADDI 2,AO,L FFFFFFFFh 0100 000OOOO1h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

ADDK K, Rd

Rd + 5-bit constant -- Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 0 I 0 I 1 I 0 I 0 I K R Rd

ADDK adds a 5-bit constant to the contents of the destination register and
stores the result in the destination register. (The symbol K in the syntax above
represents a 5-bit constant.)

The constant is treated as an unsigned number in the range 1-32; if the origi­
nal value of K=32, then K is converted to 0 in the opcode. The assembler issues
an error if you try to add 0 to a register with this instruction.

You can use the ADDK instruction with the ADDC instruction to perform multi­
ple-precision arithmetic.

N 1 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO NCZV AO

ADDK 1,AO FFFFFFFFh 01 1 0 OOOOOOOOh
ADDK 2,AO FFFFFFFFh 01 00 00OOOOO1h
ADDK 1,AO 7FFFFFFFh 1 001 80000000h
ADDK 1,AO 80000000h 1 000 80000001h
ADDK 32,AO 80000000h 1 000 80000020h
ADDK 32,AO 00000002h 0000 00000022h

13-37

ADDXY Add Registers in XY Mode

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-38

ADDXY RS,Rd

X half of Rs + X half of Rd - X half of Rd
Y half of Rs + Y half of Rd - Y half of Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2

Rs R I Rd

D

ADDXYadds the signed source X value to the signed destination X value, adds
the signed source Y value to the signed destination Y value, and stores the
result in the destination register. The source and destination registers are
treated as if they contained separate X and Y values. Any carry out from the
lower (X) half of the register does not propagate into the upper (Y) half.

If you only want to add the X halves together, then one of the Y values must
be a (the method for adding the Y halves is similar).

You can use this instruction to manipulate XY addresses in the register file;
ADDXY is also useful for incremental figure drawing.

Rs and Rd must be in the same register file.

1

N 1 if resulting X field is all as, 0 otherwise
C The sign bit of the Y half of the result
Z 1 if Y field is all as, 0 otherwise
V The sign bit of the X half of the result

Code Before After
A1 AO AO NCZV

ADDXY AI,AD OOOOOOOOh OOOOOOOOh OOOOOOOOh 1010
ADDXY AI,AD OOOOOOOOh 00000001h 00000001h 0010
ADDXY AI,AD OOOOOOOOh 00010000h 00010000h 1000
ADDXY AI,AD OOOOOOOOh 00010001h 00010001h 0000
ADDXY AI,AD OOOOFFFFh 00000001h OOOOOOOOh 1010
ADDXY AI,AD OOOOFFFFh 00010001h 00010000h 1000
ADDXY AI,AD OOOOFFFFh 000OOO02h 00000001h 0010
ADDXY AI,AD OOOOFFFFh 00010002h 00010001h 0000
ADDXY AI,AD FFFFOOOOh 00010000h OOOOOOOOh 1010
ADDXY AI,AD FFFFOOOOh 00010001h 00000001h 0010
ADDXY AI,AD FFFFOOOOh 00020000h 00010000h 1000
ADDXY AI,AD FFFFOOOOh 00020001h 00010001h 0000
ADDXY AI,AD FFFFFFFFh 00010001h OOOOOOOOh 1010
ADDXY AI,AD FFFFFFFFh 00010002h 00000001h 0010
ADDXY AI,AD FFFFFFFFh 00020001h 00010000h 1000
ADDXY AI,AD FFFFFFFFh 00020002h 00010001h 0000

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Add Immediate to in XY Mode ADDXYI

ADDXYI IL, Rd

LSW (X half) of 32-bit immediate value + X half of Rd - X half of Rd
MSW (Y half) of 32-bit immediate value + Y half of Rd - Y half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I R I Rd

16 LSBs of 32-bit immediate value (X half)

16 MSBs of 32-bit immediate value (Y half)

o

ADDXYI adds the 32-bit immediate value to the destination register in XY
mode and stores the result back into the destination register.

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N 1 if resulting X field is all as, 0 otherwise
C The sign bit of the Y half of the result
Z 1 if Y field is all as, 0 otherwise
V The sign bit of the X half of the result

Code Before After
AO AO NCZV

ADDXYI OOOOOOOOOh,AO OOOOOOOOh OOOOOOOOh 1 a 1 a
ADDXYI oooOOOOOOh,AO 00000001h 00000001h a a 1 a
ADDXYI oOOOOOOOOh,AO 00010000h 00010000h 000
ADDXYI OOOOOOOOOh,AO 00010001h 00010001h a 000
ADDXYI OOOOOFFFFh,AO 0000OOO1h OOOOOOOOh a 1 a
ADDXYI OOOOOFFFFh,AO 00010001h 00010000h 000
ADDXYI OOOOOFFFFh,AO 00000002h 00000001h a a 1 a
ADDXYI OOOOOFFFFh,AO 00010002h 00010001h a a a a
ADDXYI OFFFFOOOOh,AO 00010000h OOOOOOOOh 1 a 1 a
ADDXYI OFFFFOOOOh,AO 00010001h 00000OO1h a a 1 a
ADDXYI OFFFFOOOOh,AO 00020000h 00010000h 1 a a a
ADDXYI OFFFFOOOOh,AO 00020001h 00010001h a 000
ADDXYI OFFFFFFFFh,AO 00010001h OOOOOOOOh a 1 a
ADDXYI OFFFFFFFFh,AO 00010002h 00000001h a a 1 a
ADDXYI OFFFFFFFFh,AO 00020001h 00010000h 1 000
ADDXYI OFFFFFFFFh, AO 00020002h 00010001h a 000

13-39

AND AND Registers

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-40

AND Rs,Rd

RsAND Rd - Rd

15 14 13 12 11 10 9 8 7654321 o
Rs R I Rd

AND bitwise-ANDs the contents of the source register with the contents of the
destination register and then stores the result in the destination register. Rs
and Rd must be in the same register file.

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ ~ After
A1 AO NCZV AD

AND Al,AO FFFFFFFFh FFFFFFFFh xxOx FFFFFFFFh
AND Al,AO FFFFFFFFh OOOOOOOOh xx1x OOOOOOOOh
AND Al,AO OOOOOOOOh OOOOOOOOh xx1x OOOOOOOOh
AND Al,AO AAAAAAAAh 55555555h xx1x OOOOOOOOh
AND Al,AO AAAAAAAAh AAAAAAAAh xxOx AAAAAAAAh
AND Al,AO 55555555h 55555555h xxOx 55555555h
AND Al,AO 55555555h AAAAAAAAh xx1x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

AND Immediate ANDI

AND! IL, Rd

32-bit immediate value AND Rd ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I 0 I R I Rd

1 s complement of 16 LSBs of IL

1 s complement of 16 MSBs of IL

ANDI bitwise-ANDs the value of a 32-bit immediate value with the contents of
the destination register and then stores the result in the destination register.
(The symbollL in the syntax above represents a 32-bit immediate value.)

This is an alternate mnemonic for ANDN! IL, Rd. Note that the assembler
stores the 1 s complement of IL in the 2 extension words.

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ Before
AO

AND! OFFFFFFFFh,AO FFFFFFFFh
AND! OFFFFFFFFh,AO OOOOOOOOh
AND! OOOOOOOOh,AO OOOOOOOOh
AND! OAAAAAAAAh,AO 55555555h
AND! OAAAAAAAAh,AO AAAAAAAAh
AND! 55555555h,AO 55555555h
AND! 55555555h,AO AAAAAAAAh

After
NCZV
X x Ox
x x 1 x
x x 1 x
x x 1 x
x x Ox
x x Ox
x x 1 x

AO
FFFFFFFFh
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
AAAAAAAAh
55555555h
OOOOOOOOh

13-41

AND-Not Immediate ANONI

Syntax ANONI IL, Rd

Execution (NOT 32-bit immediate value) AND Rd ~ Rd

Instruction Words

Description

Machine States

Status Bits

Examples

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I 0 I R I Rd

16 LSBs of IL

16 MSBs of IL

ANDNI bitwise-ANDs the 1 s complement of a 32-bit immediate value with the
contents of the destination register and then stores the result in the destination
register. (The symbol IL in the syntax above represents a 32-bit immediate
value.) ANDI also uses this opcode.

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z
V

1 if the result is 0, 0 otherwise
Unaffected

Code Before
AO

ANDNI OFFFFFFFFh,AO FFFFFFFFh
ANDNI OFFFFFFFFh,AO OOOOOOOOh
ANDNI OOOOOOOOh,AO OOOOOOOOh
ANDNI OAAAAAAAAh,AO 55555555h
ANDNI OAAAAAAAAh,AO AAAAAAMh
ANDNI 55555555h,AO 55555555h
ANDNI 55555555h,AO AAAAAAMh

After
NCZV
x x 1 x
x x 1 x
x x 1 x
x x a x
x x 1 x
x x 1 x
x x a x

AO
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
55555555h
OOOOOOOOh
OOOOOOOOh
AAAAAAMh

13-43

BLMOVE Block Move ,

Syntax BLMOVE 8, D

Execution n bits from address in SADDR --00 n bits at address in DADDR

Instruction Words

Description

13-44

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1010101010101010111111111010 S 0

BLMOVE transfers a specified number of bits of data starting from a specified
source address to a specified destination address. BLMOVE is unusual in 2
respects:

Q BLMOVE deals with a continuous block of memory (no pitch concept as
in PIXBLT).

Q BLMOVE moves a specified number of bits of data (not pixels).

The values of 8 and D determine how a block is moved:

Q If 8=1 and D=1, then
BO, the source address, may be aligned on any bit boundary.

82, the destination address, may be aligned on any bit boundary.
87 should contain the number of bits to be moved.

As BLMOVE executes, B2 is incremented to reflect the current state of the
move. At the end ofthe move, BO is incremented by the initial value stored
in B7 so that BO points to the bit that would have been moved next, had the
move continued. At the end ofthe move, B2 pOints to the bit after the last bit
moved.

Q If 8=0 and D=1, then
BO, the source address, must be 32-bit long-word aligned.
B2, the destination address, may be aligned on any bit boundary.

B7 should contain the number of bits to be moved.

As BLMOVE executes, B2 is incremented to reflect the current state ofthe
move; BO remains fixed. At the end of the move, 80 is incremented by the
initial value stored in 87, ando82 points to the bit after the last bit moved.

Q If 8=1 and D=O, then
BO, the source address, may be aligned on any bit boundary.
B2, the destination address, must be 32-bit long-word aligned.

B7 should contain the number of bits to be moved.

As BLMOVE executes, B2 and BO remain fixed. At the end of the move, B2
and BO are incremented by the initial value stored in B7.

Q If 8=0 and D=O, then
BO, the source address, must be 32-bit long-word aligned.
B2, the destination address, must be 32-bit long-word aligned.

B7 should dontain the number of bits to be moved.
As BLMOVE executes, B2 and BO remain fixed. Atthe end of the move, B2
and BO are incremented by the initial value stored in B7.

TMS34020 Assembly Language Instruction Set

Interrupts

In all cases, the DYDX register initially contains a count of the number of bits
to be moved. This count is decremented as BLMOVE executes, so DYDX
reflects the number of bits remaining to be moved. At the end of the move,
DYDX will contain O.

If BLMOVE is interrupted, the PC is decremented to pOint back to the BLMOVE
instruction, the PC and ST are pushed onto the stack, and the program control
branches to the appropriate interrupttrap routine. At the end ofthe trap routine,
BLMOVE restarts, so the trap routine must restore the B-file registers used by
BLMOVE.

Implied Operands Register Name Format Description

80 SADDR Linear Source block address

82 DADDR Linear Destination block address

87 DYDX Integer Number of bits to move

Machine States

Status Bits

complex instruction

N Unaffected

Examples

STK
SADDR
DADDR
DYDX
TEMP
_memcpy:

C Unaffected
Z Unaffected
V Unaffected

This example shows how the memcpy C runtime-support function could be
implemented using this instruction. The memcpy function is invoked with 3
arguments on the C parameter stack (pointed to by A14):

s1 destination address
s2 source address
n number of BYTES to move

Note that this function does not check for overlapping memory areas

.globl _memcpy

.set A14
provide reference for external calls
C-parameter stack pointer

.set BO Source address register

.set B2 Destination address register

.set B7 Delta X/delta Y register

.set B14 Temporary register

rnrntm SP,SADDR,DADDR,DYDX,TEMP isave the required registers
move STK,TEMP copy C-stack to B-file register
move *-TEMP,DADDR,l pop sl (FS 1 assumed to be 32)
move *-TEMP,SADDR,l pop s2
move *-TEMP,DYDX,l pop n (byte count)
move TEMP,STK Update C stack
sll 3,DYDX convert to a bit count
blmove 1,1 i perform the block move
rnrnfm SP,SADDR,DADDR,DYDX,TEMP i restore the required registers
rets 2 i return to caller (with C-calling convention)

13-45

~TST Te"st Ref/!!ter Bit, Con!tant

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-46

BTST constant, Rd

Set status on value of constant in Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 0 I 0 I 1 I 1 I 1 I 1s complement of constant R Rd

BTST tests a bit in the destination register and sets status bit Z accordingly.
This form of the BTST instruction uses a 5-bit constant to specify the bit in Rd
that is tested. The constant value must be an absolute expression that evalu­
ates to a number in the range 0 to 31 ; if the constant value is greater than 31,
the assembler issues a warning and truncates the value of the constant to its
5 LSBs.

Note that the assembler 1 s-complements the constant value before inserting
it into the opcode.

1

N Unaffected
C Unaffected
Z 1 if the bit tested is 0, a if the bit tested is 1
V Unaffected

.crum Before After
AO NCZV

BTST O,AO 55555555h xx OX
BTST I5,AO 55555555h xx 1 x
BTST 3I,AO 55555555h xx 1 x
BTST O,AO AAAAAAAAh xx 1 x
BTST I5,AO AAAAAAAAh xx OX
BTST 3I,AO AAAAAAAAh xx OX
BTST O,AO FFFFFFFFh xx OX
BTST I5,AO FFFFFFFFh xx OX
BTST 3I,AO FFFFFFFFh xx OX
BTST O,AO OOOOOOOOh xx 1 x
BTST I5,AO OOOOOOOOh xx 1 x
BTST 3I,AO OOOOOOOOh xx 1 x

TMS34020 Assembly Language Instruction Set

CALL Call Subroutine Indirect

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Example

13-48

CALL Rs

PC' - TOS
Rs - PC
SP-32 - SP

15 14 13 12 11 10 9 8 765 4 3 2 o
Rs

CALL pushes the address of the next instruction (PC') onto the stack, then
jumps to a subroutine whose address is contained in the source register. You
can use this instruction for indexed subroutine calls. Note that when Rs is the
SP, SP is decremented after being written to the PC (the PC contains the origi­
nal value of SP).

The TMS34020 always sets the 4 LSBs ofthe program counter to 0, so instruc­
tions are always word aligned.

The stack pOinter (SP) pOints to the top of the stack; the stack is located in
external memory. The stack grows in the direction of decreasing linear
addresses. PC' is pushed onto the stack, and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pOinter alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction (page 13-220) to return from a subroutine.

3 + (1) if the SP is aligned
3 + (4) if the SP is not aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CALL AO

~
AO PC
01234560h 04442210h

Af!m:
SP PC
F000020h 01234560h

SP
FOOOOOOh

Memory contains the following values after instruction execution:

Address
F000010h
F000020h

Data
2220h
0444h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Example

Call Subroutine Absolute CALLA

CALLA Address

PC' - TOS
Address - PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 1 I 1 I 1 I 1

16 LSBs of Address

16 MSBs of Address

CALLA pushes the address of the next instruction (PC') onto the stack, then
jumps tothe address contained in the 2 extension words. The Address operand
is a 32-bit absolute address. This instruction is used for long or externally refer­
enced calls (greater than ±32K words).

The 4 LSBs of the program counter are always set to 0, so instructions are
always word aligned.

The stack painter (SP) paints to the top of the stack; the stack is located in
external memory. The stack grows in the direction of decreasing linear
address. PC' is pushed onto the stack, and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack painter alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction (page 13-220) to return from a subroutine.

3 if immediate data is long-word aligned
4 if SP is also long-word aligned
3 + (3) if immediate data is not long-word aligned
4 + (3) if SP is also not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CALLA 01234560h

Before
PC
04442210h

SP
OF000020h

After
PC
01234560h

SP
OFOOOOOOh

Memory contains the following values after instruction execution:

Address Data
F000010h 2240h
F000020h 0444h

13-49

CALLR Call Subroutine Relative

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-50

lR

CALLR Address

PC' - TOS
PC' + (offset x 16) - PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CALLR pushes the address of the next instruction (PC') onto the stack, then
jumps to the subroutine at the address specified by the sum ofthe next instruc­
tion address and the signed word offset. This instruction is used for calls within
a specified module or section.

The Address operand is a 32-bit address within ±32K words (-32,768 to
32,767) of the PC. The address must be defined within the current section; the
assembler does not accept an address value that is externally defined or
defined within a different section than PC'. The assembler calculates the offset
value for the opcode as (Address - PC')/16, where PC' is the address of the
instruction word immediately following the second word of the CALLR instruc­
tion.

The 4 LSBs of the program counter are always set to 0, so instructions are
always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located in
external memory. The stack grows in the direction of decreasing linear
address. The PC is pushed on to the stack, and the SP is predecremented by
32 before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction (page 13-217) to return from a subroutine.

3 + (1) if the SP is aligned
3 + (4) if the SP is not aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before
PC SP

After
PC SP

CALLR 0447FFFOh 04400000h OF000020h 0447FFFOh OFOOOOOOh
CALLR 04480000h 04400000h OF000020h 04480000h OFOOOOOOh

Memory contains the following values after instruction execution:

Address
F000010h
F000020h

Data
0020h
0440h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

CEXEC size, command [, 10] [,L]

10, command -+ Coprocessor command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
0101010101111101010101010101010

8 LSBs of coprocessor command 1 size 1 0 1 0 1 0 1 0 1 0 1 0 1 0
coprocessor ID 1 13 MSBs of coprocessor command

CEXEC sends a 21-bit command to a coprocessor. The coprocessor may
operate on the command without any transfer of data. The size operand is a
value of a or 1 (0 is the default); the coprocessor interprets the size bit to deter­
mine the size of the values to be operated upon:

[J If size = a, then the coprocessor uses 32-bit values.

[J If size = 1, then the coprocessor uses 64-bit values.

The 10 operand is an optional3-bit coprocessor identification code; if you don't
supply this operand, it defaults the value specified in the coprocessor directive.

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

"8
coprocessor command

'~--------~v~---------J/ '~ ____ ~~~ ____ -J/

Machine States

Status Bits

Example 1

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

The TMS34020 assembler checks the coprocessor command mode bits to
determine which form of CEXEC is used. If both mode bits (6 and 7 of the
coprocessor command) are a, a short CEXEC is generated, otherwise a long
CEXEC is generated. You can force a long CEXEC by placing an ,L at the end
of the CEXEC operand.

2 (1) if the immediate data is long-word aligned
3 (1) if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This example sends coprocessor 2 the instruction wxyz and tells the coproces­
sor to use 32-bit values.

CEXEC 0,wxyz,2

13-51

ExampJe2

ExampJe3

13-52

This example sends the default coprocessor the instruction qrst and tells the
coprocessor to use 64-bit values.

CEXEC l,qrst

This example compares the single-precision (Size = 0, T = 1) contents
(fpuop = 00010) of TMS34082 coprocessor 3 (10 = 3) registers RA3 (ra =
0011) and RB4 (rb = 0100). The result is stored in the coprocessor's RBO regis­
ter (rd = 10000).

CMPF_RA3_RB4 .set 069005h
CEXEC O,CMPF_RA3_RB4,3; size = 0 ID = 3

= 69005h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Coerocessor Internal 0eeration Execution, Short CEXEC

CEXEC size, command [, 10]

10, command - Coprocessor command

6 5 4 3 2
6 LSBs of coprocessor command

The CEXEC instruction sends a 21-bit command to a coprocessor. This
version of CEXEC outputs bits 14 and 15 as 0 when sending the instruction,
so that 19 bits of the 21-bit command may be set to any combination of 1 sand
Os necessary to represent a particular coprocessor command (all 21 bits are
valid-but only 19 may be specified). The coprocessor operates on the instruc­
tion without any transfer of data. The size operand is a value of 0 or 1; it deter­
mines the size of the values that the coprocessor uses:

Q If size = 0, then the coprocessor uses 32-bit values.

Q If size = 1, then the coprocessor uses 64-bit values.

The 10 operand is an optional3-bit coprocessor identification code; if you don't
supply this operand, it defaults to the value specified in the coprocessor direc­
tive.

The assembler uses this version of CEXEC when bits 6 and 7 of the coproces­
sor instruction (corresponding to bits 14 and 15 on the LAD bus) are O. You can
force a long CEXEC by placing an ,L at the end of the CEXEC operand.

The output of this instruction on the LAD bus at ALTCI-i low during the
command cycle (when SF is high) is as follows:

coprocessor command
'~ ____ ~y,. ____ -J/ '-----..y"---"/

Machine States

Status Bits

13 MSBs 6 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

2 (1)

N Unaffected
C Unaffected

Z Unaffected
V Unaffected

13-53

CEXEC Coprocessor Internal Operation Execution, Short
m m':l: U1Ul' /<:H »:'I:'lII':l2~~~_rm:H 1f 1 mrm'll:'IHH 1 ill' ~~_~N::'<:

Example 1

Example 2

Example 3

13-54

This example sends coprocessor 2 the instruction wxyz and tells the coproces­
sor to use 32-bit values.

CEXEC O,wxyz,2

This example sends coprocessor 0 the instruction qrst and tells the coproces­
sor to use 64-bit values.

CEXEC 1,qrst

This example divides the double-precision (Size = 1, T = 1) contents
(fpuop = 01001) of the default TMS34082 coprocessor registers RA2
(ra = 0010) by RS7 (rb = 0111). The result is stored in the coprocessor's RA8
register (rd = 01000).

DIVD_RA2_RB7 .set 04E813h
CEXEC 1,DIVD_RA2_RB7 size = 1 ID = default

= 4E813h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Example

CLIP

CLIP destination array
adjusted DYDX -+ DYDX
adjusted DADDR -+ DADDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0

CLIP adjusts the pixel array, specified by the XY address contained in DADDR
and the XY dimensions contained in DYDX, to fit within the rectangular window
specified by WSTART and WEND. The adjusted pointer and dimensions
replace the original values in DADDR and DYDX. If the array currently fits in
the window and no adjustment is necessary, the V bit will be set to O. Ifthe array
lies entirely outside the window, then the Z bit is set to a 1, and DADDR and
DYDX are left unchanged.

CLIP is the only instruction that can deal with overflowing arrays; an overflow­
ing array is different from an array that simply strays outside a window. For
more information, refer to subsection 12.7:4.4, Clip Instruction for Preclipping
a Pixel Array, on page 12-23.

Register Name

82 DADDR

85 WSTART

86 WEND

87 DYDX

Complex Instruction

N Unaffected
C Unaffected

Format Description

XV Destination array address

XY Window start corner

XV Window end corner

XV Array dimensions

Z Z = 1 if the array lies entirely outside window, 0 ifthe array lies all or partially
inside the window

V 1 if any portion of the array lies outside the window, 0 otherwise

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLIP instruction is used to clip the rectangle to the screen.

13-55

CLIP Clip Ar~aK. to Fit Within a Window

13-56

This routine makes the following assumptions:

Q These 8 registers and I/O registers have been set up by the calling
program:

8-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1

I/O registers CONTROL, CONVDP, PSIZE, PMASK and CON FIG

Q The system contains a global flag _vfill_ok which is cleared if the VFILL
is not possible. Reasons for this may be:

• DPTCH is not an integral multiple of BOh

• PSIZE is 1 or 2
• Pixel processing is not set to replace

• Transparency is not set
• The system does not contain VRAMs which support this feature

DADDR .set
DYDX .set
CONTROL • set

B2
B7
OCOOOOOBOh

;Destination address register
,Delta X/delta Y register
;Control register

.globl

.ref

nuntm
move
move
move
sll
movy
move
move
move
sll
movy
move
jrz
clip
jrz
cvdxyl
vlcol
vfill
jruc

no_vfill:
fill

exit:
nunfm
rets

_fill_rect
vfill ok - -

provide reference for external calls
flag to enable VFILLs

SP,B2,B7,B10,B11,B12
A14,B10 ; move

;save required registers
c-stack pointer into B-file

;get width *-B10,DYDX,1
*-B10,B12,1
16,B12
B12,DYDX
*-B10,DADDR,1
*-B10,B12,1
B10,A14
16,B12
B12,DADDR
@_vfill_ok,AS,l
no_vfill

exit
DAD DR

L
exit

;get height

;concatenate width & height
;get xleft
;get ytop
;restore c-stack pointer

;concatenate xleft & ytop
;get state of vfill flag

;clip to the window
;if outside the window, exit
;convert to linear dest address
;load VRAM color latches
;perform linear fill

XY ;fill the rectangle using standard fill

SP,B2,B7,B10,B11,B12
2

;restore required registers

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

CLR Rd

RdXOR Rd - Rd

15 14 13 12 11. 10 9 8 76543 2 1 o
Rd I R I Rd

CLR clears the destination register by XORing the contents ofthe register with
itself. This is an alternate mnemonic for XOR Rd,Rd (page 13-266).

1

N Unaffected
C Unaffected
Z 1
V Unaffected

~ Before After
AO AO NCZV

CLR AO FFFFFFFFh OOOOOOOOh xx1x
CLR AO 0OOOOOO1h OOOOOOOOh xx1x
CLR AD 80000000h OOOOOOOOh xx1x
CLR AO AAAAAAAAh OOOOOOOOh xx1x

13-57

CLRC Clear Carry
~~r:>l'l~::t:lml~lm'tr 'l':

Syntax

Execution

Instruction Words

Description

Machine States

StCltus Bits

Examples

13-58

CLRC

o-C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

o I 0 1 I 0 o I 0 I 0 o

CLRC sets the C (carry) bit in the status registerto 0; the rest ofthe status regis­
ter is unaffected. Use SETC instruction (page 13-226) to set the C bit.

This instruction is useful for returning a true/false value (in the carry bit) from
a subroutine without using a general-purpose register.

1

B Unaffected

C 0
Z Unaffected
V Unaffected

Code ~ After
ST NCZV ST NCZV

CLRC FOOOOOOOh 1 1 1 1 BOOOOOOOh 1 01 1
CLRC 40000010h 01 00 00000010h 0000
CLRC BOOOO01Fh 1 0 1 1 BOOOO01Fh 1 01 1

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

CMOVCG Rd1 [, Rd2 [, size]], command [, ID]

10, command -- Coprocessor command
Coprocessor -- Rd1, Rd2

15 14 13 12 11 10 9 8 7 6 5 4 3 2
010101010111110101 1 1 1 1 R 1

8 LSBs of coprocessor command 1 size 1 01 0 1 R 1
coprocessor ID I 13 MSBs of coprocessor command

o
Rd1

Rd2

CMOVCG moves one or two 32-bit values from a coprocessor to the specified
TMS34020 destination register or registers:

[J If size = 0, then the coprocessor moves one 32-bit value into Rd1. Rd2 is
ignored; bits 0 to 4 of the second instruction word are set to O.

[J If size = 1, then the coprocessor moves a 64-bit value in to Rd1 and Rd2.
The order in which the MSBs and LSBs are transferred depends on the
coprocessor used.

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to define the source data
for the move. The ID operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified in the
coprocessor directive.

The output of this instruction on the LAD bus at ALTCH low during the
command cycle (when SF is high) is as follows:

coprocessor command

'----------"'--------" '-----..""'-------/

Machine States

Status Bits

13 MSBs 8 LSBs

1 is the coprocessor parameter index bit. For more information, refer to Section
10.3, Formats of Commands Passed to a Coprocessor, on page 10-5.

If size = 0

If size = 1

4 if the immediate data is long-word aligned
5 if the immediate data is not long-word aligned
5 if the immediate data is long-word aligned
6 if the immediate data is not long-word aligned

N 1 if the last 32-bit value read is negative, 0 otherwise
C Unaffected
Z 1 if the last 32-bit value read is 0, 0 otherwise
V 0

13-59

~MOVCG Move Coprocessor to TMS34020 Registers

Example 1 This example moves 32 bits, specified by coprocessor instruction wxyz, from
coprocessor 2 to register AO.

Example 2

Example 3

13-60

CMOVCG AO,wxyz,2

This example moves one 64-bit value, specified by coprocessor instruction
jklm, from coprocessor 5 to registers A3 and B7.

CMOVCG A3,B7,1,jklm,5

This example moves a double-precision floating-point value from TMS34082
coprocessor number 2. The 32 MSBs are stored in AO and the 32 LSBs are
stored in A 1. This example assumes that the LOAD bit of the TMS34082
configuration register is set for MSBs transferred before LSBs.

The coprocessor command moves a double-precision (T = 1, size = 1) value
from the coprocessor register (fpuop = 00111) RB2 (rd = 10010) to a
TMS34020 register (md = 01) .

• set 00124FH
CMOVCG AO,Al,1,MOV_RB2_20,2; size = 1 ID = 2

= 0124Fh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

CMOVCM

CMOVCM *Rd+, count, size, command [, IOJ

10, command - Coprocessor command

If size = 0, Repeat count times (1 s count s 32):
Coprocessor - *Rd
Rd + 32 - Rd

If size = 1, Repeat count times (1 s count s 16):
Coprocessor -+ *Rd
Rd + 32 -+ Rd
Coprocessor - * Rd
Rd + 32 - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0101010101111101110111RI Rd

8 LSBs of coprocessor command I size I 0 I 0 I transfers

coprocessor 10 I 13 MSBs of coprocessor command

o

This version of the CMOVCM instruction moves one or more values (depend­
ing on the value of transfers) from a coprocessor to memory. Before instruction
execution, Rd contains the 32-bit address of the first location in memory; after
each transfer, the value in Rd is incremented by 32 to point to the next
address.The size operand is a value of 0 or 1; it determines the size of the
values that are transferred:

Q If size = 0, then count specifies the number of 32-bit transfers to make.
In this case, count must be a value of 1 -+ 32.

Q If size = 1, then count specifies the number of 64-bit transfers to make.
In this case, count must be a value of 1 -+ 16.

The value of transfers is set by the assembler, according to the values of size
and count:

Q If size == 0 and count = 1 -+ 31 ,
If size = 0 and count = 32,

Q If size = 1 and count = 1 - 15,
If size = 1 and count = 16,

then transfers = count
then transfers = 0

then transfers = 2x count
then transfers = 0

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to specify the source data
for the move. The 10 operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified in the
coprocessor directive.

13-61

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

~--------------------1615--------------··8
I

coprocessor command

'~--------~,,~--------~/ '~----~~~----~/

Machine States

Status Bits

Example 1

Example 2

Example 3

13-62

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

5 + [transfers -1] if the immediate data is long-word aligned
6 + [transfers -1] if the immediate data is not long-word aligned
(assumes that there are no 32-bit transfers)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This example moves thirty-two 32-bit values, specified by the coprocessor
instruction wxyz, to memory from coprocessor 2 (register AO contains the
address of the first memory location).

CMOVCM *AO+,32,O,wxyz,2

This example moves eight 64-bit values, specified by the coprocessor instruc­
tion qrst, to memory from the default coprocessor (register B7 contains the
address of the first memory location).

CMOVCM *B7+,8,1,qrst

This example moves 5 (count = 5) 32-bit integers from coprocessor 1 (ID = 1)
to the postincremented memory block pointed to by A3 . The coprocessor
command specifies a TMS34082 Move To Host Memory (fpuop = 00111,
md = 10) of integer (size = 0, T = 0) quantities starting in coprocessor register
RB3 (rd = 10011).

The memory location pOinted to originally by A3 will receive the first 32-bit
integer transferred (from coprocessor register RB3). Memo\), location A3+ 1 Oh
will receive the second integer (from RB4). The third through fifth integers will
be placed into A3+20h, A3+30h, and A3+40h (from RB5, RB6, and RB7
respectively) .

MOVE5_RB3 .set 00138Eh
CMOVCM *A3+,5,O,MOVE5_RB3,1; count=5 size=O ID=l

= 0138Eh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

CMOVCM -*Rd, count, size, command [, /OJ

10, command - Coprocessor command

If size= 0, Repeat count times (1 s count s 32):
Rd-32 - Rd
Coprocessor - *Rd

If size = 1, Repeat count times (1 s count s 16):

Rd-32 - Rd
Coprocessor - *Rd
Rd-32 - Rd
Coprocessor - *Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2
oioi0iolol1111011J110lRJ Rd

8 LSBs of coprocessor instruction I size I 0 I 0 I transfers

coprocessor 10 I 13 MSBs of coprocessor instruction

o

This version of the CMOVCM instruction moves one or more values (depend­
ing on the value of transfers) from a coprocessor to memory. Before instruction
execution, Rd contains the 32-bit address of the first location in memory;
before each transfer, the value in Rd is decremented by 32 to pOint to the next
address.The size operand is a value of 0 or 1; it determines the size of the
values that are transferred:

a If size = 0, then count specifies the number of 32-bit transfers to make.
In this case, count must be a value of 1 - 32.

a If size = 1, then count specifies the number of 64-bit transfers to make.
In this case, count must be a value of 1 - 16.

The value of transfers is set by the assembler according to the values of size
and count: .

a If size = 0 and count = 1 - 31,
If size = 0 and count = 32,

a If size = 1 and count = 1 - 15,
If size = 1 and count = 16,

then transfers = count
then transfers = 0

then transfers = 2x count
then transfers = 0

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to specify the source data
for the move. The 10 operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified in the
coprocessor directive.

13-63

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

-8

coprocessor command

'~--------~~~--------~/ '~----~,,~------/

Machine States

Status Bits

Example 1

Example 2

Example 3

Example 4

13-64

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

5 + [transfers -1] if the immediate data is long-word aligned
6 + [transfers -1] if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This example moves nineteen 32-bit values, specified by coprocessor instruc­
tion wxyz, from coprocessor 3 to memory (register A3-32 specifies the first
memory address).

CMOVCM -*A3,19,O,wxyz,3

This example moves two 64-bit values, specified by coprocessor instruction
qrst, from the default coprocessor to memory (register A3-32 specifies the first
memory address).

CMOVCM -*AO,2,1,qrst

This example moves eight 64-bit values, specified by coprocessor instruction
wxyz, from coprocessor 3 to memory (register 87-32 specifies the first
memory address).

CMOVCM -*B7,B,1,wxyz,3

This example moves 5 (count = 5) 32-bit quantities (size = 0) from the default
TMS34082 coprocessor to the predecremented memory block pointed to by
A 1. The coprocessor command specifies a Move to Host Memory (fpuop =
00111, md = 10) of integer quantities (size = 0, T = 0), with the startin'g source
coprocessor register RA1 (rd = 00001).

The first integer is transferred from the default coprocessor's RA 1 register, the
second integer number from RA2, the third from RA3, the fourth from RA4, and
the last from RA5.

TMS34020 Assembly Language Instruction Set

The memory location pointed to by A 1-1 Oh is the destination for the 32 bits of
the first integer to be transferred. Memory location A 1-20h is the destination
for the second integer, with the remaining destination addresses as A 1-30h,
A 1-40h, and A 1-50h. After the transfer, A 1 will pOint to the last integer trans­
ferred.

MOVE RAl 20 .set 00018Eh
CMOVCM *-Al,5,0,MOVE_RA1_20;count = 5 size = 0

;ID = default

= 0018Eh

13-65

Syntax

Execution

Instruction Words

Description

CMOVCS command [, 10]

10, command -+ Coprocessor command
Coprocessor -+ ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010101010111110 I 011111010101010

8 LSBs of coprocessor command I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1

coprocessor ID I 13 MSBs of coprocessor command

CMOVCS moves one value from a coprocessor to the TMS34020 status regis­
ter. (Note that this is a special coding of the CMOVCG instruction.) The value
is masked by the TMS34020 so that its 4 MSBs are placed in the status register
N, C, Z, and Vbits. The remaining bits from the coprocessor are ignored by
the TMS34020.

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to specify the source data
for the move. The 10 operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified in the
coprocessor directive.

The output of this instruction on the LAD bus at ALTCH low during the
command cycle (when SF is high) is as follows:

"8
coprocessor command

'~--------~~~--------~/ '~----~~~----~/

Machine States

Status Bits

Example 1

Example 2

13-66

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

4 if the immediate data is long-word aligned
5 if the immediate data is not long-word aligned

N Set to bit 31 from the coprocessor data.
C Set to bit 30 from the coprocessor data.
Z Set to bit 29 from the coprocessor data.
V Set to bit 28 from the coprocessor data.

This example moves data from coprocessor 2 to the status register after issu­
ing the coprocessor instruction wxyz.

CMOVCS wxyz,2

This example moves data from the default coprocessor to the status register
after issuing the coprocessor instruction qrst.

CMOVCS qrst

TMS34020 Assembly Language Instruction Set

Move One TM34020 Register to Coprocessor CMOVGC
l«,:w"~·;"~<",:~:~,~,,,,,,·"',r<'~,"''';':~:<i:N',~:·>'''~<~~·<~:''''''=<=:<''<~~~WN~<':«l<'''''~;;:'<4M:'~'.-.<:'<'''%'''~~''''''~~>:':''<:_:#l<,<:;(«<(~'~l?)·{<~'>O.~~~~:~~~~<~~;:>~~··lt>h~"'~""«:.''lo~~~~,>: __ ~~<:~V~~~~~~_

Syntax

Execution

Instruction Words

Description

CMOVGC Rs, command [, 10]

10, command -- Coprocessor command
Rs -- Coprocessor

15 14 13 12 11 10 9 8 7 6 5 4 3 2
0101010101111101010111 RJ

o
Rs

8 LSBs of coprocessor command 1010101010101010
coprocessor ID 1 13 MSBs of coprocessor command

This version of the CMOVGC instruction moves the contents of a TMS34020
register to a coprocessor. The command operand specifies an instruction (21
bits of information define the instruction) that the coprocessor should execute
to specify the destination for the move. The 10 operand is an optional 3-bit
coprocessor identification code; if you don't supply this operand, it defaults to
the value specified in the coprocessor directive.

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

"8
coprocessor command

'~--------__ ~r---------J/ '~----__ "r----~/

Machine States

Status Bits

Example 1

Example 2

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

2 (1) if the immediate data is long-word aligned
3 (1) if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This example moves 32 bits to coprocessor 2 (the destination is specified by
the coprocessor instruction wxyz) from register AO.

CMOVGC AO,wxyz,2

This example moves 32 bits to the default coprocessor (the destination is
specified by the coprocessor instruction qrst) from register B7.

CMOVGC B7,qrst

13-67

Example 3

13-68

This example loads a TMS34082 register with a 32-bit integer from a
TMS34020 register. The source register is 85 and the destination register is
in the default coprocessor.

The coprocessor command loads (fpuop = 00110) the 32-bit integer (T = 0,
size = 0), sent from the TMS34020 register (md = 01), into register RA3 (rd =
00011).

MOVE_R3 .set 00034CH
CMOVGC BS,MOVE_RA3 ; ID = default

0034Ch

TMS34020 Assembly Language Instruction Set

Move Two TMS34020 Registers to Coprocessor CMOVGC
~'<~}:'~»>~,~''''''~~''''<*~m~;~~»mJ..~::W,:''I>::'~,~-<:{';:;::M·}l:::~'1'l'»l'''''~~"*~:'!<X''''''''''''~~'>~=~"=:~~=~~~).\"'}1.o=::>">m'I'i'>.">_<$lo,'-::.~¥~~~~,-}~~mI~_~.;.; ... ~~@~;.:,; ~_''liI' vrm l:::::'~l~ l: -:c: 'Ill'$lr~ __ 'AII

Syntax

Execution

Instruction Words

Description

CMOVGC RS1, RS2, size, command [, /OJ

/0, command ~ Coprocessor command
RS1, RS2 ~ Coprocessor

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0101010101111101011101 R 1

8 LSBs of coprocessor command I size I 0 I 0 I R I
coprocessor ID I 13 MSBs of coprocessor command

o
RS 1

RS2

This version ofthe CMOVGC instruction moves the contents of two TMS34020
registers to a coprocessor.The size operand is a value of a or 1 ; the coproces­
sor interprets the size bit to determine how to move the data:

a If size = a, then the values that are moved are two separate 32-bit values.

a If size = 1, then the values that are moved are two halves of a single 64-bit
value.

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to specify the destination
for the move. The /0 operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified in the
coprocessor directive.

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

~8

coprocessor command

'~--------~~~--------~/ '~----~,,-----~/

Machine States

Status Bits

Example 1

13 MSBs 8 LSBs

/ is the coprocessor parameter index bit. For more information, referto Section
10.3, Formats of Commands Passed to a Coprocessor, on page 10-5.

3 (1) if the immediate data is long-word aligned
4 (1) if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This instruction moves two 32-bit values to coprocessor 2 (the destination is
specified by the coprocessor instruction wxyz)from registers AO and 83.

CMOVGC AO,B3,0,wxyz,2

13-69

Example 2

Example 3

13-70

This instruction moves one 54-bit value to the default coprocessor (the destina­
tion is specified by the coprocessor instruction qrst)from registers B7 and B8.

CMOVGC B7,B8,1,qrst

This example moves two 32-bit floating-point values (in registers B3 and B4)
into a TMS34082 coprocessor number 0 register.

The coprocessor command loads (fpuop = 00110) the 32-bit floating point (T
= 1, size = 0) data from the TMS34020 registers (md=01) into RA 1 (rd = 00001)
and RA2.

MOVEF RAI . set 00014DH
CMOVGC B3,B4,O,MOVEF_RAl,O size = 0 1D = 0

0014Dh

TMS34020 Assembly Language Instruction Set

CMOVMC Move fr~m Memory Indirect (Postincrement) to Coprocessor, Constant Count

"8
coprocessor command

'~--------~vr--------~/ '~ ____ ~,,~ ____ -J/

Machine States

Status Bits

Example 1

Example 2

Example 3

13-72

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

5 + [transfers -1] if the immediate data is long-word aligned
6 + [transfers -1] if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This instruction moves thirty-two 32-bit values to coprocessor 2 (the destina­
tion is specified by the coprocessor instruction wxyz)from memory (register AO
specifies the first memory address).

CMOVMC *AO+,32,O,wxyz,2

This instruction moves eight 64-bitvalues to the default coprocessor (the desti­
nation is specified by the coprocessor instruction wxyz) from memory (register
B7 specifies the first memory address).

CMOVMC *B7+,8,1,wxyz

This example moves 3 (count = 3) 64-bit floating-point quantities (size = 1, T
= 1) from the memory block pointed to by A3 to coprocessor 1 (ID = 1). The
coprocessor command specifies a TMS34082 move to coprocessor registers
(fpuop = 00110) from TMS34020 memory (md = 10) with the starting destina­
tion of RB5 (rd = 10101). This example assumes that the LOAD bit of the
TMS34082 configuration register is set to transfer the MSBs of the double
values before the LSBs.

The memory location pOinted to by A3 should contain the 32 MSBs of the first
double number to be transferred. Memory location A3+ 1 Oh should contain the
32 LSBs of the first double number. The MSBs ofthe second number are found
at A3+20h, followed by its LSBs at A3+30h, and then the MSBs and LSBs of
the third double number.

TMS34020 Assembly Language Instruction Set

The first 64-bit single-precision number is transferred to coprocessor one reg­
ister RB5, the second double number to RB6 and the third to RB7.

MOVD3_RB5 equ 00158Dh
CMOVMC *A3+,3,l,MOVD3_RB5,l; count = 3 size = 1

; ID = 1

0158Dh

13-73

Syntax

Execution

Instruction Words

Description

13-74

CMOVMC -*Rs count, size, command L 10]

/0, command --+ Coprocessor command

If size = 0, Repeat count times (1 s count s 32):
Rs - 32 --+ Rs
*Rs --+ Coprocessor

If size = 1, Repeat count times (1 s count s 16):
Rs - 32 --+ Rs
*Rs --+ Coprocessor
Rs -32 --+ Rs
*Rs --+ Coprocessor

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 I 0 I 1 I 0 I 0 I 0 0 o I 1 transfers

8 LSBs of coprocessor command size 01 0 R I Rs

coprocessor ID I 13 MSBs of coprocessor command

o

This version of the CMOVMC instruction moves one or more values (depend­
ing on the value of transfers) from memory pointed to by Rs to the coprocessor
deSignated by the coprocessor instruction. Before the first transfer, Rs is
decremented to contain the 32-bit memory address of the first 32-bit value to
transfer. The size operand is a value of 0 or 1; it determines the size of the
values that are transferred:

Q If size = 0, then count specifies the number of 32-bit transfers to make.
In this case, count must be a value of 1 --+ 32.

Q If size = 1, then count specifies the number of 64-bit transfers to make.
In this case, count must be a value of 1 --+ 16.

The value of transfers is set by the assembler according to the values of size
and count:

Q If size = 0 and count = 1 --+ 31,
If size = 0 and count = 32,

Q If size = 1 and count = 1 --+ 15,
If size = 1 and count = 16,

then transfers = count
then transfers = 0

then transfers = 2x count
then transfers = 0

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to specify the destination
for the move. The /0 operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified in the
coprocessor directive.

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

TMS34020 Assembly Language Instruction Set

Move from Memory Indirect (Predecrement) to Coprocessor, Constant Count CMOVMC
l«'~'::"'}:>:~'~~0:~~~::;,,,,,,>m~}""W,""'I'>!·;*".;01'>"',*'1,~_~';:·~"~i~««,~,~;:::"w~,»,";;':";><':l!;'?N}1':':V :w.~~>:<<:l<~W¥~~W~~""'·':':~~::;'~:',''''~~~~~':<~'''''~""'~'>:'S:>~*",':::~~>l:>":<>~':;'::;;>l~W;:~M~~"""}Wi:>'AA-:':'lW!»")'j:;;';"""""";'~~' -:;' '<:l'~'l}~~

-8

coprocessor command

'~--------~~~--------~/ '~----~~~----~/

Machine States

Status Bits

Example 1

Example 2

Example 3

13 MSBs 8 LSBs

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

5 + [transfers -1] if the immediate data is long-word aligned
6 + [transfers -1] if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This instruction moves thirty-two 32-bit values to coprocessor 2 (the destina­
tion is specified by the coprocessor instruction wxyz) from memory (register
AO specifies the first memory address).

CMOVMC -*AO,32,O,wxyz,2

This instruction moves eight 64-bit values to the default coprocessor (the desti­
nation is specified by the coprocessor instruction wxyz) from memory (register
B7 specifies the first memory address).

CMOVMC -*B7+,B,l,wxyz

This example demonstrates the predecrement transfer of data to the
TMS34082 using the typical C subroutine calling convention. Assume that the
routine _COPROC_SUB requires two 32-bit integer quantities and 3 double
quantities, all passed on the program stack.The result is a double value,
returned on the program stack. Assume that field size 1 is 32 bits (FS1 = 32),
and that the LOAD bit of the configuration register is set to 0 so the MSBs are
transferred before LSBs.

_COPROC_SUB moves the values from the stack to the coprocessor using
the CMOVMC opcode in predecrement mode. It first moves the 3 double
values to the coprocessor. The command MC_3_DOUB performs a move to
coprocessor registers (fpuop = 00110) of 3 (count = 3) double precision values
(T = 1 , size = 1) from the memory pOinted to (md = 10) by the predecremented
value of STK, to coprocessor registers starting at RA3 (rd = 00011).

Next, the two 32-bit integer values are moved to the coprocessor using the
MC_2_INT command. It performs a move to coprocessor registers (fpuop =
00110) of 2 (count = 2) integer values (T = 0, size = 0) from the memory pointed
to (md = 10) by the predecremented value of STK to coprocessor registers
starting at RB1 (rd = 10001).

13-75

13-76

After manipulating the data in the coprocessor, the result is loaded from the
coprocessor and placed onto the stack. This is performed by the CM _1_ DaUB
command of the CMaVCM opcode in predecrement mode. Predecrement
mode is used to preserve the proper ordering of MSBs and LSBs on the stack.
The stack pOinter is kept pointing in the proper place by the 2 stack pointer
adds. Interrupts are disabled when the stack pointer is not properly positioned.
You may prefer to use other methods of ensuring program stack position integ­
rity if interrupts are used for timing-critical functions.

The CM_1_ DaUB command performs a move of coprocessor registers (fpuop
= 00111) to TMS34020 memory (md = 10) of one (count = 1) double-precision
value (T = 1, size = 1) from coprocessor register RB5 (rd = 10101) to the
predecremented memory location pOinted to by STK .

. GLOBAL COPROC SUB - -
MC 3 DOUB: . set 00038Dh

CM 1 DOUB: .set 00158Fh

TMS34020 Assembly Language Instruction Set

MOVE INT_2,*STK+,1
MOVE INT_l,*STK+,l
MOVE DOUB_3_LO,*STK+,1
MOVE DOUB_3_HI,*STK+,1
MOVE DOUB_2_LO,*STK+,1
MOVE DOUB_2_HI,*STK+,1
MOVE DOUB_l_LO,*STK+,l
MOVE DOUB_l_HI,*STK+,l
CALLA _COPROC_SUB
MOVE
MOVE

-*STK,AO,l
-*STK,Al,l

;GET DOUBLE RESULT FROM STACK, HI
;LO

COPROC_SUB:
MMTM SP,AO,Al
CMOVCM -*STK,3,1,MC_3_DOUB
CMOVCM -*STK,2,O,MC_2_INT

;OTHER COPROCESSOR COMMANDS

DINT
ADDI 40h,STK
CMOVMC -*STK,l,l,CM_l_DOUB
ADDI 40h,STK
EINT
MMFM
RETS

SP,AO,Al

;MAKE ROOM FOR DOUBLE VALUE

;POINT STACK TO CORRECT TOP

13-77

Syntax

Execution

Instruction Words

Description

CMOVMC *Rs+, Rd, size, command [, /0]

/0, command Coprocessor command

Repeat number of times specified by Rd
*Rs..... Coprocessor
Rs + 32 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 I 0 I 0 I 1 I 1 I 0 1 1 I 1 R

8 LSBs of coprocessor command size 01 0 R

coprocessor ID I 13 MSBs of coprocessor command

o
Rd

Rs

This version of the CMOVMC instruction moves one or more 32-bit values
(depending on the value in Rd) from memory to the specified coprocessor
register. Before instruction execution, Rs contains the 32-bit memory address
of a 32-bit value; after each transfer, the value in Rs is incremented by 32 bits
to point to the next address.The size operand is a value of 0 or 1; it determines
the size of the values that are transferred:

Q If size = 0, then 32-bit values are moved. In this case, Rd should specify
the number of 32-bit values to move.

Q If size = 1, then 64-bit values are moved. In this case, Rd should specify
twice the number of 64-bit values to move.

The value of Rd (number of transfers) is interpreted by the TMS34020 as
follows:

Q If Rd = 1 --+ 31 ,

Q IfRd=O

then the number of 32-bit transfers = Rd

then the number of 32-bit transfers = 32

The command operand specifies an instruction (21 bits of information define
the instruction) that the coprocessor should execute to specify the destination
for the move. The /0 operand is an optional 3-bit coprocessor identification
code; if you don't supply this operand, it defaults to the value specified with the
.coproc directive.

The output of this instruction on the LAD bus at ALTCH low during the com­
mand cycle (when SF is high) is as follows:

"8

coprocessor command

''------..'V.---------/ ''------''''.------/
13 MSBs 8 LSBs

13-78 TMS34 020 Assembly Language Instruction Set

Machine States

Status Bits

Example 1

Example 2

Example 3

For more information, refer to Section 10.3, Formats of Commands Passed to
a Coprocessor, on page 10-5.

5 + [register value -1] if the immediate data is long-word aligned
6 + [register value -1] if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This instruction moves the number of 32-bit values specified by A2 to
coprocessor 2 (the destination is specified by the coprocessor instruction
wxyz) from memory (register AO contains the first memory address).

CMOVMC *AO+,A2,O,wxyz,2

This instruction moves the number of 64-bit values specified by B7+2 to the
default coprocessor (the destination is specified by the coprocessor instruction
wxyz) from memory (register A3 contains the first memory address).

CMOVMC *A3+,B7,1,qrst

This example moves 64-bit quantities (size = 1, T = 1) from the postincrem­
ented memory block pOinted to by A3 to TMS34082 coprocessor number 1 (ID
= 1). Assume that the LOAD bit in the TMS34082 configuration register is set
for MSBs transfer before LSBs transfer. Because register B4 specifies the
number of 32-bit transfers to be performed, it should contain twice the number
of 64-bit quantities to be transferred.

The coprocessor command specifies a TMS34082 move to coprocessor regis­
ters (fpuop = 00110) from TMS34020 memory (md = 10) of double quantities
(T = 1, size = 1), with the starting destination of RB5 (rd = 10101).

The memory location pOinted to originally by A3 should contain the 32 MSBs
of the first double number to be transferred. Memory location A3+ 1 Oh should
contain the 32 LSBs of the first double number. The remaining data should be
in the MSBs before LSBs form.

The two 32-bit halves of the first double number will be transferred to coproces­
sor one register RB5, the second double number to RB6, etc.

MOVO RB5 .set 001580h
CMOVMC *A3+,B4,1,MOVO_RB5,1 i count = 3 size 1

: 10 = 1

0158Dh

13-79

Syntax CMP RS,Rd

Execution Set status bits on the result of Rd - Rs

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

Description

Machine States

Status Bits

Examples

13-80

R I Rd

CMP sets the status bits on the result of subtracting the contents of Rs from
the contents of Rd. This is a nondestructive compare; the contents of the regis­
ters are not affected. This instruction is often used in conjunction with the JAcc
or JRcc conditional jump instructions.

Rs and Rd must be in the same register file.

N 1 if the result is negative, 0 otherwise
C 1 if a there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

~ Before After
A1 AO NCZV

eMP AI,AD 00000001h 00000001h 0010
eMP Al ,AD 00000001h 00000002h 0000
eMP AI,AD 00000001h FFFFFFFFh 1000
eMP AI,AD 00000001h 80000000h 0001
eMP AI,AD FFFFFFFFh 7FFFFFFFh 1 1 01
eMP AI,AD FFFFFFFFh 80000000h 1 1 a a
eMP AI,AD 80000000h 7FFFFFFFh 1 1 01

Jumps Taken

UC,NN,NC,Z,NV,LS,GE,LE,HS
UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
UC,N,NC,NZ,NV,P,HI,LT,LE,HS
UC,NN,NC,NZ,V,HI,LT,LE,HS
UC,N,C,NZ,V,LS,GE,GT,LO
UC,N,C,NZ,NV,LS,LT,LE,LO
UC,N,C,NZ,V,LS,GE,GT,LO

TMS34020 Assembly Language Instruction Set

Compare Immediate, 16 Bits CMPI
v.:~~~,;;,~*~",~<·,:{';:;;:~*~,*~~"~:;'>l:;,:,~:~·»;0~<=:,~~"'~~:~'~~""~;;:;:;:;,:;;;«:~,·>~~~::::,:,,':';~:"""~W~"""'<'~:>:>'''''.«<'~~:-:::.}",m~':':';'':;:':',:{«'';~:0~'AA~::_",.,:~::;:o:",~~~,~~::,~~~,~<:~::;,~~::~~,,,,';i;_,:.:.:,;~':'c::~.:,,~,(.:.~,:.:<{«.;.x~~~ ... :«~<<<{.;;,_;;.;-<<w.~,..,~,<<.<:(<<.~;;.:~<"";;.o.,'l':;:';~~'~:,,,:,,;:l';":~~~=_,,,,::;,,~~_<,:<,~~:.:«;;.: ... :;.:;>:u,.t<~:::.:«_

Syntax

Execution

Instruction Words

Description

CMPI IW, Rd [, W]

Set status bits on the result of Rd - 16-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rd

1 s complement of IW

CMPI sets the status bits on the result of subtracting a 16-bit, sign-extended
immediate value from the contents of the destination register. (The symbol/W
in the syntax above represents a 16-bit, signed immediate value.) This is a
nondestructive compare; the contents of the destination register are not
affected. This instruction is often used in conjunction with the JAcc or JRcc con­
ditional jump instructions.

Note that the assembler inserts the 1 s complement of the 16-bit value into the
second instruction word.

The assembler uses the short form of the CMPI instruction if the immediate
value is previously defined and is in the range-32,768 to 32,767. You can force
the assembler to use the short form by following the register operand with W:

eMPI IW,Rd,W

The assembler truncates the upper bits and issues an appropriate warning
message if the value is greater than 16 bits.

Machine States 2

Status Bits

Examples

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO NCZV

eMPI l,AO 0OOOOOO2h 000 0
eMPI l,AO 0OOOOOO1h 001 0
eMPI 1,AO OOOOOOOOh 1 1 0 a
eMPI l,AO FFFFFFFFh 1 a 0 a
eMPI l,AO SOOOOOOOh o a a 1
eMPI -2,AO OOOOOOOOh o 1 a a
eMPI -2,AO FFFFFFFFh a a a a
eMPI -2,AO FFFFFFFEh a a 1 a
eMPI -2,AO FFFFFFFDh 1 o a
eMPI -l,AO 7FFFFFFFh 1 1 0 1

Jumps Taken

UG,NN,NG,NZ,NV,P,HI,GE,GT,HS
UG,NN,NG,Z,NV,LS,GE,LE,HS
UG,N,G,NZ,NV,LS,LT,LE,LO
UG,N,NG,NZ,NV,P,HI,LT,LE,HS
UG,NN,NG,NZ,V,HI,LT,LE,HS
UG,NN,G,NZ,NV,P,LS,GE,GT,LO
UG,NN,NG,NZ,NV,P,LI,GE,GT,HS
UG,NN,NG,Z,NV,LS,GE,LE,HS
UG,N,G,NZ,NV,LS,LT,LE,LO
UG,N,G,NZ,V,LS,GE,GT,LO

13-S1

~MPI Comparelmme,~ate, 32 Bits

Syntax CMPI IL, Rd [, L]

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

~

CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI

13-S2

Set status bits on the result of Rd - 32-bit immediate value

. 15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 1 I 1 I 0 I 1 I 1 I R I Rd

1 s complement of 16 LSBs of IL

1 s complement of 16 MSBs of IL

CMPI sets the status bits on the result of subtracting a 32-bit, signed immediate
value from the contents ofthe destination register. (The IL symbol in the syntax
above represents a 32-bit, signed immediate value.) This is a nondestructive
compare; the contents of the destination register are not affected.

Note that the assembler inserts the 1 s complement ofthe 16 LSBs of the value
into the second instruction word and inserts the 1 s complement ofthe 16 MSBs
of the value into the third instruction word.

The assembler uses this form of the CMPI instruction if it cannot use the short
form. You can force the assembler to use the long form by following the register
operand with an L:

CMPI IL, Rd, L

This instruction is often used in conjunction with the JAcc or JRcc conditional
jump instructions.

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

~ After Jumps Taken
AO NCZV

BOOOh,AO 0000S001h 0000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
BOOOh,AO OOOOSOOOh 001 0 UC,NN,NC,Z,NV,LS,GE,LE,HS
BOOOh,AO 00007FFFh 1 1 0 a UC,N,C,NZ,NV,LS,LT,LE,LO
BOOOh,AO FFFFFFFFh 1 0 a a UC,N,NC,NZ,NV,P,HI,LT,LE,HS
8000h,AO SOO07FFFh 0001 UC,NN,NC,NZ,V,HI,LT,LE,HS

OFFFF7FFFh,AOOOOOOOOOh a 1 00 UC,NN,C,NZ,NV,P,LS,GE,GT,LO
OFFFF7FFEh,AOFFFF7FFFh 0000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
OFFFF7FFEh,AOFFFF7FFEh a 01 0 UC,NN,NC,Z,NV,LS,GE,LE,HS
OFFFF7FFEh,AOFFFF7FFDh 1 100 UC,N,C,NZ,NV,LS,LT,LE,LO

'"!,,,'

OFFFF7FFFh,A07FFF7FFFh 1 1 a 1 UC,N,C,NZ,V,LS,GE,GT,LO

TMS34020 Assembly Language Instruction Set

Compare Constant (5 bits) CMPK
,*ll"N"':*~>~~~_:'~..:"":>:''''''''::';';~,<:~":=,,"«,*,,,,'=·:~,;;,;,»,~~~~,<<<;,»~:;,<::~_,''''<'''~0:-ll-~~~_,~~_~~ll:::::'«<~'>}<I<~"",~.$..''»==<'''''~=~~~~~~""", __ Wl'~ 'II' lIf1l n:; =~_~ __ "' __-.~

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

CMPK constant, Rd

Rd - constant -')0 Status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 1 I 0 I 1 I constant R Rd

CMPK subtracts the 5-bit constant from the contents of the destination register
(Rd) and sets status on the result of the subtraction. The constant is an
unsigned number in the range 1-32.

The assembler automatically builds the 5 LSBs into the opcode. Note that
constant=O in the opcode corresponds to the value 32; the assembler converts
the value 32 to O. Using this instruction, the assembler issues an error if you
try to compare 0 with a register.

This instruction does not alter the contents of Rd.

1

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, a otherwise
Z 1 if the result is 0, a otherwise
V 1 if there is an overflow, a otherwise

Code Before After
AO NCZV

cmpk l,AO 0000OOO2h o 0 00
cmpk 2,AO 00OOOOO2h o 0 10
cmpk 32,AO OOOOOOOOh 1 1 00
cmpk 16,AO FFFFFFFFh 1 0 00

cmpk l,AO 80000000h o 0 0 1

Jumps Taken

UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
UC,NN,NC,Z,NV,LS,GE,LE,HS
UC,N,C,NZ,NV,LS,LT,LE,LO
UC,N,NC,NZ,NV,P,HI,LT,LE,HS
UC,NN,NC,NZ,V,HI,LT,LE,HS

13-83

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-84

CMPXY RS,Rd

Set status bits on the results of
X half of Rd - X half of Rs
Y half of Rd - Y half of Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 1 I 1 I 1 I 0 I 0 I 1 I 0 I Rs R Rd

o

CMPXY compares the source register to the destination register in XY mode
and sets the status bits as if a subtraction had been performed. This is a
nondestructive compare; the contents of the register are not affected. The
source and destination registers are treated as signed XY registers. Note that
no overflow detection is provided.

Rs and Rd must be in the same register file.

N 1 if source X field = destination X field, 0 otherwise
C Sign bit of Y half of the result
Z 1 if source Y field = destination Y field, 0 otherwise
V Sign bit of X half of the result

Code Before After Jumgs Taken
A1 AO NCZV

CMPXY AI,AO 00090009h 00010001h 01 01 NN,C,NZ,V,LS,LT
CMPXY AI,AO 00090009h 00090001h 001 1 NN,NC,Z,V,LS,LT
CMPXY AI,AO 00090009h 00010009h 1 1 00 N,C,NZ,NV,LS,LT
CMPXY AI,AO 00090009h 00090009h 1 01 0 N,NC,Z,NV,LS,LT
CMPXY AI,AO 00090009h 00000010h 0100 NN,C,NZ,NV,LS,GE
CMPXY AI,AO 00090009h 00090010h 0010 NN,NC,Z,NV,LS,GE
CMPXY AI,AO 00090009h 00100000h 0001 NN,NC,NZ,V,HI,LT
CMPXY AI,AO 00090009h 00100009h 1000 N,NC,NZ,NV,HI,LT
CMPXY AI,AO 00090009h 00100010h 0000 NN,NC,NZ,NV,HI,GE

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

CPW Rs, Rd

Point code --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 1 I 1 I 1 I 0 I 0 I 1 I 1 I Rs R Rd

CPW compares a point represented by an XY value in the source register to
the window limits in the WSTART and WEND registers and places a 4-bit
outcode in bits 5 through 8 of the destination register. The remaining 28 bits
of the destination register are set to O. The contents of the source register are
treated as an XY address that consists of 16-bit signed X and Y values.
WSTART and WEND are also treated as signed XV-format registers. WSTART
and WEND can contain signed values. The location of the point with respect
to the window is encoded as shown below; the outcode is loaded into the desti­
nation register.

The following list describes the contents of the destination register after CPW
execution:

Bit Position: Contents:
Q-4 as
5 1 if X half of WSTART > X half of Rs, a otherwise
6 1 if X half of Rs > X half of WEND, a otherwise
7 1 if Y half of WSTART > Y half of Rs, a otherwise
8 1 if Y half of Rs > Y half of WEND, 0 otherwise
9-31 as

This instruction can also be used to trivially reject lines that do not intersect with
a window. If the CPW codes for the 2 pOints defining the line are ANDed
together and the result is nonzero, then the line must lie completely outside the
window (and does not intersect it). A 0 result indicates that the line may inter­
sect the window, and a more rigorous test must be applied. For more informa­
tion, refer to Section 12.7, Window Checking, on page 12-19.

Rs and Rd must be in the same register file.

13-85

Implied Operands

Machine States

Status Bits

Examples

13-86

Register Name

B5 WSTART

B6 WEND

N Unaffected
C Unaffected
Z Unaffected

Format Description

XY Window start. Defines inclusive starting
corner of window (lesser value corner).

XY Window end. Defines inclusive ending cor-
ner of window (greater value corner).

V 1 if point lies outside window, 0 otherwise

You must select appropriate implied operand values before executing the CPW
instruction. In this example, the implied operands are set up as follows, specify­
ing a block of 36 pixels.

WSTART= 5,5
WEND = A,A

CPW AI,AO

Before After
A1 NCZV AO NCZV
0OO40004h x x x 0 OOOOOOAOh x x x 1
0OO40005h x x x 0 0OOOOO80h x x x 1
0OO4000Ah x x x 0 0OOOOO80h x x x 1
0OO4000Bh x x x 1 OOOOOOCOh x x x 1
0OO50004h x x x 1 0OOOOO20h x x x 1
0OO50005h x x x 0 OOOOOOOOh x x x 0
0OO5000Ah x x x 0 OOOOOOOOh x x x 0
0OO5000Bh x x x 0 0OOOOO40h x x x 1
OOOAOOO4h x x x 0 0OOOOO20h x x x 1
OOOAOOO5h x x x 1 OOOOOOOOh x x x 0
OOOAOOOAh x x x 1 OOOOOOOOh x x x 0
OOOAOOOBh x x x 0 0OOOOO40h x x x 1
OOOBOOO4h x x x 0 0OOOO120h x x x 1
OOOBOOO5h x x x 0 0OOOO100h x x x 1
OOOBOOOAh x x x 0 0OOOO100h x x x 1
OOOBOOOBh x x x 0 0OOOO140h x x x 1

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

Convert Destination XY Address to Linear CVDXYL

CVDXYLRd

(Y half of Rd x DPTCH) + (X half of Rd x PSIZE) + (A4 or 84) ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I 0 I A I Ad

CVDXYL converts the XYvalue contained in the destination register to a linear
value, by using the destination pitch, and writes the result back to the destina­
tion register.

If Rd is an A file register, then A4 is used as the offset; if Rd is a 8 file register,
then 84 is used as the offset. CONVDP (based on DPTCH) is used to effect
the multiply ofthe Y half by the pitch. PSIZE provides the pixel size used to mUl­
tiply by the X half (done by shift).

Use the SETCDP instruction (page 13-227) to set up CONVDP. For more infor­
mation, refer to Section 12.12, Converting an XY Address to a Linear Address,
on page 12-47.

Address Name

A4 or 84 OFFSET

C0000140 CONVDP

C0000150 PSIZE

pitch is a power of 2:
2 powers of 2:
arbitrary

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Description and Elements (Bits)

linear screen origin (0,0)

XY-to-linear conversion (destination)

Pixel size (1,2,4,8,16,32)

2
3
14

The examples assume the following definitions:

DADDR
DPTCH
OFFSET
TEMP

.set B2

.set B3

.set B4

.set B14

Destination address register
Destination pitch register
XY offset register
Temporary register

13-87

Example 1

Example 2

Example 3

Screen dimensions of 640 by 480 by 4 bits-per-pixel; screen pitch of 4096 (the
smallest power of 2 greater than 640 x 4).

; the following code will typically be done once
: at initialization time

setf 16,0,0
movk 4,TEMP
exgps TEMP
movi 01000h,DPTCH
movi 0100h,OFFSET
setcdp ; set
mwait

set field size 0 to 16

set the pixel size to 4
set up display pitch

; set up the screen offset
CONVDP to 0013h (LMO of DPTCH)

set up XY address in DADDR and convert to linear
movi 00010001h,DADDR
cvdxyl DADDR This sets DADDR to 1104h

Screen dimensions of 640 by 480 by 8 bits-per-pixel; screen pitch of 5120 (640
x 8) which is a sum of 2 powers of 2.

the following code will typically be done once
: at initialization time

setf 16,0,0
movk 8,TEMP
exgps
movi
clr
setcdp

mwait

01400h,DPTCH
OFFSET

set field size 0 to 16

pixel size of 8
set up display pitch
set up the screen offset
set CONVDP to 1513h
(2 LMOs of DPTCH)

set up XY address in DADDR and convert to linear
movi 00010001h,DADDR
cvdxyl DADDR This sets DADDR to 1408h

Perform an XY to linear conversion of a nonscreen bitmap with an arbitrary
pitch of 224.

the following code will
initialization time

setf 16,0,0
movk 16,TEMP

typically be done once at

set
for

exgps
up the value of DPTCH,
offset and address

movi OEOh,DPTCH
setcdp

mwait
movi OFF300000h,A4

movi 00010001h,A7

; set field size 0 to 16
;
; pixel size of 16

CONVDP, have user variables

set CONVDP to OOOOh (which
indicates arbitrary pitch)

offset points to an area
of DRAM

cvdxyl A7 this sets A7 to FF3000FOh

13-88 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

Example 1

Convert Mask Address to Linear CVMXYL

CVMXYLRd

(Y half of Rd x MPTCH) + (X half of Rd) -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 0 I 1 I 1 I R I Rd

CVMXYL converts the XYvalue contained in the destination register to a linear
value, by using the mask pitch, and writes the result back to the destination reg­
ister.

Note that no offset is added when you use CVMXYL. CONVMP (based on
MPTCH) is used to effect the multiply of the Y half by the pitch.

Use the SETCMP instruction (page 13-228) to set up CONVMP. For more infor­
mation, refer to Section 12.12, Converting an XY Address to a Linear Address,
on page 12-47. .

Address Name

C0000150 PSIZE

C0000180 CONVMP

pitch is a power of 2:
2 powers of 2:
arbitrary

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Description and Elements (Bits)

Pixel size (1,2,4,8,16,32)

XY-to-linear conversion (destination)

2
3
14

The examples assume the following definitions:

MADDR
MPTCH
TEMP

.set BIO

.set Bll

.set B14

Mask address register
Mask pitch register
Temporary register

Screen dimensions of 640 by 480 by 4 bits-per-pixel; screen pitch of 4096 (the
smallest power of 2 greater than 640 x 4)

; the following code will typically be done once
; at initialization time

setf 16,0,0
movi 01000h,MPTCH
setcmp

mwait

set field size 0 to 16
set up mask pitch
set CONVMP to 0013h (LMO
of MPTCH)

set up XY address in MADDR and convert to linear
movi 00010001h,MADDR
cvmxyl MADDR ; This sets MADDR to 1001h

13-89

CVMXYL Convert Mask Address to Linear

Example 2

Example 3

Screen dimensions of 640 by 480 by 8 bits-per-pixel; screen pitch of 5120 (640
x 8) which is a sum of 2 powers of 2.

; the following code will typically be done once
; at initialization time

setf ' 16,0,0
movi 01400h,MPTCH
setcmp

mwait

set field size 0 to 16
set up mask pitch
set CONVMP to 1513h
(2 LMOs of MPTCH)

set up XY address in MADDR and convert to linear
movi 00010001h,MADDR
cvmxyl MADDR, ; This sets MADOR to 1401h

Perform an XV to linear conversion of a nonscreen bitmap with an arbitrary
pitch of 224.

the following code will
at initialization time

setf 16,0,0
movi OEOh,MPTCH
setcmp

mwait

typically be done once

set field size 0 to 16
set up mask pitch
set CONVMP to OOOOh (which
indicates arbitrary pitch)

set up XY address in MADDR and convert to linear
movi 00010001h,MAODR
cvmxyl MADDR ; This sets MAODR to E1h

13-90 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

Convert Source XY Address to Linear Address CVSXYL

CVSXYL Rs, Rd

rr half of Rd x SPTCH) + (X half of Rd x PSIZE) + Rs - Rd

15 14 13 12 11 10 9 8 76543 2 1 o
Rs I R I Rd

CVSXYL converts the XYvalue contained in the destination register to a linear
value, by using the source pitch, and writes the result back to the destination
register. The source register contains the offset used in the conversion
process. CONVSP (based on SPTCH) is used to effect the multiply of the Y
half by the pitch. PSIZE provides the pixel size used to multiply by the X half
(done by shift).

Use the SETCSP instruction (page 13-229) to set up CONVSP. For more infor­
mation, refer to Section 12.12, Converting an XY Address to a Linear Address,
on page 12-47.

This instruction allows the programmer to have independent source and desti­
nation offsets. The source offset can be any register, and the destination offset
is 84. As an example, assume 814 is the source offset. To synthesize PIX8LT
XY,XY with independent offsets use CVSXYL 814,80 to convert the source
pointer to linear and follow with a PIX8LT L,XY.

Address Name

C0000130 CONVSP

C0000150 PSIZE

pitch is a power of 2:
2 powers of 2:
arbitrary

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CVSXYL AO, Al

2
3
14

Before AO = 00000100
A1 = 00010001
CONVSP = 0013
PSIZE =0008

After A1 = 00001108

Description and Elements (Bits)

XV-to-linear conversion (source)

Pixel size (1,2,4,8,16,32)

13-91

CVXYL Convert XY Address to Linear Address
_~ :rl'll:1mn Wll NI!'~ 1 r:w~fil'

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

13-92

CVXYL Rs, Rd

(Y half of Rs x DPTCH) + (X half of Rs x PSIZE) + offset - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 1 I 1 I 1 I 0 I 1 I 0 I 0 I Rs R Rd

CVXYL converts an XY address to a linear address:

IJI The source register contains an XY address. The signed X value occupies
the 16 LSBs of the register, and the signed Yvalue occupies the 16 MSBs.
The X value must be positive.

IJI The XY address is converted into a 32-bit linear address, which is stored
in the destination register. For more information, refer to Section 12.12,
Converting an XY Address to a Linear Address, on page 12-47.

The offset value (see execution) is in the OFFSET register. The CONVDP
value is used to determine the shift amount for the Y value, while the PSIZE
register determines the X shift amount.

Use the SETCDP instruction (page 13-227) to set up CONVDP.

Rs and Rd must be in the same register file.

Address Name Description and Elements (Bits)

83 DPTCH (linear) Destination pitch

84 OFFSET (linear) Screen origin (location 0,0)

C0000140h CONVDP XV-to-linear conversion (destination pitch)

C0000150h PSIZE Pixel size (1,2,4,8,16,32)

pitch is a power of 2: 3
2 powers of 2: 4
arbitrary 14

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

TMS34020 Assembly Language Instruction Set

Convert XY Address to Linear Address CVXYL
~_f~S::!,:<JiJI'J .. tn~nR'«fr ,.

Examples Code Before After
AO OFFSET PSIZE CONVDP A1

CVXYL AD,Al 00400030h OOOOOOOOh 0010h 0014h 0OO20300h
CVXYL AD,Al 00400030h OOOOOOOOh 0OO8h 0014h 0OO20180h
CVXYL AD,Al 00400030h OOOOOOOOh 0OO4h 0014h 0OO20000h
CVXYL AD,Al 00400030h 0OOO8000h 0OO4h 0014h 0OO28000h
CVXYL AD ,AI 00400030h OFOOOOOOh 0OO4h 0014h OF020000h
CVXYL AD,Al 00400030h OOOOOOOOh 0OO2h 0014h 0OO20060h
CVXYL AD,Al 00400030h OOOOOOOOh 0OO1h 0014h 0OO20030h
CVXYL AD,Al 00400030h OOOOOOOOh 0OO1h 0013h 0OO40030h
CVXYL AD,Al 00400030h OOOOOOOOh 0OO1h 0015h 0OO10000h

CONVDP = 0013h corresponds to DPTCH = 0OOO1000h
CONVDP = 0014h corresponds to DPTCH = 0OOOO800h
CONVDP = 0015h corresponds to DPTCH = 0OOOO400h

13-93

DEC Decrement Register
~~

Syntax DEC Rd

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-94

Rd-1 ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1010101110111ol01010111RI Rd

DEC subtracts 1 from the contents of the destination register and stores the
result in the destination register. This instruction is an alternate mnemonic for
SUBK 1,Rd.

You can use the DEC instruction with the SUBB instruction to perform multiple­
precision arithmetic.

1

N 1 if the result is negative, a otherwise
C 1 if there is a borrow, a otherwise
Z 1 if the result is 0, a otherwise
V 1 if there is an overflow, a otherwise

Code Before After
A1 A1 NCZV

DEC Al 0OOOOO10h OOOOOOOFh o 000
DEC Al 0OOOOOO1h OOOOOOOOh o 0 10
DEC Al OOOOOOOOh FFFFFFFFh 1 1 00
DEC Al FFFFFFFFh FFFFFFFEh 1 000
DEC Al 80000000h 7FFFFFFFh o 001

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

13-96

DIVS Rs, Rd

If Rd is an even-numbered register

Rd : Rd + 1 _ Rd remainder _ Rd + 1
Rs '

If Rd is an odd-numbered register

Rd _ Rd
Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 1 I 0 I 0 I Rs R Rd

DIVS performs a signed 32-bit or 64-bit divide. The source register contains
the 32-bit signed divisor. The destination register contains a 32-bit signed divi­
dend or the most significant half of a 64-bit signed dividend, depending on
whether Rd is an odd register (for example, A 1 or 83) or an even register (for
example, A8 or 82):

Rd Even

RdOdd

DIVS performs a signed divide of the 64-bit operand contained in
the 2 consecutive registers, starting at the specified destination
register, by the 32-bit contents of the source register. The speci­
fied even-numbered destination register, Rd, contains the 32
MSBs of the dividend. The next consecutive register (which is
odd-numbered) contains the 32 LS8s of the dividend. The quo­
tient is stored in the destination register, and the remainder is
stored in the following register (Rd+ 1). The remainder is always
the same sign as the dividend (in Rd:Rd+ 1). Avoid using A 14 or
B14 as the destination register, since this overwrites the SP; the
assembler issues a warning in this case.

DIVS performs a signed divide of the 32-bit operand contained in
the destination register by the 32-bit value in the source register.
The quotient is stored in the destination register; the remainder is
not returned.

Rs and Rd must be in the same register file.

Rd Odd:

Rd Even:

39 (normal case)
41 (if result = 80000000h)
7 (if Rs = 0)
40 (normal case)
41 (if result = 80000000h)
7 (if Rs = 0)

TMS34020 Assembly Language Instruction Set

Status Bits

Example 1

Before
AD
12345678h
EDCBA987h
EDCBA987h
12345678h
12345678h
OOOOOOOOh
OOOOOOOOh
87654321h

Example 2

Before
AD
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh

A1
87654321h

Divide Registers, Signed DIVS
:;::::::~:~::;::::::::~:;:::;:::;::::~:;~~~~:,:::::;:;:;::::~%: :;:::::::;:;::::::::,:;:.:::::;;;~:;~:;:;:;:~::;:::~::::::::;:.~:::::;:::::::;:;:;:;:::::.:;:::::::::::::::;::::::~;.:.:::;:;:;::::x::%::::~::::~:::;:;:;:;:;:;:;:;:::;:::::::::::::::::;:

N 0 if
Rs = 0, or
Rd is even and Rd ;:: Rs, or
Quotient is nonnegative.
1 if
Result = 80000000h or
Quotient is negative.

C Unaffected
Z 0 if

Rs = 0, or
Rd is even and Rd ;:: Rs, or
Result = 80000000h, or
Quotient =F O.
1 if
Quotient = O.

V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise. The
following conditions cause an overflow and set the overflow flag:
Divisor (Rs) is O.
Quotient cannot be contained within 32 bits.

This example divides the contents of registers AO and A 1 by the contents of
register A2, stores the result in register AO, and stores the remainder in A 1.
Note that the contents of register A2 are not affected by instruction execution.

DIVS A2,AO

Mru
A2 AD A1 A2 NCZV
87654321h D95BC60Ah 5CA1DD7h 87654321h 1xOO

789ABCDFh 87654321h 26A439F6h EA35E229h 87654321h OxOO
789ABCDFh 789ABCDFh D95BC60Ah EA35E229h 789ABCDFh 1 x 0 0
87654321h 789ABCDFh 26A439F6h 15CA1DD7h 789ABCDFh OxOO
87654321h OOOOOOOOh 12345678h 87654321h OOOOOOOOh Ox01
OOOOOOOOh OOOOOOOOh OOOOOOOOh OOOOOOOOh OOOOOOOOh Ox01
OOOOOOOOh 87654321h OOOOOOOOh OOOOOOOOh 87654321h Ox 1 0
OOOOOOOOh 87654321h 87654321h OOOOOOOOh 87654321h Ox 01

This example divides the contents of register A 1 by the contents of of register
A2 and stores the result in register A 1. Note that the contents of register A2
are not affected by instruction execution.

DIVS A2,Al

A1
87654321h
87654321h
789ABCDFh
789ABCDFh
87654321h
OOOOOOOOh

After
A2 AD
12345678h OOOOOOOOh
OEDCBA988h OOOOOOOOh
OEDCBA988h OOOOOOOOh
12345678h OOOOOOOOh
OOOOOOOOh OOOOOOOOh
OOOOOOOOh OOOOOOOOh

A1
FFFFFFFAh
00000006h
FFFFFFFAh
00000006h
87654321h
OOOOOOOOh

A2
12345678h
EDCBA988h
EDCBA988h
12345678h
OOOOOOOOh
OOOOOOOOh

NCZV
1 x 0 0
OxOO
1 x 0 0
OxOO
Ox 01
Ox01

13-97

DIVU Divide Refl,isters, Unsiflned

Syntax

Execution

Instruction Words

Description

Machine States

13-98

DIVU Rs, Rd

If Rd is an even-numbered register

Rd : Rd + 1 _ Rd remainder _ Rd + 1
Rs '

If Rd is an odd-numbered register

Rd -Rd
Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110111110111 Rs R Rd

DIVU performs an unsigned 32-bit or 64-bit divide. The source register
contains the 32-bit divisor. The destination register contains a 32-bit dividend
or the most significant half of a 64-bit dividend, depending on whether Rd is
an odd register (for example, A 1 or 83) or an even register (for example, AS
or 82):

Rd Even

RdOdd

DIVU performs an unsigned divide of the 64-bit operand
contained in the 2 consecutive registers, starting at the destina­
tion register, by the 32-bit contents of the source register. The
specified even-numbered destination register, Rd, contains the
32 MSBs of the dividend. The next consecutive register (which is
odd-numbered) contains the 32 LS8sof the dividend. The quo­
tient is stored in the destination register, and the remainder is
stored in the following register (Rd+ 1). Avoid using A 14 or 814 as
the destination register, since this overwrites the SP; the assem­
bler issues a warning in this case.

DIVU performs an unsigned divide of the 32-bit operand
contained in the destination register by the 32-bit value in the
source register. The quotient is stored in the destination register;
the remainder is not returned.

Rs and Rd must be in the same register file.

Rd Odd: 37 (normal case)
7 (if Rs = 0)

Rd Even: 37 (normal case)
5 (if Rs = 0 or Rs S Rd)

TMS34020 Assembly Language Instruction Set

Status Bits

Example 1

Before
AO
12345678h
12345678h
OOOOOOOOh
OOOOOOOOh
87654321h

Example 2

~
AO
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh

A1
87654321h
87654321h
OOOOOOOOh
OOOOOOOOh
OOOOOOOOh

A1

N Unaffected
C Unaffected
Z 0 if

Rs = 0, or
Rd is even and Rd ~ Rs, or
Quotient '# O.
1 if
Quotient = O.

V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise. The
following conditions cause an overflow and set the overflow flag:
Divisor (Rs) is O.
Quotient cannot be contained within 32 bits.

This instruction divides the contents of registers AO and A 1 by the contents of
register A2, stores the unsigned result in register AO, and stores the remainder
in A 1. Note that the contents of register A2 are not affected by instruction
execution.

DIVU A2,AO

After
A2 AO A1 A2 NCZV
789ABCDFh 26A439F6h 15CA1DD7h 789ABCDFh xxOO
OOOOOOOOh 12345678h 87654321h OOOOOOOOh xx01
OOOOOOOOh OOOOOOOOh OOOOOOOOh OOOOOOOOh xx01
87654321h OOOOOOOOh OOOOOOOOh 87654321h x x 1 0
87654321h 87654321h OOOOOOOOh 87654321h xx01

This instruction divides the contents of register A 1 by the contents of register
A2 and stores the unsigned result in register A 1. Note that the contents of regis­
ter A2 are not affected by instruction execution.

DIVU A2,Al

After
A2 AO A1 A2 NCZV

789ABCDFh 12345678h OOOOOOOOh 0OOOOOO6h 12345678h xxOO
12345678h OOOOOOOOh OOOOOOOOh 12345678h OOOOOOOOh xx01
OOOOOOOOh OOOOOOOOh OOOOOOOOh OOOOOOOOh OOOOOOOOh xx01
OOOOOOOOh 87654321h OOOOOOOOh OOOOOOOOh 87654321h x x 1 0
87654321h 87654321h OOOOOOOOh 0OOOOOO1h 87654321h xxOO

13-99

DRAV Draw and Advance

Syntax

Execution

Instruction Words

Description

Implied Operands

13-100

DRAV Rs, Rd

COLOR 1 pixels ~ * Rd
X half of Rs + X of half Rd ~ X half of Rd
V half of Rs + V of half Rd ~ V half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 1 I 0 I 1 I 1 I Rs R Rd

DRAV writes the pixel value in the COLOR1 register to the location pointed to
by the XV address in the destination register. Following the write, the XV
address in the destination register is incremented by the value in the source
register: the X half of Rs is added to the X half of Rd, and the V half of Rs is
added to the V half of Rd. Any carry out from the lower (X) half of the register
does not propagate into the upper (V) half.

Use the SETCDP instruction (page 13-228) to set up CONVDP.

COLOR1 bits 0-31 are output on data bus lines 0-31, respectively. The pixel
data used from COLOR1 is that which aligns to the destination location, so
32-bit patterns can be implemented. Rs and Rd must be in the same register
file.

Register Name Format Description

83 DPTCH Linear Destination pitch

84 OFFSET Linear Screen origin (location O,O)

85 WSTART XY Window starting corner

86 WEND XY Window ending corner

89 COLOR1 Pixel Pixel color

Address Name Description and Elements (Bits)

C0000080h CONTROL PPOP Pixel-processing operations (22 options)
W Window-checking operation
T Transparency operation
TM Selects 1 of 3 transparency options

C0000140h CONVDP XY-to-linear conversion (destination pitch)

C0000150h PSIZE Pixel size (1,2,4,8, 16,32)

C0000160h PMASK Plane mask - pixel format
(32 bits)

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value by the time the DRAV
instruction begins executing. To ensure that this register contains the correct
value for execution, you may want to follow the write to that location with an
MWAIT (page 13-178) instruction. Refer to Section 4.5.6 on page 4-13 for a
description of the potential latency of writes to I/O registers.

TMS34020 Assembly Language Instruction Set

Pixel Processing

Window Checking

Transparency

Plane Masking

Shift Register
Transfers

Machine States

Status Bits

Examples

Draw and Advance DRAV

Set PPOP[CONTROL] to select a pixel-processing operation. This operation
is applied to the pixel as it is moved to the destination location. At reset, the
default pixel-processing operation is rep/ace (S ~ D). For more information,
refer to Section 12.8, Pixel Processing, on page 12-27.

Select a window-checking mode by setting W[CONTROL]. If you select an
active window-checking mode (W = 1,2, or3), the WSTARTand WEND regis­
ters define the XY starting and ending corners of a rectangular window. The
X and Yvalues in both WSTART and WEND can signed. For more information,
refer to Section 12.7, Window Checking, on page 12-19.

You can enable transparency for this instruction by setting T[CONTROL] to 1 .
Select 1 of 3 transparency options by setting TM[CONTROL]. For more infor­
mation, refer to Section 12.9, Transparency, on page 12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

When this instruction is executed and CST bit is set, the normal memory read
and write operations become SRT reads and writes.

Refer to Section 15.1 on page 15-2.

N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise; unaffected if window clipping is

not used.

These DRAV examples use the following implied operand setup.

Register File B
DPTCH)
OFFSET
WSTART
WEND
COLOR1

= 200h
= 00010000h
= 00100000h
=003C0040h
= FFFFFFFFh

1/0 Registers
CONVDP = 0016h

Assume that memory contains the ,following values before instruction execu­
tion:

Address
00018040h

Data
8888h

Note that the initial XY address in AO is equivalent to linear address 18040h.

13-101

DRAV Draw and Advance
"" '" "" ~

.c.o.a .BJWml AfmI:
AD A1 PSIZE PPOP W PMASK AD @18D4Dh

DRAV Al,AO 00400040h 00100010h 0001h 00000 00 OOOOh 00500050h 8889h
DRAV Al,AO 00400020h 00100010h 0002h 00000 00 OOOOh 00500030h 888Bh
DRAV Al,AO 00400010h 001 0001 Oh 0004h 00000 00 OOOOh 00500020h 888Fh
DRAV Al,AO 00400008h 00100010h 0008h 00000 00 OOOOh 00500018h 88FFh
DRAV Al,AO 00400004h 00100010h 0010h 00000 00 OOOOh 00500014h FFFFh
DRAV Al,AO 00400004h OOOOFFFFh 0010h 01010 00 OOOOh 00400003h OOOOh
DRAV Al,AO 00400004h FFFFOOOOh 0010h 10011 00 OOOOh 003FOO04h OOOOh
DRAV Al,AO 00400004h 00010001h 0010h 00000 11 OOOOh 00410005h OOOOh
DRAV Al,AO 00400004h 00400004h 0010h 00000 00 OOFFh 00800008h FFOOh

13-102 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

DSJ Rd, Address

Rd -1 -7 Rd
If Rd :;c 0, then (offset x 16) + PC' -7 PC
If Rd = 0, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rd

DSJ decrements the contents of the destination register by 1. Depending on
the decremented value of Rd, the TMS34020 either jumps or skips the jump:

Q Rd -1 :;c O. The updated PC (used in the jump address calculation) points
to the instruction word that immediately follows the second word of the DSJ
instruction. The signed word offset is converted to a bit offset by multiplying
by 16. The new PC address is then obtained by adding the resulting signed
offset (offset x 16) to the current PC.

Q Rd -1 = O. The TMS34020 skips the jump and continues program execu-
tion with the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the offset
as (Address - PC')/16, where PC' is the address of the instruction word imme­
diately following the second word of the DSJEQ instruction; this results in a
jump range of -32,768 to +32,767 words. (The offset is the second instruction
word of the opcode.)

The DSJ instruction is useful for large loops involving a counter. For shorter
loops, the assembler automatically translates the DSJmnemonic into a DSJS
i nstructio n.

2 if no jump
3 if jump

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

DSJ AS, LOOP

DSJ AS, LOOP

DSJ AS, LOOP

Before
AS
00000009h
00000001h
OOOOOOOOh

After
AS
00000008h
OOOOOOOOh
FFFFFFFFh

Jump taken?
Yes
No
Yes

13-103

DSJEQ Conditionally Decrement Register and Skip Jump

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

13-104

DSJEQ Rd, Address

If Z = 1 , then Rd - 1 --? Rd
If Rd ¢ 0, then PC' + (offset x 16) --? PC
If Rd = 0, then go to next instruction

If Z = 0, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rd

offset

The DSJEQ instruction evaluates the status Z bit. Depending on the value of
that bit, the TMS34020 either skips the jump, or decrements Rd and then
makes a decision to jump or skip the jump:

o Z = 1. The TMS34020 decrements the contents of the destination register
by 1.

• Rd - 1 ¢ O. The TMS34020 jumps relative to the current PC. The
current PC points to the instruction word that immediately follows the
second word of the DSJEQ instruction. The signed word offset is
converted to a bit offset by multiplying by 16. The new PC address is
then obtained by adding the resulting signed offset (offset x 16) to the
address of the next instruction.

• Rd - 1 = O. The TMS34020 skips the jump and continues program
execution at the next sequential instruction.

o Z = O. The TMS34020 skips the jump and continues program execution at
the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the offset
as (Address - PC')/16, where PC' is the address of the instruction word imme­
diately following the second word of the DSJ instruction; this results in a jump
range of-32,768 to +32,767 words. (The offset is the second instruction word
of the opcode.)

You can use this instruction after an explicit or implicit compare to o. Additional
information on these types of compares can be obtained in the CMP, CMPI,
and MOVE-to-register instructions.

2 if no jump
3 if jump

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

TMS34020 Assembly Language Instruction Set

Examples Code Before After
A5 NCZV A5 Jump taken?

DSJEQ AS, LOOP 00000009h x x 1 x 00000008h Yes
DSJEQ AS, LOOP 00000001h x x 1 x OOOOOOOOh No
DSJEQ AS, LOOP OOOOOOOOh x x 1 x FFFFFFFFh Yes
DSJEQ AS, LOOP 00000009h x x 0 x 00000009h No
DSJEQ AS, LOOP 00OOOO01h x x 0 x 00000001h No
DSJEQ AS, LOOP OOOOOOOOh x x 0 x OOOOOOOOh No

13-105

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

13-106

DSJNE Rd, Address

If Z = 0, then Rd - 1 ~ Rd
If Rd ¢ 0, then PC' + (offset x 16) ~ PC
If Rd = 0, then go to next instruction

If Z = 1, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° 1010101011111011111110IRI Rd

offset

The DSJNE instruction evaluates the status Z bit. Depending on the value of
that bit, the TMS34020 either skips the jump or decrements Rd and then makes
a decision to jump or skip the jump:

Q Z = O. The TMS34020 decrements the contents of Rd by 1 .

= nu - 'j ¢ u. The TiviS34020 jumps relative to the current PC. The
current PC points to the instruction word that immediately follows the
second word of the DSJNE instruction. The signed word offset is con­
verted to a bit offset by multiplying by 16. The new PC address is then
obtained by adding the resulting signed offset (offset x 16) to the
address of the next instruction.

• Rd -1 = O. The TMS34020 skips the jump and continues program exe­
cution at the next sequential instruction.

o Z = 1. The TMS34020 skips the jump and continues program execution at
the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the offset
as (Address - PC')/16, where PC' is the address of the instruction word imme­
diately following the second word of the DSJNE instruction; this results in a
jump range of -32,768 to +32,767 words. (The offset is the second instruction
word of the opcode.)

You can use this instruction after an explicit or implicit compare to O. Additional
information on these types of compares can be obtained in the CMP, CMPI,
and MOVE-to-register instructions.

2 if no jump
3 if jump

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

TMS34020 Assembly Language Instruction Set

Examples Code Before After
AS NCZV AS Jumps taken?

DSJNE AS, LOOP 00000009h x x 1 x 00000009h No
DSJNE AS, LOOP 00000001h x x 1 x 00OOOO01h No
DSJNE AS, LOOP OOOOOOOOh x x 1 x OOOOOOOOh No
DSJNE AS, LOOP 00000009h x x 0 x 00OOOO08h Yes
DSJNE AS, LOOP 00000001h x x 0 x OOOOOOOOh No
DSJNE AS, LOOP OOOOOOOOh xxOx FFFFFFFFh Yes

13-107

Syntax

Execution

Instruction Words

Fields

Description

Machine States

Status Bits

Examples

13-108

DSJS Rd, Address

Rd -1 -7 Rd
If Rd ¢ 0, then PC' + (offset x 16) -7 PC
If Rd = 0, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 1 I 1 I D I Offset R Rd

D is a 1-bit direction bit (from PC' to Address):
D=O forward jump
D=1 backward jump

DSJS decrements the contents of the destination register by 1. Depending on
the result, the TMS34020 either jumps or skips the jump:

lJi Rd -1 ¢ O. The TMS34020 jumps relative to PC'. PC' points to the instruc­
tion word that immediately follows the DSJS instruction. Internally, the 5-bit
word offset is multiplied by 16 to convert itto a bit offset. This allows ajump
range of -30 to +32 words from PC'.

• If direction bit D = O. The new PC address is obtained by adding the
resulting offset to PC'.

!II If direction bit D = 1. The new PC address is obtained by subtracting
the resulting offset from PC'.

Q Rd -1 = O. The TMS34020 skips the jump and continues program execu-
tion at the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the offset
as (Address - PC')/16; this results in a jump range of -30 to +32 words from
PC'. (The offset is encoded as part of the instruction word.)

Note that the assembler also calculates the value of 0 and generates a warning
is the jump is not in the range.

This instruction is useful for coding tight loops for cache-resident routines.

2 if no jump
3 if jump

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

~

DSJS AS, LOOP
DSJS AS, LOOP
DSJS AS, LOOP

~
AS
0OOOOOO9h
0OOOOO01h
OOOOOOOOh

~
AS
00000008h
OOOOOOOOh
FFFFFFFFh

Jump taken?
Yes
No
Yes

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Enable EINT

EINT

1 -7 IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0

EINT sets the global interrupt enable bit (IE) to 1, allowing interrupts to be
enabled. When IE=1, individual interrupts are enabled by setting the appropri­
ate bits in the INTENB interrupt mask register. The rest of the status register
is unaffected.

The DINT instruction disables interrupts.

3

N Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 1

Before

EINT
EINT

5T
00000010h
00200010h

After
5T
00200010h
00200010h

13-109

EMU Initiate Emulation

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

13-110

EMU count

Conditionally enter emulator mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I count

This instruction is not for general use. It is supplied to proved support for emula­
tion of the TMS34020.

8 (or more if EMU mode is entered)

N Indeterminate
C Indeterminate
Z Indeterminate
V Indeterminate

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

EXGF Rd[, F]

Rd ~ FSO,FEO or Rd ~ FS1, FE1
FSO,FEO ~ Rd or FS1,FE1 ~ Rd

15 14 13 12 11 10 9 8 7

vr-ht:Jnr,,o Field Definition EXGF

6 5 4 3 2 o
o I 0 I R Rd

EXGF exchanges the 6 LSBs of the destination register with the selected 6 bits
of field information (field size and field extension). Bit 5 of the 6-bit quantity in
Rd is exchanged with the field-extension value. The upper 26 bits of Rd are
cleared.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

EXGF's Fparameter is optional:

F=O selects FSO, FEO to be exchanged
F=1 selects FS1, FE1 to be exchanged

If you do not specify an F parameter, the default is O.

For more information, refer to Section 4.1, The Status Register, on page 4-2.

FO 1
F1 2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

~

EXGF A5,O
EXGF A5,l

A5
FFFFFFCOh
FFFFFFCOh

ST
FOOOOFFFh
FOOOOFFFh

After
A5
0000003Fh
0000003Fh

ST
FOOOOFCOh
F000003Fh

13-111

EXGPC Exchanf1.~ Pr0f1.~ Counter

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-112

EXGPC Rd

Rd ~ PC, PC' ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101010101010l11010111RI Rd

EXGPC exchanges the next program counter value with the destination regis­
ter contents. After this instruction has been executed, the destination register
contains the address of the instruction immediately following the EXGPC
instruction.

Note that the TMS34020 sets the 4 LSBs of the program counter to 0 (word
aligned).

This instruction provides a quick call capability by saving the return address
in a register (ratherthan on the stack). The return from the call is accomplished
by repeating the instruction at the end of the subroutine. Note that the subrou­
tine address must be reloaded following each call-return operation.

2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

~

EXGPC Al
EXGPC Al

A1
00001C10h
00001C50h

PC
00002080h
00002080h

Attru:
A1 PC
00002090h 00001 C1 Oh
00002090h 00001 C50h

TMS34020 Assembly Language Instruction Set

Exchange Pixel Size EXGPS
::;~.(';:;::(~;~~f~~~:<::;::~X:::;~~~y"/.':::::;::y':::::~:::::::J:::::::::~~:V.«~<'x.~~::x~...::0:l!J::::~.:;r.'::X:::X:::::~.[.~::::::~::::::::::::::::::~~~::~~~~~~~:;->;:;:M.:(.;:¥;::::t~:~~~::-»;Y-h::::::::::~:;.;~~::::::~~::::::~~:::;x.:::::::;::~::~::~::~::::::::~::~~~ill::::~~~~::~::::::::::~~~::::::~~::~~::~::t·~::::~~::::::~~::~~:::::::::::::.:.::::::~::~:;.;~::~~~~~~~::;;::;;::::::::::::::::~:::;:::::;.;:;~;;~r.~::;;~~~::~~:;:::::::::;::::::::::::::::::~:::::

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

EXGPS Rd

Rd ~ PC, PC' ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
~I 0~1~0~1~0~1 =0~1~0'1~0~1 ~1~1~0'1-1~1 ~oTI-1~I-R~1 ~~Rd--~I

EXGPS exchanges the contents of the destination register with the contents
of PSIZE register. The pixel size is assumed to be a legal value (1,2, 4, 8, 16,
or 32). The destination register is loaded with the pixel size, and its previous
contents are written with a 16-bit write to the PSIZE register. For more informa­
tion, refer to Section 12.6, Auxiliary Graphics Instructions, on page 12-17.

Address

C0000150h

2 (1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

EXGPS AO

Name

PSIZE

Before
After

AO = 00000001
AO = 00000008

Description and Operations

Pixel size (1,2,4,8,16,32)

PSIZE = 0008
PSIZE = 0001

13-113

FILL L Fill Array with Processed Pixels, Linear

Syntax

Execution

Instruction Words

Description

Implied Operands

Destination Address

13-114

mr

FILL L

COLOR1 pixels -7 pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 10 I 0 I 1 I 1 I· 1 I 1 I 1 I 1 ·1 0 I 0 I 0 I 0 I 0 I 0

FILL processes a set of source pixel values (specified by the COLOR 1 register)
with a destination pixel array.

This instruction operates on a 2-dimensional array of pixels using pixels
defined in the COLOR1 register. As the FILL proceeds, the source pixels are
combined with destination pixels according to the selected graphics oper­
ations ..

Note that the L parameter in the instruction syntax does not represent a value
or a register; the L is entered as part of the instruction and identifies the starting
address of the pixel array as a linear address.

The following set of implied operands govern the operation of the instruction
and define both the source pixels and the destination array.

Register Name Format Description

B2t DADDR Linear Pixel array starting address

B3 DPTCH Linear Pixel array pitch

B7 DVDX XV Pixel array dimensions (rows:columns)

B9 COLOR1 Pixel Fill color or 32-bit pattern

f Changed by FILL during execution.

Address Name Description and Operations

COOOOOBOh CONTROL PPOP Pixel-processing operations (22 options)
T Enables transparency operation
TM Selects 1 of 3 transparency options

C0000150h PSIZE Pixel size (1,2,4,8,16,32)

C0000160h PMASK Plane mask - pixel format
(32 bits)

Due to the pipelining of memory writes, the la8tl/0 reg ister that you write (when
setting up the 1/0 registers) may not, in some cases, contain the desired value
when you execute the FILL instruction. To ensure that this register contains the
correct value for execution, you may wantto follow the write to that location with
an MWAIT (page 13-178) instruction. Refer to Section 4.5.6 on page 4-13 for
a description of the potential latency of writes to 1/0 registers.

The contents of the DAD DR, DPTCH, and DYDX registers define the location
of the destination pixel array. For a detailed description, refer to Section
12.5, Pixel Array Instructions, on page 12-8.

TMS34020 Assembly Language Instruction Set

Pixel Processing

Window Checking

Corner Adjust

Transparency

Interrupts

Plane Masking

Shift Register
Transfers

Machine States

Status Bits

Examples

Set PPOP[CONTROL] to select a pixel-processing operation. This operation
is applied to the pixel as it is moved to the destination location. There are 16
Boolean and 6 arithmetic operations; the default operation at reset is rep/ace
(S ~ D). Note that the destination data is read through the plane mask and then
processed. The 6 arithmetic operations do not operate with a pixel size of 1 bit
per pixel. For more information, refer to Section 12.8, Pixel Processing, on
page 12-27.

Window checking cannot be used with this instruction. The contents of the
WSTART and WEND registers are ignored.

There is no corner adjust for this instruction. The direction of the FILL is fixed
as increasing linear addresses.

You can enable transparency for this instruction by setting T[CONTROL] to
1. You can also select 1 of 3 transparency options by setting TM[CONTROL].
For more information, refer to Section 12.9, Transparency, on page 12-36.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Opera­
tions, on page 6-13.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

If CST[DPYTCTL] is set, each memory read or write initiated by the FILL
generates a shift-register-transfer read or write cycle at the selected address.
This operation can be used for bulk memory clears or transfers. (Not all VRAMs
support this capability.) For more information, refer to subsection 9.13.4,
VRAM Bulk Initialization, on page 9-47.

complex instruction

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

These FILL examples use the following implied operand setup.

Register File B: I/O Registers:
DADDR = 0000201 Oh PSIZE = 0008h
DPTCH = 00000080h
DYDX = 0002000Dh
COLOR 1 = 30303030h

Assume that memory contains the following values before instruction execu­
tion.

Linear
Address Data
00002000h 11 OOh, 3322h, 5544h, 7766h, 9988h, BBAAh, DDCCh, FFEEh
00002080h 11 OOh, 3322h, 5544h, 7766h, 9988h, BBAAh, DDCCh, FFEEh

13-115

FILL L Fill Array with Processed Pixels, Linear
~~*'W ·W ::s::z:: •

Example 1

Example 2

Example 3

13-116

This example uses the pixel-processing rep/ace (8 ~ D) operation. Before
instruction execution, PMASK = OOOOh and CONTROL = OOOOh (T =0,
PPOP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address Data
00002000h 1100h,3030h,3030h,3030h,3030h,3030h,3030h,FF30h
00002080h 1100h,3030h,3030h,3030h,3030h,3030h,3030h, FF30h

This example uses the (8 and D) ~ D pixel-processing operation. Before
instruction execution, PMASK = OOOOh and CONTROL = 2COOh (T =0,
PPOP=01 01 0).

After instruction execution, memory contains the following values:

Linear
Address Data
00002000h 1100h, 0302h, 4544h, 4746h, 8988h, 8B8Ah, COCCh, FFCEh
00002080h 1100h, 0302h, 4544h, 4746h, 8988h, 8B8Ah, COCCh, FFCEh

This example uses plane masking - the 4 MSBs are masked. Before instruc­
tion execution, PMASK = OFOFOh and CONTROL = OOOOh (T =0,
PPOP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address Data
00002000h 1100h,3020h,5040h,7060h,9080h,BOAOh,DOCOh,FFEOh
00002080h 1100h,3020h,5040h,7060h,9080h,BOAOh,OOCOh,FFEOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

FILL XV

COLOR1 pixels --t pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111111111111111010101010
FILL processes asetofsource pixel values (specified by the COLOR1 register)
with a destination pixel array.

This instruction operates on a 2-dimensional array of pixels using pixels
defined in the COLOR1 register. As the FILL proceeds, the source pixels are
combined with destination pixels according to the selected graphics opera­
tions.

Note that the XV parameter in the instruction syntax does not represent a value
or a register; it is entered as part of the instruction and identifies the starting
address of the pixel array as an XV address.

The following set of implied operands govern the operation of the instruction
and define both the source pixels and the destination array.

Register Name Format Description

82 t:j: DADDR XY Pixel array starting address

83 DPTCH Linear Pixel array pitch

84 OFFSET Linear Screen origin (address of 0,0)

85 WSTART XY Window starting corner

86 WEND XY Window ending corner

87 t:j: DYDX XY Pixel array dimensions (rows:columns)

89 COLOR1 Pixel Fill color or 32-bit pattern

t Changed by FILLXY during execution.

:j: Used for common rectangle function with window hit operation (W=1).

Address Name Description and Elements (Bits)

C0000080h CONTROL PPOP Pixel-processing operations (22 options)
W Window-checking operation
T Enables transparency
TM Selects 1 of 3 transparency options

C0000140h CONVDP XY-to-linear conversion (destination pitch)

C0000150h PSIZE Pixel size (1,2,4,8,16,32)

C0000160h PMASK Plane mask - pixel format
(32 bits)

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the FILL

13-117

Destination Array

Pixel Processing

Window Checking

Corner Adjust

Transparency

Interrupts

Plane Masking

Shift Register
Transfers

Machine States

Status Bits

13-118

XY instruction. To ensure thatthis register contains the correct value for execu­
tion, you may want to follow the write to that location with an MWAIT instruction
(page 13-178). Refer to Section 4.5.6 on page 4-13 for a description of the
potential latency of writes to I/O registers.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. For a detailed
description, refer to Section 12.5, Pixel Array Instructions, on page 12-8.

Pixel processing can be used with this instruction. PPOP[CONTROL] speci­
fies the pixel-processing operation that is applied to pixels as they are proc­
essed with the destination array. There are 16 Boolean and 6 arithmetic opera­
tions; the default case at reset is the rep/ace (S --70) operation. Note that the
destination data is read through the plane mask and then processed. The 6
arithmetic operations do not operate with a pixel size of 1 bit per pixel. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

The window operations can be used with this instruction. You can select
window pick, violation detect, or preclipping by setting W[CONTROL] to 1,2,
or 3, respectively. For more information, refer to Section 12.7, Window Check­
ing, on page 12-19.

There is no corner adjust for this instruction. The direction of the FILL is fixed
as increasing linear addresses.

You can enable transparency for this instruction by setting T[CONTROL] to
1. Select 1 of 3 transparency modes by setting TM[CONTROL]. For more
information, refer to Section 12.9, Transparency, on page 12-36.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Opera­
tions, on page 6-13.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

If CST[DPYCTL] is set, each memory read orwrite initiated by the FILL gener­
ates a shift-register-transfer read or write cycle at the selected address. This
operation can be used for bulk memory clears or transfers. (Not all VRAMs
support this capability.) For more information, refer to subsection 9.13.4,
VRAM Bulk Initialization, on page 9-47.

complex instruction

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

TMS34020 Assembly Language Instruction Set

Examples

Example 1

These FILL examples use the following implied operand setup.

Register File B: I/O Registers:
DADDR = 00520007h CONVDP = 0017h
DPTCH = 00000100h PSIZE = 0004h
OFFSET = 00010000h PMASK = OOOOh
WSTART = 0030000Ch CONTROL = OOOOh
WEND = 00530014h (W=OO, T =0, PPOP=OOOOO)
DYDX = 00030012h
COLOR1 FFFFFFFFh

Assume that memory contains the following values before instruction execu­
tion.

Linear
Address
00015200h
00015300h
00015400h

Data
3210h,7654h,BA98h,FEDCh,3210h,7654h,BA98h,FEDCh
3210h,7654h,BA98h,FEDCh,3210h,7654h,BA98h,FEDCh
3210h,7654h,BA98h,FEDCh,3210h,7654h,BA98h,FEDCh

This example uses the rep/ace (S -7 D) pixel-processing operation. Before
instruction execution, PMASK = OOOOh and CONTROL = OOOOh (T =0, W=OO,
PPOP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address
00015200h
00015300h
00015400h

Data
3210h,F654h,FFFFh,FFFFh,FFFFh,FFFFh,BA9Fh,FEDCh
3210h,F654h,FFFFh,FFFFh,FFFFh,FFFFh,BA9Fh,FEDCh
3210h,F654h,FFFFh,FFFFh,FFFFh,FFFFh,BA9Fh,FEDCh

XV Addressing
X Address

Y 0 0 0 0 0 0 0 000 0 0 0 0 0 0 1 111 1 111 1 1 1 1 111
0123456789ABCDEF012356789ABCDEF

A
d 52 0 1 2 3 4 5 6 F F F F F F F F F F F F F F F F F 9 ABC 0 E F
d
r 53 0 1 2 3 4 5 6 F F F F F F F F F F F F F F F F F 9 ABC 0 E F
e
s 54 0 1 2 3 4 5 6 F F F F F F F F F F F F F F F F F 9 ABC 0 E F
s

13-119

FILL XV Fill Array with Processed Pixels, XY
!:':::::'::s:::::' .:..:.:..:..:z:~~~.~:::::::::::: %'Sf; f ~~~~~~~~..:w:;~

Example 2

Example 3

Example 4

13-120

This example uses the (0 XOR 8) ~ 0 pixel-processing operation. Before
instruction execution, PMASK = OOOOh and CONTROL = 2800h (T =0, W=OO,
PPOP=01 01 0).

After instruction execution, memory contains the following values:

X Address
Y 00000000000000011111111111111111

0123456789ABCDEF0123456789ABCDEF

A
d52 0123456876543210FEDCBA9879ABCDEF
d
r53 0123456876543210FEDCBA9879ABCDEF
e
s54 0123456876543210FEDCBA9879ABCDEF
s

This example uses window operation 3: the destination is clipped. Before
instruction execution, PMASK = OOOOh and CONTROL = OOCOh (T =0, W=11,
PPOP=OOOOO).

After instruction execution, memory contains the following values:

X Address
Y 00000000000000011111111111111111

D123456789ABCDEF0123456789ABCDEF

A
d 52 0123456789ABFFFFFFFFF56789ABCDEF
d
r 53 0123456789ABFFFFFFFFF56789ABCDEF
e
s 54 0 1 2 3 4 5 6 7 8 9 A B F F F F F F F F F 5 6 7 8 9 ABC D E F
s

This example uses plane masking: the MSB is masked. Before instruction exe­
cution, PMASK = 8888h and CONTROL = OOOOh (T =0, W=OO, PPOP=OOOOO).

After instruction execution, memory contains the following values:

X Address
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1

0123456789ABCDEF0123456789ABCDEF

A
d 52 0 1 2 3 4 5 6 7 F F F F F F F F 7 7 7 7 7 7 7 7 F 9 ABC D E F
d
r 53 01234567FFFFFFFF77777777F9ABCDEF
e
s54 01234567FFFFFFFF77777777F9ABCDEF
s

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Fields

Description

FLiNE {O I 1}

The two execution algorithms for FLiNE are explained below. These algo­
rithms are similar, varying only in their treatment of the case when d=O.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1111101111111110lzl010111110111o
The assembler sets bit 7 in the instruction word (the Z bit) to 0 or 1, depending
on which FLiNE algorithm you select:
Z=O selects algorithm 0
Z=1 selects algorithm 1

FLiNE is a version of LINE. The major differences are:

~ FLiNE is faster than LINE.
~ FLiNE does not support windowing.
I:i FLiNE requires B2 to be linear.

FLiNE performs the inner loop of Bresenham's line-drawing algorithm. This
type of line draw plots a series of points (Xj,Yj) either diagonally or laterally with
respect to the previous point. Movement from pixel to pixel always proceeds
in a dominant lateral direction. The algorithm mayor may not also increment
in the direction with the smaller dimension (this produces a diagonal move­
ment). Two XV-format registers supply the XY increment values for the two
possible movements. The FLiNE instruction maintains a decision variable, d,
that acts as an error term, controlling movement in either the dominant or
diagonal direction. The algorithm operates in one of two modes, depending on
how the condition d=0 is treated.

During FLiNE execution, some portion of a line from (xo,Yo) to (Xi ,Y1) is drawn.
The line is drawn so that the axis with the largest extent has dimension a, and
the axis with the least extent has dimension b. Thus, a is the larger (in absolute
terms) of Y1 - Yo, or xi - Xo and b is the smaller of the two. This means that
a;;:::b;;:::O.

The LlNIT instruction (page 13-146) is designed to do most of the setup for
FLiNE with the exception of the XY to linear conversion of DADDR.

The following values must be supplied to draw a line from (xo,Yo) to (X1,Y1):

I:i Set the value in DADDR to be the linear address of the first pixel in the line
at (xo,Yo).

I:i Use the line endpoints to determine the major and minor dimensions (a
and b, respectively) for the line draw; then set the DYDX register to this
value (b:a).

I:i Place the signed XY increment for a movement in the diagonal (or minor)
direction (d;;::: 0 for Z=O, d> 0 for Z=1) in the INC1 register.

13-121

!J Place the signed XY increment for a movement in the dominant (or major)
direction (d < 0 for Z=O, d:5 0 for Z=1) in the INC2 register.

!J Set the initial value of the decision variable in register BO to 2b - a.

!J Set the initial count value in the COUNT register to a + 1.

!J Set the COLOR1 and COLORO registers.

!J Set the PATIERN register to the required pattern.

FLiNE handles the contents of PATIERN in the same way as LINE (unlike
PFILL XV). With FLlNE, the first pixel drawn is controlled by bit 0 of the
PATIERN register.

The PATIERN register contains a 32-bit repeating line-style pattern. If bit 0
of PATTERN is 0, then the first pixel drawn by liNE is a COLORO pixel. If bit
o of PATIERN is 1, then the first pixel drawn by LINE is a COLOR1 pixel.
The second pixel drawn by LINE is controlled by bit 1 of B13, and so on. If
the line is longer than 32 pixels, the PATIERN is reused cyclically; there­
fore, the 33rd pixel on the line is once again controlled by bit 0 of PATIERN.
As each pixel is drawn, the contents of PATTERN are rotated right (circular
shifted) by 1 bit. The LSB of the rotated pattern controls the next pixel the
instruction puts out.

If PATIERN contains all 1 s, the line is drawn in a solid color using the repli­
cated pixel value contained in COLOR1; if PATIERN contains all Os, the
line is drawn in a solid color using COLORO.

The FLiNE instruction may use one of two algorithms, depending on the value
of Z.

Algorithm 0 (Z=O): Algorithm 1 (Z=1):
While COUNT> 0

While COUNT> 0

13-122

COUNT = COUNT - 1
Draw the next pixel
If d;;:: 0

d= d+ 2b- 2a
POINTER = POINTER + INC1

Else d= d + 2b;
POINTER = POINTER + INC2

COUNT = COUNT - 1
Draw the next pixel
If d> 0

d= d+ 2b-2a
POINTER = POINTER + INC1

Else d = d + 2b;
POINTER = POINTER + INC2

For more information about FLlNE, refer to Section 12.4, Line Instructions, on
page 12-7.

TMS34020 Assembly Language Instruction Set

Implied Operands

Pixel Processing

Window Checking

Transparency

FLINE

Register Name Format Description

80 t SADDR Integer Decision variable (d)

82 t DADDR Linear Starting point

83 DPTCH Linear Destination pitch (only used if
CONVDP specifies arbitrary pitch)

87 DYDX XY (b: a) = Minor: major dimension

88 :j: COLORO Pixel COLORO

89 11 COLOR1 Pixel COLOR1

810 t COUNT Integer Loop count

811 INC1 XY Minor axis (diagonal) increment

812 INC2 XY Major axis (dominant) increment

813 PATTERN Pattern Pattern register

t These registers are changed by instruction execution.
:j: This register is only required if there are O's in the pattern.
§ This register is only required if there are 1 's in the pattern.

Address Name Description and Elements (Bits)

COOOOOBOh CONTROL PPOP Pixel-processing operations (22 options)
T Transparency operation
TM Sets transparency mode

COOO0140h CONVDP XY-to-linear conversion (destination pitch)

COOO0150h PSIZE Pixel size (1,2,4,8,16,32)

COOO0160h PMASK Plane mask - pixel format
(32 bits)

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the FILL
XY instruction. To ensure that this register contains the correct value for execu­
tion, you may want to follow the write to that location with an MWAIT instruction
(page 13-178). Refer to Section 4.5.6 on page 4-13 for a description of the
potential latency of writes to I/O registers.

PPOP[CONTROL] specifies the operation to be applied to the pixel as it IS
written. There are 22 operations; the default case at reset is the pixel-process­
ing replace (S ~ D) operation. For more information, refer to Section 12.8, Pix­
el Processing, on page 12-27.

Window checking cannot be used with this instruction. The line must be
preclipped; for more information, refer to Section 12.7, Window Checking, on
page 12-19.

You can enable transparency for this instruction by setting T[CONTROL] to
1. Select 1 of 3 transparency options by setting TM[CONTROL]. For more
information, refer to Section 12.9, Transparency, on page 12-36.

13-123

Plane Masking

Interrupts

Machine States

Status Bits

Example

STK
DADDR
DYDX
INCl
PATTERN

draw line:

13-124

.set

.set

.set

.set

.set

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

This instruction can be interrupted at a pixel boundary. For more information,
refer to Section 6.6, Interrupting Graphics Operations, on page 6-13.

Refer to Section 15.1 on page 15-2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws a solid line
on the screen. Ittakes 4 parameters from the C parameter stack: (xstart, ystart)
and (xend, yend), and uses UNIT to initialize the B-file implied operands for
LINE or FLiNE. It also special-cases horizontal and vertical lines and uses a
FILL for these.

This routine makes the assumes thatthe following B registers and I/O registers
have been initialized by the caller:

B-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1
I/O registers CONTROL, CONVDP, PSIZE, and PMASK

A14 C-parameter stack pointer
B2 i Destination address register
B7 Delta X/delta Y register
Bll Minor axis (diagonal) increment
B13 i Pattern register

.globl draw line Reference for external calls
mmtm SP ,AO,Al
mmtm SP,B2,B7,B1O,Bll,B12,B13,Bi4
move *-A14,AO,1 get xs
move *-A14,Al,1 get ys
s11 16,Al
movy Al,AO i concatenate ys: :xs
move *-A14,Al,1 i get xe
move *-A14,A8,1 i get ye
s11 16,A8
movy A8,Al concatenate ye: :xe
move AO,DADDR
move Al,DYDX
movi -1, PATTERN
linit
jrc exit i line is entirely outside window
jrp cliptst line neither vertical or horizontal

TMS34020 Assembly Language Instruction Set

=""w=w==."' :z."' •• ~z::c:

Confirmed that line is vertical or horizontal, so FILL can be used
instead of LINE. Now determine whether line points in the +x or
+y direction, or in the -x or -y direction.

vorh: cmpxy AO,Al a = xe - xs, b = ye - ys
jrv negdir ; jump if -x direction
jrc negdir ; jump if -y direction

Horizontal or vertical line points in +x or +y direction.
move AO, DADDR DADDR = ys:: xs
subxy AO,Al a = xe - xs, b = ye - ys
move Al,DYDX DYDX = length of line
jruc vorhline ;

; Horizontal or vertical line
negdir: move Al,DADDR

subxy Al,AO

points in -x or -y direction.
DADDR = ye: :xe

; a = xs - xe, b = ys - ye
; DYDX = length of line

line.
move AO, DYDX

; Draw the vertical or horizontal
vorhline: addi OlOOOlh,DYDX

fill XY
++DX, ++DY
draw line

cliptst:

fdown:

draw:

down:
exit:

jruc exit
jrv draw
cvdxyl DADDR

clipping required use LINE
convert to linear address
does line point up or down? move

jrlt
fline
jruc
fline
jruc
move
jrlt
line
jruc
line
mmfm
rnmfm
rets

INC1,INCl
fdown
o
exit
1
exit
INC1,INCl
down
o
exit

draw Bresenham line

draw Bresenham line

does line point up or down?

draw Bresenham line

1 draw Bresenham line
SP,B2,B7,B10,Bll,B12,B13,B14
SP,AO,Al
2 ;return to caller

13-125

FPIXEQ Find Pixel Equal to COL ORO
.... ""'W ~$19S:ll'

Syntax

Execution

Instruction Words

Description

Implied Operands

13-126

FPIXEQ

Scan from pixel pointed to by MADDR to find the first pixel equal to COLORO,
up to the number of pixels specified in MPTCH.

15 14 13 12 11 10 9 8 7 6 5 432 0

FPIXEQ compares pixels in memory to the value in the COLORO register. The
search ends when the current pixel is equal to the COLORO pixel of the number
of pixels specified in MPTCH has been searched. The search takes place in
either an postincrementing or a predecrementing fashion. MPTCH specifies
the number of pixels to search. The count is positive in the postincrementing
case (search righ~ and negative in the predecrementing case (search lef~.

The magnitude of the MPTCH counter decreases as the search continues.

If the instruction finds a pixel, Z is set to 1, the instruction aborts. MADDR is
left pointing to the next pixel to check (postincrementing case) or the last pixel
checked (predecrementing case).

If the instruction is interrupted, the pointers are set so the FPIXEQ resumes
automatically. That is, the PC is decremented to point back to the FPIXEQ, the
ST and PC are stacked, MADDR is left pointing to the next pixel to check (post­
incrementing case) or the last pixel checked (predecrementing case, and
before the TRAP routine is started. The RETI at the end of the TRAP resumes
the FPIXEQ instruction from the next pixel to be checked. For more informa­
tion, refer to Section 12.6, Auxiliary Graphics Instructions, on page 12-17.

This instruction is useful for seedfills, data compression, and edge-flag fills.

Register Name Format Description

88 COLORO Pixel COLORO

810 MADDR Linear Search start pointer

811 MPTCH Integer Number of pixels to search

Address Name Description and Elements (Bits)

COOO0150h PSIZE Pixel size

COOO0160h PMASK (32 bits) Plane mask - pixel format

Due to the pipelining of memory writes, the last 1/0 register that you write to
may not, in some cases, contain the desired value when you execute the
FPIXEQ instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT
(page 13-178) instruction. Refer to Section 4.5.6 on page 4-13 for a description
of the potential latency of writes to 1/0 registers.

TMS34020 Assembly Language Instruction Set

Pixel Processing

Window Checking

Transparency

Plane Masking

Machine States

Status Bits

Pixel processing cannot be used with this instruction.

Window checking cannot be used with this instruction.

Transparency cannot be used with this instruction.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

complex instruction

N Unaffected
C
Z
V

Unaffected
1 if pixel found, 0 otherwise
Unaffected

13-127

Syntax

Execution

Instruction Words

Description

Implied Operands

Pixel Processing

Window Checking

13-128

FPIXNE

Scan from pixel pointed to by MADDR to find first pixel that is D.Q1 equal to
COLORO, up to the number of pixels specified in MPTCH.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111011101111101111101111
FPIXNE compares pixels in memory to the value in the COLORO register. The
search ends when the current pixel is !lQ1 equal to the COLORO pixel. The
search takes place in either an postincrementing or a predecrementing
fashion. MPTCH specifies the maximum number of pixels to search. Note that
this is not an XY value.The count is positive in the postincrementing case
(search righ~ and negative in the predecrementing case (search lem.

If the instruction finds a pixel, Z is set to 1, the instruction aborts. MADDR is
left pointing to the next pixel to check (postincrementing case) or the last pixel
checked (predecrementing case).

The magnitude of the MPTCH counter decreases as the search continues. If
the instruction is interrupted, the pointers are set so the FPIXNE resumes auto­
matically. That is, the PC is decremented to point back to the FPIXNE, the ST
and PC are stacked, MADDR is left pointing to the next pixel to check (post­
incrementing case) or the last pixel checked (predecrementing case, and the
TRAP routine is started. The RETI at the end of the TRAP resumes the FPIXNE
instruction from the next pixel to be checked. For more information, refer to
Section 12.6, Auxiliary Graphics Instructions, on page 12-17.

Register Name Format Description

810 MADDR Linear Search start pointer

811 MPTCH Integer Number of pixels to search

88 COLORO Pixel COLORO

Address Name Description and Elements (Bits)

COOO0150h PSIZE Pixel size

COOO0160h PMASK (32 bits) Plane mask - pixel format

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the
FPIXNE instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT
(page 13-178) instruction. Referto Section 4.5.6 on page 4-13 for a description
of the potential latency of writes to I/O registers.

Pixel processing cannot be used with this instruction.

Window checking cannot be used with this instruction.

TMS34020 Assembly Language Instruction Set

Find Pixel Not Equal to COL ORO FPIXNE
;x:;:;:;;::::xx-;:;:;:;-;x:;m~:~,~:~:;x:;~~::::::z~::::::::::~~~~~~::~:::::::::::::::~,:::::~x::~::::::::~:~:::~~~~~;;;:~~,::~;::.x::::::%~::~::~::::~::~~~::~::::::>::::::x:::::;~::~::>::::;;-;:=.:;-;:;::::::::::;;;:::::::::::::::::::;;;: ::::::::::~'::::::::::::::::%::::::::::;;;::::::::';::;;-.::::::;::::::::::.x:::::~:::,::::;::::::::::::':',:'::,:::xw,:::::=,::::x:::::::::';;-;,::::::::::x::x::::::'::::;:;::::::';f'::W;:::::::::~:::::::%::::':::::~:::::::::::::::':X::::::::::::;;:::::::~;:::~

Transparency

Plane Masking

Machine States

Status Bits

Transparency cannot be used with this instruction.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

complex instruction

N Unaffected
C
Z
V

Unaffected
1 if pixel found, 0 otherwise
Unaffected

13-129

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

GETPS Rd

PSIZE~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

GETPS fetches the pixel size stored in the PSIZE register and loads it into the
destination register. The pixel size is assumed to be a legal value (1,2,4,8,
16, or 32). For more information, refer to Section 12.6, Auxiliary Graphics
Instructions, on page 12-17.

Address

COOO0150h

2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code

GETPS AD
(PSIZE = 8)

Name

PSIZE

Before
AD
00000035

Description and Elements (Bits)

Pixel Size (1,2,4,8,16,32)

After
AD
00000008

13-131

G ETST Get Statu~!i;'9/stE;!l!!to R;fl,ister

Syntax

Execution

Instruction Words

Description

GETST Rd

ST ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

10 10 10 10 10 10 10 11 11 10 10 I R Rd

o

GETST copies the contents of the status register into the destination register.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

13-132

For more information, refer to Section 4.1, The Status Reaister, on page 4-2.

1

N Unaffected
C Unaffected
Z
V

Unaffected
Unaffected

GETST Al
GETST Al

~
ST
20200010h
00000010h

Ann
A1
20200010h
00000010h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

IDLE
'*~

IDLE

Halt execution until interrupted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1010101010101010101110101010 o 1 0

IDLE waits for an interrupt to occur. While IDLE waits for an interrupt, an inter­
nal microcode loop executes, and the PC continually points to the IDLE instruc­
tion. When the TMS34020 takes an interrupt, the PC value that is pushed onto
the system stack points to the instruction that immediately follows the IDLE
instruction. Upon return from the interrupt, the PC is restored and execution
begins at the instruction immediately following the IDLE instruction.

An interrupt request that is not enabled is ignored by the IDLE instruction.

Refer to Section 15.1 on page 15-2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

13-133

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-134

INC Rd

Rd + 1 ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101011101010101010111RI Rd

INC adds 1 to the contents of the destination register and stores the result in
the destination register. This instruction is an alternate mnemonic for ADDK

1,Rd.

You can accomplish multiple-precision arithmetic by using INC in conjunction
with the ADDC instruction.

N 1 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
A1 A1 NCZV

INC Al OOOOOOOOh 00000001h 0000
INC Al OOOOOOOFh 00000010h 0000
INC Al FFFFFFFFh OOOOOOOOh 01 1 0
INC Al FFFFFFFEh FFFFFFFFh 1000
INC Al 7FFFFFFFh 80000000h 1 001

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Fields

Description

Machine States

Status Bits

Examples ~

JAUC HERE
JAP HERE
JALS HERE
JAHI HERE
JALT HERE
JAGE HERE
JALE HERE
JAGT HERE
JAc HERE
JANC HERE
JAZ HERE

JAcondition Address

If condition true, then Address ---7 PC
If condition false, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
11 1 1 0 1 0 1 code 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

16 LSBs of Address

16 MSBs of Address

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes table below.)

The JAcondition instruction conditionally jumps to an absolute address. The
condition is part of a mnemonic that represents the condition for the jump; for
example, if condition is UC, then the instruction is JAUC. (See the condition
mnemonics and codes listed below.) If the specified condition is true, the
TMS34020 jumps to the address and continues execution from that point. If the
specified condition is false, the TMS34020 skips the jump and continues exe­
cution at the next sequential instruction. Note that the 4 LSBs of the program
counter are hardwired to o.
The Address operand in the syntax represents the 32-bit absolute address.
Note that the second and third instruction words contain the address for the
jump.

The JAcondition instructions are usually used in conjunction with the CMP and
CMPI instructions. The JAV and JAN V instructions can also be used to detect
window violations or CPW status.

3 if no jump, else 4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Flags for Branch
NCZV NCZV
xxxx
OxOx
X X 1 x x 1 x X

xOOx
Oxx1 1 x x 0
OxxO 1 x x 1
Oxx1 1 x x 0
OxOO 1 x 0 1
x 1 x X

xOxx
X x 1 x

NCZV

x x 1 X

Code Flags for Branch
NCZV NCZV NCZV

JAV HERE xxx1
JANZ HERE xx Ox
JANN HERE Ox xx
JANV HERE xxxO
JAN HERE 1xxx
JAB HERE X 1 x X

JANB HERE xOxx
JALO HERE X 1 x X

JAHS HERE xOOx X x 1 X

JANE HERE xxOx
JAEQ HERE x x 1 x

13-135

J==A==_~_o_n_<!""i ... ti ... o""n"""",_.",_J!!",,mdt;_A=b~""f=~=.!;=;,_C_o""n=dJ=·ti;;,=n_",~='========"","",,,,,,, ""'"""""'"=w.=.===_= ___ =."""""""""".,_

Note that the TMS34020 jumps when anyone or more of the Flags for Branch
listed above are set as indicated.

Condition Codes

Mnemonic

Non XV XV Result of Compare Status Bits Code

Unconditional JAUC - Unconditional Don't care 0000
Compares

Unsigned JALO - Dst lower than Src C 1000
Compares (JAC) (JAB) JAYN

JALS JAYLE Dst lower or same as Src C+Z 0010
JAHI JAYGT Dst higher than Src C·Z 0011
JAHS JAYNN Dst higher or same as Src C 1001
(JAN C) (JAN B) Dst = Src
JAEQ - Z 1010
(JAZ) JAYZ Dst* Src
JANE - Z 1011
(JANZ) JAYNZ

Signed JALT JAXLE Dst < Src (N· V) + (N V) 0100
Compares JALE - Dst:s; Src (N· V) + (N". V) +Z 0110

JAGT - Dst> Src (N . V . Z) + (N" . V . Z) 0111
JAGE JAXGT Dst ~ Src (N.V)+(N V) 0101
JAEQ - Dst = Src Z 1010
(JAZ) JAYZ
JANE - Dst* Src Z 1011
(JANZ) JAYNZ

Compare to JAZ (JAEQ) JAYZ Result = 0 Z 1010
Zero JANZ (JANE) JAYNZ Result * 0 Z 1011

JAP - Result is positive N·Z 0001
JAN JAXZ ,Result is negative N 1110
JANN JAXNZ Result is nonnegative N 1111

General JAZ (JAEQ) JAYZ Result is 0 Z 1010
Arithmetic JANZ(JANE) JAYNZ Result*O Z 1011

JAC (JALO) (JAB) JAYN Carry set on result C 1000

JANC JAYNN No carryon result C 1001
(JAHS) (JAN B)
JAB (JALO) (JAC) JAYN Borrow set on result C 1000

JANB JAYNN No borrow on result C 1001
(JAHS) (JAN C)

JAVt JAXN Overflow on result V 1100

Note: A mnemonic code in parentheses is an alternate code for the preceding code.
Key: t Also used for window clipping + Logical OR

Logical AND Logical NOT

13-136 TMS34020 Assembly Language Instruction Set

Jump Relative Conditional, Short JRcondition
~:;:-;~:::::;~::::::::~::::~::-;::~::~::::~~:~~~~~:~~:::::::::~::::::~~::::~~::::::~~:~:::~~::~::::~~~::::::~::::::~::::::~::::~~::::~:::::;~::::::~::--..::>::::::~~::::~::::::::::::::::-;::::::::::::::~:::: ::::::::::::::::::>:::::::::::::::::::::::::::::::::::::.":;:::.-:;:-';:::::::::::::::::~::~.::~::::::::::::~:::;:.:.:.:::.:::.:.:.:.:.:.::.:::::::::::;::.;:::::::;.:.:.:.:.:.:.:.:::::::::::::::.;;:::::.:.;::.:.:.:.:.:.;.:.:~;:::::: :':':':':':':':':':':':'W;:::::;:':';';':':':~':':':":':·:·:·:·:.:.:·:::·;·;·:::·;.;.z·:·;·;.:·;·:<·;.z·;·;.:

Syntax

Execution

JRcondition Address

If condition true, then offset + PC' -7 PC
If condition false, then go to next instruction

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Fields

Description

Machine States

Status Bits

Examples Code

I 1 I 1 I 0 I 0 I code offset

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes table below.)

JRconditionconditionally jumps to an address that is relative to the current PC.
Condition is part of a mnemonic; it represents the condition for the jump. For
example, if condition is UC, the instruction is JRUC. (See the conditions and
codes listed below.) Ifthe condition is true, the TMS34020 jumps to a new loca­
tion. The assembler calculates the new address by adding the address of the
next instruction (PC') to the signed word offset. The TMS34020 then continues
execution from this point. If the condition is false, the TMS34020 skips the
jump and continues execution at the next sequential instruction.

The Address operand is a 32-bit relative address. The assembler calculates
the offset as (Address - PC')/16 (where PC' is the address of the instruction
word immediately following the jump instruction) and inserts the resulting 8-bit
offset into the opcode. The range for this form of the JRcondition instruction
is ±128 words (excluding 0).

If the offset is outside the range of ±128 words, the assembler automatically
substitutes the longer form of the JRcondition instruction. If the offset is 0, the
assembler substitutes a NOP. The assembler does not accept an address that
is externally defined or an address that is relative to a different section than the
PC. Note that the 4 LSBs of the PC are always 0 (word aligned).

The JRcondition instructions are often used with the CMP and CMPI instruc­
tions. The JRV and JRNV instructions can also be used to detect window viola­
tions or CPW status.

1 if no jump, else 2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Flags for Branch Code Flags for Branch
NCZV NCZV NCZV NCZV NCZV NCZV

JRUC HERE xxxx JRC HERE X 1 x X

JRP HERE OxOx JRNC HERE xOxx
JRLS HERE xx1x x 1 x X JRZ HERE X x 1 X

JRHI HERE xOOx JRNZ HERE xxOx
JRLT HERE Oxx1 1 x x 0 JRV HERE xxx1
JRGE HERE OxxO 1 x x 1 JRNV HERE xxxO
JRLE HERE Oxx1 1 x x 0 x x 1 X JRN HERE lxxx
JRGT HERE OxOO 1 x 0 1 JRNN HERE Oxxx

13-137

Jump Relative Conditional, Long JRcondition
~~;~::~::~:::~:~;:O;~~~~~::~::~~:t.::::~:~:;:~::~;~::::::::::::::::~:::;:::::::::;::-M:::::~;:::::;:;:;:::::~:::::::::::::::::::::::::-;:~;::::X:::::;:::::::::::~::t.::::::::~;:::::::::::::::::::::::::::::::::;x:::::~::::::~::::::::::::~::::::::::::::::::::::::::::::::::;::::::: ::::::::::::::::::::::::~~~::::::;:::::::~::::::::::::::::::::;:::::%::;:::;:::::;:::::~::::::;:::~::::::::::::;:::::::::::::::;:::::::::::::::::::::::;::::::::::::::.~::.;.::::::::: ::;:::::;:;:::;:;:;:::::;:::;:::::::::::::;:::::::;:::::~::::::::::::::::::

Syntax

Execution

Instruction Words

Fields

Description

Machine States

Status Bits

JRcondition Address

If condition true, then offset + PC' -7 PC
If condition false, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 432 0

code 1010101010101010
offset

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes on page 13-138.)

The JRcondition instruction conditionally jumps to an address that is relative
to the current PC. The condition is part of a mnemonic that represents the con­
dition forthe jump; for example, if condition is UC, then the instruction is JRUC.
(See the condition mnemonics and codes listed in on page 13-138.) If the
specified condition is true, the TMS34020 jumps to a new location. The assem­
bler calculates the address of this location by adding the address of the next
instruction (PC') to the signed word offset. The TMS34020 then continues exe­
cution from this point. If the specified condition is false, the TMS34020 skips
the jump and continues execution at the next sequential instruction.

The Address operand in the syntax represents the 32-bit relative address. The
assembler calculates the offset as (Address - PC')/16 (where PC' is the
address of the instruction word immediately following the jump instruction) and
inserts the resulting offset into the second instruction word of the opcode. The
range for this form of the JRcondition instruction is -32,768 to +32,767 words
(excluding 0).

If the offset is 0, the assembler substitutes a NOP instruction. If the address
is out of range, the assembler uses the JAcondition instruction instead. The
assembler does not accept an address that is externally defined or an address
that is relative to a different section than the PC. Note that the 4 LSBs of the
program counter are always 0 (word aligned).

The JRcondition instructions are commonly used in conjunction with the CMP
and CMPI instructions. The JRV and JRNV instructions can also be used to
detect window violations or CPW status.

2 if no jump, else 3

N Unaffected

C Unaffected

Z Unaffected
V Unaffected

13-139

Examples Code Flag§ for Brf!nch Code F1f!g§ fQr Branch
NCZV NCZV NCZV NCZV NCZV NCZV

JRUC HERE xxx x JRV HERE xxx1
JRP HERE OxOx JRNZ HERE xxOx
JRLS HERE X X 1 x x 1 x X JRNN HERE Ox xx
JRHI HERE xOOx JRNV HERE xxxO
JRLT HERE Oxx1 x x 0 JRN HERE 1xxx
JRGE HERE OxxO X x 1 JRB HERE x 1 x X
JRLE HERE Oxx1 x x 0 x x 1 x JRNB HERE xOxx
JRGT HERE OxOO x 0 1 JRLO HERE X 1 x X
JRC HERE X 1 x X JRHS HERE xOOx X x 1 X
JRNC HERE xOxx JRNE HERE, }(xOX
JRZ HERE x x 1 x JREQ HERE x x 1 x

Note that the TMS34020 jumps when anyone or more of the Flags for Branch
listed above are set as indicated.

13-140 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Indirect JUMP

JUMP Rs

Rs -7 PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I R I Rd

JUMP jumps to the address contained in the source register. The TMS34020
sets the 4 LSBs of the program counter to 0 (word aligned). This instruction can
be used in conjunction with the GETPC and/or EXGPC instructions.

2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

JUMP Al
JUMP Al
JUMP Al

Before
A1
00001EEOh
00001EE5h
FFFFFFFFh

PC
00555550h
00555550h
00555550h

After
PC
00001 EEOh
00001 EEOh
FFFFFFFOh

13-141

Algorithm 0 (Z=O):

While COUNT> 0

1;;1 Place the signed XV increment for a movement in the diagonal (or minor)
direction (d~ 0 for Z=O, d> 0 for Z=1) in the INC1 register.

1;;1 Place the signed XV increment for a movement in the dominant (or major)
direction (d< 0 for Z=O, d~ 0 for Z=1) in the INC2 register.

1;;1 Set the initial value of the decision variable in register 80 to 2b - a.

1;;1 Set the initial count value in the COl!NT register to a + 1.

1;;1 Set the COLOR1 and COLORO registers.

1;;1 Set the PATTERN register to the required pattern.

LINE handles the contents of PATTERN in the same way as FLiNE (unlike
PFILL XV). With LINE, the first pixel drawn is controlled by bit 0 of the
PATTERN register.

The PATTERN register contains a 32-bit repeating line-style pattern. If bit 0
of PATTERN is 0, then the first pixel drawn by LINE is a COLORO pixel. If bit
o of PATTERN is 1, then the first pixel drawn by LINE is a COLOR1 pixel.
The second pixel drawn by LINE is controlled by bit 1 of 813, and so on. If
the line is longer than 32 pixels, the PATTERN is reused cyclically; there­
fore, the 33rd pixel on the line is once again controlled by bit 0 of PATTERN.
As each pixel is drawn, the contents of PATTERN are rotated right (circular
shifted) by 1 bit. The LS8 of the rotated pattern controls the next pixel the
instruction puts out.

If PATTERN contains all 1 s, the line is drawn in a solid color using the repli­
cated pixel value contained in COLOR1 ; if PATTERN contains all Os, the
line is drawn in a solid color using COLORO.

The LINE instruction may use one of two algorithms, depending on the value
of Z.

Algorithm 1 (Z=1):

While COUNT> 0
COUNT = COUNT - 1
Draw the next pixel

COUNT = COUNT - 1
Draw the next pixel

If d~O
d= d+2b-2a
POINTER = POINTER + INC1

Else d= d+ 2b;
POINTER = POINTER + INC2

If d> 0
d= d+2b-2a
POINTER = POINTER + INC1

Else d= d+ 2b;
POINTER = POINTER + INC2

13-143

LINE Line Draw with XY Addressinfl.

Implied Operands

Pixel Processing

Window Checking

13-144

Register Name Format Description

BO t SADDR Integer Decision variable (d)

B2 t DADDR XV Starting point (Yi' Xi), usually (Yo, xo)

B3 :j: DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XV Window starting corner

B WEND XV Window ending corner

B7 DVDX XV (b: a) = Minor: major dimension

B8 COLORO Pixel COLORO

B9 COLOR1 Pixel COLOR1

B10 t COUNT Integer Loop count

B11 INC1 XV Minor axis (diagonal) increment

B12 INC2 XV Major axis (dominant) increment

B13 PATTERN Pattern Pattern register
f These registers are changed by instruction execution.
:j: Required only when pitch is an arbitrary, non power of 2.

Address

COOOOOBOh

C0000140h

C0000150h

C0000160h

Name

CONTROL

CONVDP

PSIZE

PMASK
(32 bits)

Description and Elements (Bits)

PPOP Pixel-processing operations (22 options)
W Window-clipping operation
T Transparency operation
TM Sets transparency mode

XV-to-linear conversion (destination pitch)

Pixel size (1,2,4,8,16,32)

Plane mask - pixel format

Due to the pipelining of memory writes, the last 1/0 register that you write to
may not, in some cases, contain the desired value when you execute the LINE
instruction. To ensure thatthis register contains the correct value for execution,
you may want to follow the write to that location with an MWAIT (13-177). Refer
to Section 4.5.6 on page 4-13 for a description of the potential latency of writes
to 1/0 registers.

PPOP[CONTROL] specifies the operation to be applied to the pixel as it is
written. There are 22 operations; the default case at reset is the pixel-proces­
sing replace (S ~ D) operation. For more information, refer to Section 12.8,
Pixel Processing, on page 12-27.

Window clipping or picking is selected by setting W[CONTROL] to the appro­
priate value. The WSTART and WEND registers define the window in XV -coor­
dinate space. For more information, refer to Section 12.7, Window Checking,
on page 12-19.

TMS34020 Assembly Language Instruction Set

Transparency

Plane Masking

Interrupts

Machine States

Status Bits

Example

You can enable transparency for this instruction by setting T[CONTROL] to
1. Select 1 of 3 transparency options by setting TM[CONTROL]. For more
information, refer to Section 12.9, Transparency, on page 12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

LINE may be interrupted after every pixel in the line draw except for the last
pixel. Note that a LINE instruction that is aborted because of window checking
options 1 or 2 does not decrement the PC before pushing it on the stack. In this
case, the LINE is not resumed after returning from the interrupt service routine.
For more information, refer to Section 6.6, Interrupting Graphics Instructions,
on page 6-13.

Refer to Section 15.1 on page 15-2.

N Undefined
C Undefined
Z Undefined
V Set depending upon window operation

Refer to example for FLiNE on page 13-124.

13-145

LlNIT Line Initialization

Syntax

Execution

Instruction Words

Description

Implied Operands

UNIT

2b-a -7 BO
(b:a) -7 B7
a+1 -7 B10
minor axis (diagonal) XY increment -7 B11
major axis (dominant) XY increment -7 B12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
101010101111101010111011101111 1

This line initialization instruction uses the start and end points for the line to set
up the implied B-file registers as required by the LINE and FLiNE instructions.
The startpoint is assumed to be in B2 and the endpoint in B7. Note that FLiNE
expects a linear DADDR, so when LlNIT is used in conjunction with FLlNE,
CVXYL should be executed on DADDR before executing FLiNE.

The V bit in status is set to indicate if both start and end points lie within the
window. The i-J and Z bits are set on the X and Y zero detects on the difference
between the two points. This allows for detection of the special cases of hori­
zontal and vertical lines as well as single pixel lines. The C bit is set to indicate
that the line may be trivially rejected.

For additional information, refer to Section 12.4, Line Instructions, on page
12-7; FLiNE on page 13-121, LINE on page 13-142, subsection 12.7.5,
Window Checking for Line Instructions, on page 12-23, and subsection
12.7.5.2, Using LlNITand FLiNE for Preclipping Line Drawing, on page 12-26.

"

Register Name Format Description

80 SADDR Linear Decision variable (output)

82 DADDR XY Starting point (Yo. xo) (input)

87 DYDX XY Ending point (Y1, xi) (input)

87 DYDX XY b:a minor:major line dimensions (output)

810 COUNT Integer Count (output)

811 XY Minor axis (diagonal increment) (output)

812 XY Major axis (dominant increment) (output)

Machine States 9

Status Bits

Examples

13-146

if xO = x1 (vertical line)
if (CPW(Yo, xo) & CPW(Y1 ,Xi)) is nonzero

if Yo = Y1 (horizontal line)
if (Yo,xo) or (Y1 ,Xi) lie outside the window

Refer to Section 15.1 on page 15-2.

(line lies entirely
outside window)

(line lies partially
outside window)

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Find Leftmost LMO

LMO Rs, Rd

31 - (bit number of leftmost 1 in Rs) -7 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 1 I 1 I 0 I 1 I 0 I 1 I Rs I R Rd

LMO locates the leftmost (most significant) 1 in the source register. It then
loads the 1 s complement of the bit number of the leftmost-1 bit into the 5 LSBs
of the destination register. The 27 MSBs of the destination register are loaded
with Os. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the LSB. If the source
register contains all Os, then the destination register is loaded with all Os and
status bit Z is set.

You can normalize the contents of the source register by following the LMO
instruction with an RL RS,Rd instruction, where Rs is the destination register
of the LMO instruction and Rd is the source register.

Rs and Rd must be in the same register file.

1

N Unaffected
Unaffected C

Z
V

1 if the source register contents are 0, 0 otherwise
Unaffected

Code Before Aftm:
AO NCZV A1

LMO AO,Al OOOOOOOOh x x 1 x OOOOOOOOh
LMO AO,Al 0OOOOOO1h x x 0 x 0OOOOO1Fh
LMO AO,Al 0OOOOO10h x x a x 0OOOOO1Bh
LMO AO,Al 08000000h x x a x 0OOOOOO4h
LMO AO,Al 80000000h x x a x OOOOOOOOh

13-147

MMFM Move Multiple Registers from Memory
wm'f'.''Ifflfm :If:I:~:::;:1 r~mRril!ll'

Syntax MMFM Rp, register list

Execution

Instruction Words

Description

13-148

For each register Rn in the register list,
32 bits of data at the address specified in Rp -+ Rn
Rp + 32 -+ Rp

3 2 o
Rp

MMFM loads the contents of a specified list of either A- or B-file registers (not
both) from a block of memory.

Q Rp is a register that points to the first location in the block of memory.

Q The register list is a list of registers separated by commas (such as AD, A 1,
A9). These are the registers that MMFM loads new values into.

MMFM and MMTM are complementary instructions. MMFM reads a list of A­
or B-file registers from memory, and MMTM writes a list of A- or B-file registers
to memory. These instructions can be used to save and restore the contents
of registers during, for example, subroutine calls and interrupts. All 32 bits of
each register in the list are saved and then restored.

MMFM and MMTM use Rp as a pOinter register. Rp acts as a stack pointer;
MMTM pushes a list of registers onto a stack, and MMFM pops a list of registers
from a stack. The stack grows toward lower addresses, similar to the way the
SP register pOints to the system stack. The Rp can be any register that is not
included in the register list and that is in the same file as the registers in the
list. (SP can be treated as belonging to either register file.)

MMFM and MMTM always leave the Rp register adjusted to point to the new
top of the stack following a push or pop operation. M MTM predecrements Rp
by 32 prior to pushing each register in the list onto the stack. The last register
pushed on the stack by MMTM is the highest numbered register in the list.
MMFM postincrements Rp by 32 after popping each register in the listfrom the
stack. The first register popped off the stack by MMFM is the highest numbered
register in the list.

If SP is used as the Rp register, MMTM and MMFM push and pop register val­
ues to and from the system stack and leave SP correctly adjusted to point to
the new top of the system stack.

Rp and the registers in the list must all be in the same register file. The assem­
bler allows the registers in the list to be specified in any order; the highest num­
bered register is always restored first (that is, the value at the top ofthe stack­
the lowest address in the stack-is loaded into the highest numbered register).
Don't include Rp as one of the registers in the register list, because this
produces unpredictable results. For the best performance, the original

TMS34020 Assembly Language Instruction Set

Machine States

Status Bits

Examples

contents of Rp should be aligned on a long-word boundary; the alignment of
Rp affects the instruction timing as indicated in Machine States, below.

The second word of the MMFM instruction is a binary-mask representation of
the registers in the list. The R bit (bit 4) in the first instruction word indicates
which register file is affected; the bits that are set to 1 in the mask indicate which
registers are restored. The bit assignments in the mask are

(MSB) 15

Refer to Section 15.1 on page 15-2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This example restores several 8-file registers:

MMFM BO,Bl,B2,B3,B7,B12,B13,B14,SP

This instruction uses register 80 as the stack pointer. Assume that 80 =
0001 OOOOh; this is the address of the top of the stack. MMFM moves the data
at this location into the LSW of the SP (which is the highest order register listed
in this example). Assume that memory contains the following values before
instruction execution:

Address Data Address Data
0OO100FOh 1111h 00010070h CCCCh
000100EOh B1B1h 00010060h BCBCh
000100DOh 2222h 00010050h DDDDh
000100COh OB2B2h 00010040h BDBDh
000100BOh 3333h 00010030h EEEEh
000100AOh B3B3h 00010020h BEBEh
00010090h 7777h 0OO10010h FFFFh
00010080h B7B7h 0OO10000h BFBFh

After the MMFM instruction is executed, the registers in the list have the follow­
ing values:

BO = 00010100h B12 = CCCCBCBCh
B1 = 1111B1B1h
B2 = 2222B2B2h
B4 = 3333B3B3h
B8 = 7777B7B7h

B13 = DDDDBDBDh
B14 = EEEEBEBEh
SP = FFFFBFBFh

The other 8-file registers (which weren't specified in the register list) are not
affected by this instruction. Note that 80 now contains the value 101 OOh; the
last part of the data that was restored was for 81, and 80 pOints to the word
past that data.

13-149

MMTM Move Multiple Registers to Memory
f:'"==',:,:,:::<:~<';{~~<,:rn_~:::,<~~m-,_-=::;:::::;'$.'{.;",_~,<~;<-m~~':'$:'»:,~~<':':~",,, __ m~;:;:.~==~~~%:'<.I:':~=~~_"=':\."m.::;<.<:~~ ___ ~~~

Syntax

Execution

Instruction Words

Description

13-150

MMTM Rp, register list

For each register Rn in the register list,
Rp -32 ->- Rp
32 bits of data at the address specified in Rn ->- Rp

3 2 1 0

Rp

MMTM stores the contents of a specified list of either A- or B-file registers (not
both) in memory.

Q Rp is a register that points to the first location in a block of memory.

Q The register list is a list of registers that are separated by commas (such
as AO, A1, A9). These are the registers that MMTM stores in memory.

MMTM and MMFM are complementary instructions. MMFM reads a list of A­
or B-file registers from memory, and MMTM writes a list of A- or B-file registers
to memory. These instructions can be used to save and restore the contents
of registers during, for example, subroutine calls and interrupts. All 32 bits of
each register in the list are saved and then restored.

MMTM and MMFM use Rp as a pointer register. Rp acts as a stack painter;
M MTM pushes a list of registers onto a stack, and M MFM pops a list of registers
from a stack. The stack grows toward lower addresses, similar to the way the
SP register paints to the system stack. The Rp can be any register that is not
included in the register list and that is in the same file as the registers in the
list. (SP can be treated as belonging to either register file.)

MMTM and MMFM always leave the Rp register adjusted to point to the new
top of the stack following a push or pop operation. MMTM predecrements Rp
by 32 prior to pushing each register in the list onto the stack. The last register
pushed on the stack by MMTM is the highest numbered register in the list.
MMFM postincrements Rp by 32 after popping each register in the listfrom the
stack. The first register popped off the stack by MMFM is the highest numbered
register in the list.

If SP is used as the Rp register, MMTM and MMFM push and pop register val­
ues to and from the system stack and leave SP correctly adjusted to point to
the new top of the system stack.

When MMTM execution is complete, the contents of the lowest order register
in the list reside at the highest address in the memory stack, and Rp paints to
the address of the highest order register in the list.

Rp and the registers in the list must all be in the same register file. The assem­
bler allows the registers in the list to be specified in any order; the lowest order
register is always saved first. Don't include Rp as one of the registers in the
register list, because this produces unpredictable results. For the best per­
formance, the original contents of Rp should be aligned on a long-word

TMS34020 Assembly Language Instruction Set

Machine States

Status Bits

Examples

boundary; the alignment of Rp affects the instruction timing as shown in
Machine States, below.

The second word of the MMTM instruction is a binary-mask representation of
the registers in the list. The R bit (bit 4) in the first instruction word indicates
which register file is affected; the bits that are setto 1 in the mask indicate which
registers are restored. The bit assignments in the mask are

(MSB) 15 o {LSE

Refer to Section 15.1 on page 15-2.

N. Set to the sign of the result of 0 - Rp. (This value is typically 1 if the original
contents of Rp are positive; otherwise, it is O. The only exceptions to this
are when Rp=80000000h and N is set to 0, and when Rp=O and N is set
to 1.)

C Unaffected
Z Unaffected
V Unaffected

This example saves the values of several A-file registers in memory:

MMTM Al,AO,A2,A4,A8,A12,A13,A14,SP

This instruction uses register A 1 as the stack pointer. Assume that A 1 =
00100000h before instruction execution; this value is decremented by 32 to
pOint to the address where the contents of AO (the lowest order register in the
list) are stored. Assume that the registers in the list contain the following values
before instruction execution:

AO = OOOOAOAOh
A2 = 2222A2A2h
A4 = 4444A4A4h
A8 = 8888A8A8h

A 12 = CCCCACACh
A 13 = DDDDADADh
A 14 = EEEEAEAEh
SP = FFFFAFAFh

MMTM saves these register values in memory as shown below:

Address Data Address Data
OOOFFFOOh AFAFh OOOFFF80h ABA8h
OOOFFF10h FFFFh OOOFFF90h 8888h
OOOFFF20h AEAEh OOOFFFAOh A4A4h
OOOFFF30h EEEEh OOOFFFBOh 4444h
OOOFFF40h ADADh OOOFFFCOh A2A2h
OOOFFF50h DDDDh OOOFFFDOh 2222h
OOOFFF60h ACACh OOOFFFEOh AOAOh
OOOFFF70h CCCCh OOOFFFFOh OOOOh

After instruction execution, register A 1 = OOOFFFOOh; this is the address ofthe
last portion of register data that is saved. i

13-151

Syntax MODS Rs, Rd

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-152

Rd mod Rs - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 0 I 1 I 1 I 0 I Rs R Rd

MODS performs a 32-bit signed divide of the 32-bit dividend in the destination
register by the 32-bit divisor in the source register, and returns a 32-bit remain­
der in the destination register. Regardless of whether the result is positive or
negative, the magnitude of the remainder is always the same as it would be
for a positive dividend and divisor. The remainder is the same sign as the divi­
dend. The original contents of the destination register are always overwritten.

Rs and Rd must be in the same register file.

40
41 if result = 80000000
3 if Rs = 0

N 0 if Rs is 0
1 if Rs is not 0 and the result in Rd is -ve
o if Rs is not 0 and the result in Rd is + ve

C Unaffected
Z 0 if Rs is 0

1 if Rs is not 0 and the result in Rd is 0
o if Rs is not 0 and the result in Rd is not 0

V If Rs is 0, then V = 1, otherwise V = 0

Code Before
AO A1

MODS AO,AI OOOOOOOOh OOOOOOOOh
MODS AD,AI OOOOOOOOh 0OOOOOO7h
MODS AD,AI OOOOOOOOh FFFFFFF9h
MODS AD,AI 0OOOOOO4h 0OOOOOO8h
MODS AD,AI 0OOOOOO4h 0OOOOOO7h
MODS AD,AI 0OOOOOO4h OOOOOOOOh
MODS AD,AI 0OOOOOO4h FFFFFFF9h
MODS AD,AI 0OOOOOO4h FFFFFFF8h
MODS AD,AI FFFFFFFCh 0OOOOOO8h
MODS AD,AI FFFFFFFCh 0OOOOOO7h
MODS AD,AI FFFFFFFCh OOOOOOOOh
MODS AD,AI FFFFFFFCh FFFFFFF9h
MODS AD,AI FFFFFFFCh FFFFFFF8h

After
NCZV A1
Ox01 OOOOOOOOh
Ox01 0OOOOOO7h
Ox01 FFFFFFF9h
Ox10 OOOOOOOOh
OxOO 0OOOOOO3h
Ox10 OOOOOOOOh
1xOO FFFFFFFDh
Ox10 OOOOOOOOh
Ox10 OOOOOOOOh
OxOO 0OOOOOO3h
Ox10 OOOOOOOOh
1xOO FFFFFFFDh
Ox10 OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MODU Rs,Rd

Rd mod Rs -00 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I ° I 1 I 1 I ° I 1 I 1 I 1 I Rs R Rd

MODU performs a 32-bit unsigned divide of the 32-bit dividend in the destina­
tion register by the 32-bit divisor in the source register, and returns a 32-bit
remainder in the destination register. The original contents of the destination
register are always overwritten.

Rs and Rd must be in the same register file.

35
3 if Rs = 0

N Unaffected
C Unaffected
Z 0 if Rs=O, 1 if quotient is 0, 0 otherwise
V 1 if divisor Rs equals 0, 0 otherwise

Code Before
AO A1

MODU AO,A! OOOOOOOOh OOOOOOOOh
MODU AO,A! OOOOOOOOh 0OOOOOO7h
MODU AD,A! OOOOOOOOh FFFFFFF9h
MODU AO,A! 0OOOOOO4h 0OOOOOO8h
MODU AO,A! 0OOOOOO4h 0OOOOOO7h
MODU AD,A! 0OOOOOO4h OOOOOOOOh
MODU AO,A! 0OOOOOO4h FFFFFFF9h

After
NCZV A1
xx01 OOOOOOOOh
xx01 0OOOOOO7h
xx01 FFFFFFF9h
xx10 OOOOOOOOh
xxOO 0OOOOOO3h
xx10 OOOOOOOOh
xxOO 0OOOOOO1h

13-153

MOVS Instructions The MOVS instruction is a special form of the MOVE instruction that restricts
the field size of the move to 8 bits. MOVS moves a single byte from its source
to a specified destination.The following list describes characteristics common
to all MOVS instructions.

Q MOVS instructions move data from a register to memory, from memory to
a register, and between memory locations, but they do not move data be­
tween registers.

Q A byte can begin on any bit boundary in memory, although sequential byte
moves are more efficient if the byte addresses are aligned on even 8-bit
boundaries.

Q All addresses are bit addresses.

Q When a byte is moved into a register, the byte's LSS coincides with the reg­
ister's LSS; the byte is sign-extended into the 24 MSSs of the register.

Q If the source data is in a register, only the LSbyte is used.

Q Rs and Rd must be in the same register file.

Q The status bits are unaffected unless otherwise noted in the individual de­
scriptions.

Q For machine states information, refer to Section 15.2 on page 15-10.

Table 13-4. Summary of Operand Formats for the MOVB Instruction

Destination

Rd *Rd *Rd(DOffset) @DAddress

Rs v' v' v' .(1)'
.. (J.' *Rs v' v'
. ::1 ..
o·

'en ' *Rs(SOffset) v'
@SAddress v' v'

The MOVS instruction has nine operand combinations, which are listed below
with their corresponding instruction words and descriptions.

MOVBR~*Rd--

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 0 I 1 I 1 I 0 I Rs R Rd

Moves the LSbyte of Rs to the memory address contained in the Rd.

13-154 TMS34020 Assembly Language Instruction Set

MOVB Rs, *Rd(offset)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11
I 0 I 1 I 0 I 1 I 1 I 0 I Rs R Rd

offset

Moves the LSbyte of Rs to the destination memory address. The destination
address is formed by adding the signed 16-bit offset to the contents of Rd.

MOVB Rs, @DAddress ----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 1 I R I Rs

16 LSBs of destination address

16 MSBs of destination address

Moves the LSbyte of Rs to the destination address.

MOVB*R~Rd--

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 0 I 1 I 1 I 1 I Rs R Rd

Moves a byte from the source address contained in Rs into Rd. This instruction
also compares the source data to O. t See Status Bits for more information.

MOVB*R~*Rd---

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 1 I 1 I 1 I 0 I Rs R Rd

Moves a byte from the source address contained in Rs to the destination
address contained in Rd.

MOVB *Rs(offset), Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

11
I 0 I 1 I 0 I 1 I 1 I 1 I Rs R I Rd

offset

Moves a byte from the source address to the destination register. The source
data's memory address ~ a bit address and is formed by adding the signed
16-bit offset to the content~ of Rs. This instruction also compares the source
data to O. t See Status Bits for more information.

13-155

MOVB *Rs(SOffset), *Rd(DOffset) ------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 0 I 1 I 1 I 1 I 1 1 0 1 Rs
I R I

Rd

source offset

destination offset

Moves a byte from the source address to the destination address. Both ad­
dresses are formed by adding the source or destination signed 16-bit offset to
the contents of Rs or Rd, respectively.

MOVB @SAddress, *Rd----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I 1 I 1 I R I Rd

16 LSBs of source address

16 MSBs of source address

Moves a byte from the source address to Rd. This instruction also compares
the source data to O. t See Status Bits for more information.

MOVB @SAddress, @DAddress ------------------

Status Bits

13-156

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 I 1 I 0 I 0 I 0 I 0 I 0 I 0

16 LSBs of source address

16 MSBs of source address

16 LSBs of destination address

16 MSBs of destination address

Moves a byte from the source address to the destination address.

tThe following status bits information applies only to MOVB instructions with
these addressing modes:

MOVB*Rs, Rd
MOVB *Rs(offset), Rd
MOVB @SAddress, Rd

N 1 if the sign-extended data moved is negative, 0 otherwise
C Unaffected
Z
V

1 if the sign-extended data moved is 0, 0 otherwise
o

TMS34020 Assembly Language Instruction ,C::ot

Move Byte Instructions MOVB
~~~~~~~m~":wrI':'l';~~r~T~:;:<;:;:~1!'IiR':~_~l':':'~l':m::t::~:::::':'l'l'C"c:::li: OOW:~:;:;C,=~~~~,«~:'g~T:;l''Il~_~I':'l';_~

MOVB Examples ------------------------

Example 1

Example 2

Example 3

Assume that memory contains the following values:

Address Data
1000h OOOOh
1010h OOOOh

Code Before After
AO A1 @1000h

MOVB AO, *A1 89ABCDEFh 00001000h OOEFh
MOVB AO, *A1 89ABCDEFh 00001009h DEOOh
MOVB AO, *A1 (1) 89ABCDEFh 00001000h 01DEh
MOVB AO, *A1 (-1) 89ABCDEFh 00001001h OOEFh
MOVB AO,@1000h 89ABCDEFh xxxxxxxxx OOEFh
MOVB AO , @ 10 OCh 89ABCDEFh xxxxxxxxx FOOOh

@1010h
OOOOh
0001h
OOOOh
OOOOh
OOOOh
OOOEh

Assume that memory contains the following values:

Address Data
1000h OOEFh
1010h 89ABh
Code Before After

AO A1
MOVB *AO ,A1 00001000h FFFFFFEFh
MOVB *AO,A1 00001001h 00000077h
MOVB *AO ,A1 00001008h OOOOOOOOh
MOVB * AO , A1 0000100Ch FFFFFFBOh
MOVB * AO (0) , A1 00001000h FFFFFFEFh
MOVB * AO (8) , A1 00001000h OOOOOOOOh
MOVB *AO (-1) ,A10000100Dh FFFFFFBOh
MOVB @1000h,A1 xxxxxxxxx FFFFFFEFh
MOVB @100Ch,A1 xxxxxxxxx FFFFFFBOh

N C Z V
1 x 0 0
o x 0 0
o x 1 0
1 x 0 0
1 x 0 0
o x 1 0
1 x 0 0
1 x 0 0
1 x 0 0

Assume that memory contains the following values:

Address Data
1000h CDEFh
1010h 89ABh
2000h OOOOh
2010h OOOOh

Code Before After
AO A1 @2000h @2010h

MOVB *AO,*A1 0OOO1000h 0OOO2000h OOEFh OOOOh
MOVB *AO,*A1 0OOO1000h 0OOO2001h 01DEh OOOOh
MOVB *AO,*A1 0OOO1000h 0OOO2009h DEOOh 0OO1h
MOVB *AO,*A1 00OO1001h 0OO02000h 00F7h OOOOh
MOVB *AO,*A1 0OOO1001h 0OOO2001h 01EEh OOOOh
MOVB *AO,*A1 0OOO100Ch 0OOO2009h 7800h 0OO1h
MOVB *AO(O) ,*A1(O) 0OOO1000h 0OOO2000h OOEFh OOOOh
MOVB *AO(12),*A1(9) 0OOO1000h 0OOO2000h 7800h 0OO1h
MOVB @1000h,@2000h xxxxxxxxx xxxxxxxxx OOEFh OOOOh
MOVB @lOOCh,@2009h xxxxxxxxx xxxxxxxxx 7800h 0OO1h

13-157

MOVE Move Register to Register

Syntax

Execution

Instruction Words

Description

Fields

Machine States

Status Bits

Examples

13-158

MOVERs, Rd

Rs-Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 1 I 0 I 0 I 1 I 1 I M I Rs I R Rd

MOVE moves the 32 bits of data from the source registerto the destination reg­
ister. Note that this is not a field move; therefore, the field size has no effect.
The source and destination registers can be any of the 31 locations in the on­
chip register file. Note that this is the only MOVE instruction that allows the
source and destination registers to be in different files. This instruction also
performs an implicit compare to 0 of the register data.

The assembler sets bit 9 (the M bit) in the instruction word to specify whether
the move is within a register file or whether it crosses the register files. The as­
sembler sets M to 0 if the source and destination registers are in the same file;
it sets M to 1 if the registers are in different files.

The assembler sets bit 4 (the R bit) in the instruction word to specify the file
the registers are in. The assembler sets R to 0 if the registers are in file A; it
sets R to 1 if the registers are in file B.

Note that when M=O, R specifies the register file for both registers; if M=1, R
specifies the register file for the source register.

1

N 1 if the 32-bit data moved is negative, 0 otherwise
C Unaffected
Z 1 if the 32-bit data moved is 0, 0 otherwise
V 0

Code Before Afm!:
AO A1

MOVE AO, A! OOOOFFFFh OOOOFFFFh
MOVE AO, A! OOOOOOOOh OOOOOOOOh
MOVE AO, A! FFFFFFFFh FFFFFFFFh
MOVE AO, B! OOOOFFFFh xxxxxxxxh
MOVE AO, B! OOOOOOOOh xxxxxxxxh
MOVE AO, B! FFFFFFFFh xxxxxxxxh

B1
xxxxxxxxh
xxxxxxxxh
xxxxxxxxh
OOOOFFFFh
OOOOOOOOh
FFFFFFFFh

NCZV
OxOO
Ox10
1xOO
OxOO
Ox10
1xOO

TMS34020 Assembly Language Instruction Set

MOVE Instructions The following list describes characteristics common to all MOVE instructions
(except MOVE Rs, Rd). For information on MOVE Rs, Rd, refer to page
13-158.

[J The MOVE instruction moves a field of 1-32 bits, depending on the se­
lected field size.The optional F parameter determines the field size and ex­
tension for the move.

• F=O selects the field size of a (FSO).
• F=1 selects the field size of 1 (FS1).
• The SETF instruction sets the field size and extension.
• If you do not supply a value for F, MOVE uses the value of field O.

[J The field is right-justified within the source register.

[J Rs and Rd must in the same register file.

[J The status bits are unaffected unless otherwise noted in the individual de­
scriptions.

[J For machine states information, refer to Section 15.2 on page 15-10.

[J The destination address is a bit address.

Table 13-5. Summary of Operand Formats for the MOVE Instruction

Destination
Rd *Rd *Rd+ ~*Rd *Rd(OOffset) @DAddress

Rs V V V V V V
*Rs V V
*Rs+ V
-*Rs V
*Rs(SOffset) V V
@SAddress V V

The MOVE instruction has 18 operand combinations, which are listed below
with their corresponding instruction words and descriptions.

MOVE Rs, *Rd [,F]-----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Rs R I Rd

Moves a field from Rs to the address specified in Rd.

13-159

MOVE Move Field Instructions
~

MOVE Rs, *Rd+ [,F]----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 1 I 0 I 0 I F I Rs R Rd

Moves a field from Rs to the address contained in the destination register. After
the move, the contents of Rd are postincremented by the selected field size.

MOVE Rs, -*Rd [,F]----------------------
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 1 I 0 I 0 I 0 I F I Rs R Rd

Moves a field from the Rs to the address contained in Rd. Before the move,
the destination address is determined by subtracting the field size from the
contents of Rd. (This value is also the final value for the register.)

MOVE Rs, *Rd(offset) [,F] --------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rs Rd

offset

Moves a field from the Rs to the destination address. The destination address
is formed by adding the signed 16-bit offset to the contents of Rd.

MOVE Rs, @DAddress [,F]-------------------
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 1 I F I 1 I 1 I 0 I 0 I R I Rs

16 LSBs of source address

16 MSBs of source address

Moves a field from Rs to the destination address.

MOVE*R~RdLFJ-------------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Rd

Moves a field from the source address contained in Rs to the destination
address contained in Rd. When the field is moved into the destination register,
it is right-justified and sign-extended or zero-extended to 32 bits (depending
on the value of FE). This instruction also compares the source data to O. t See
Status Bits for more information.

MOVE*R~*RdLF]--~

13-160

15 14 13 12 11 10 9 8 76543 2 o
Rs I R I Rd

Moves a field from a source address contained in Rs to the destination address
contained in Rd.

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE

MOVE *Rs+, Rd [,F]-----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 I 0 I 0 I 1 I 0 I 1 I F I Rs I R Rd

Moves a field from a source address into Rd. Rs contains the address of the
field; after the move, the contents of the source register are incremented by
the field size. When the field is moved into Rd, it is right-justified and sign- or
zero-extended to 32 bits (depending on the value of the current FE bit). This
instruction also performs an implicit compare to 0 ofthe field data. t See Status
Bits for more information.

MOVE*Rs+,*Rd+£F]---

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 1 I 1 I 0 I F I Rs R Rd

Moves a field from one address to another. Rs contains the bit address of the
field; Rd contains the bit address of the field's destination. After the move, the
contents of both registers are incremented by the field size.

If Rs and Rd specify the same register, the data read from the location pointed
to by the original contents of Rs is written to the location pointed to by the
incremented value of Rs(Rd).

MOVE -*Rs, Rd [,F] ----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 1 I 0 I 0 I 1 I F I Rs R Rd

Moves a field from a source address into Rd. Rs contains a bit address; before
the move, the contents of Rs are decremented by the field size to form the
address of the field. (This value is also the final value for the register.) When
the field is moved into Rd, it is right-justified and sign- or zero-extended to 32
bits (depending on the value of the current FE bit). This instruction also
performs an implicit compare to 0 of the field data.

If Rs and Rd are the same register, the pointer information is overwritten by the
data fetched. t See Status Bits for more information.

MOVE -*Rs, -*Rd [,F]----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 I 0 I 1 I 0 I 1 I 0 I F I Rs R Rd

Moves a field from one memory location to another. Both registers contain bit
addresses; before the move, the contents of both registers are decremented
by the field size.

13-161

MOVE Move Field Instructions

If Rs and Rd are the same register, then the final contents of the register are
its original contents decremented by twice the field size.

MOVE*Rs(offse~RdLFJ---

15 14 13 12 11 10 9 8 7 6 543 2 1 o
1110111110111FI Rs Rd

offset

Moves a field from the source address into Rd. The source address is formed
by adding a signed, 16-bit offset to the contents of Rs. When the field is moved
into Rd, it is right-justified and sign- or zero-extended to 32 bits (depending on
the value of the current FE bit). This instruction also performs an implicit
compare to 0 of the field data. t See Status Bits for more information.

MOVE *Rs(offset), *Rd+ [,F] -----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rs Rd

offset

Moves a field from one memory location to another. The source address is
formed by adding the contents of Rs to the signed 16-bit offset. Rd contains
the address of the field's destination; atter the move, the contents of Rd are
incremented by the selected field size.

MOVE *Rs(SOffset), *Rd(DOffset) LF] -------------------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 0 I 1 I 1 I 1 I 0 I F I Rs I R I Rd

source offset

destination offset

Moves a field from one memory location to another. The source address is
formed by adding a signed 16-bit offset to the contents of Rs. The destination
address is formed by adding a signed 16-bit offset to the contents of Rd.

MOVE @SAddress, Rd LF]------------------

13-162

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Oi010101011JFI 1 1 1 J o l11 R I Rs

16 LSBs of source address

16 MSBs of source address

Moves a field from memory to the destination register. SAddress is a 32-bit
address. When the field is moved into the destination register, it is right-justified

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE

and sign- or zero-extended to 32 bits (depending on the selected value of FE).
This instruction also compares the source data to O. t See Status Bits for more
information.

MOVE @SAddress, *Rd+ [,F] -------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 I 1 I 0 I 1 I Flo I 0 I 0 I 0 I R I Rs

16 LSBs of source address

16 MSBs of source address

Moves a field from one location in memory to another. The source address is
a 32-bit address; the destination address is specified by the contents of Rd.
After the move, the contents of the destination register are incremented by the
field size.

MOVE @SAddress, @DAddress [,F] -----------------

Status Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010101010111FI11111101010101010

16 LSBs of source address

16 MSBs of source address

16 LSBs of destination address

16 MSBs of destination address

Moves a field from one location in memory to another. Both addresses are
32-bit addresses.

t The following status bits information applies only to these MOVEs:
MOVE *Rs, Rd [,F]
MOVE *Rs+, Rd [,F]
MOVE -*Rs, Rd [,F]
MOVE *Rs(offset), Rd [,F]
MOVE @SAddress, Rd [,F]

N 1 if the field-extended data moved to register is negative, 0 otherwise
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise
V 0

13-163

MOVE Move Field Instructions

MOVE Examples -------------------------

Example 1

Example 2

13-164

This is an example of the following MOVE instructions:

MOVERs, *Rd
MOVE Rs, *Rd+
MOVE Rs, -*Rd
MOVE Rs, *Rd(offset)
MOVE Rs, @DAddress

Assume that memory contains the following value before instruction execution:

Address Data
15500h OOOOh
15510h OOOOh
15520h OOOOh Register AO = FFFFFFFFh

Code Before After
A1 FSO/1 A1 @15500h @15510h @15520h

MOVE AO,*Al,O 00015500h 5/x 00015500h 001Fh OOOOh OOOOh
MOVE AO,*Al,l 00015503h X/8 00015503h 078Fh OOOOh OOOOh
MOVE AO,*Al,O 00015508h 13/x 00015508h FFOOh 001Fh OOOOh
MOVE AO ,*Al, 1 0001550Ch X/24 0001550Ch FOOOh FFFFh OOOFh

MOVE AO,*Al+,l 0001551 Dh x/16 0001552Dh OOOOh EOOOh 1FFFh
MOVE AO,*Al+,O 00015516h 19/x 00015529h OOOOh FFCOh 01FFh
MOVE AO, *Al+, 1 00015500h X/32 00015520h FFFFh FFFFh OOOOh

MOVE AO ,-*Al, 0 0001530h 5/x 000152Bh OOOOh OOOOh F800h
MOVE AO ,-*Al, 1 000152Dh X/8 0001525h OOOOh OOOOh 1FEOh
MOVE AO ,-*Al, 0 0001528h 13/x 000151Bh OOOOh F800h OOFFh

MOVE AO,*Al(00OOh),100015500h X/1 00015500h 0001h OOOOh OOOOh
MOVE AO,*Al(OFFFh),OOOO14501h 19/x 00014501h FFFFh 0007h OOOOh
MOVE AO,*Al(7FFFh),10000D501h X/22 0000D501h FFFFh 003Fh OOOOh
MOVE AO,*Al(BOOOh),OOOO1D500h 27/x 0001D500h FFFFh 07FFh OOOOh

MOVE AO,@1550Bh,1 xxxxxxxx X/16 xxxxxxxx F800h 07FFh OOOOh
MOVE AO,@15512h,O xxxxxxxx 27/x xxxxxxxx OOOOh FFFCh 1FFFh
MOVE AO,@1550Ch,1 xxxxxxxx X/32 xxxxxxxx FOOOh FFFFh OFFFh

This is an example of the following MOVE instructions:

MOVE*Rs, Rd
MOVE *Rs+, Rd
MOVE -*Rs, Rd
MOVE *Rs(offset), Rd
MOVE @SAddress, Rd

Assume that memory contains the following value before instruction execution:

Address
15500h
15510h
15520h

Data
7770h
7777h
OOOOh

Address
15530h
15540h
15550h

Data
3333h
4444h
5555h

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE __ ~ ___):If!_l'AA'IW:. m_"""" ___ 'l:'l':':«~RI:;¥:' :'l!m'~; ,mc;~r

l'~R'I""_""'_r"r "~'R um lIWlI ..

Example 3

Code Before After
AO FSO/1 FEO/1 AO A1 NCZV

MOVE *AO,Al,l 00015500h X/1 X/1 00015500h OOOOOOOOh Ox10
MOVE *AO,Al,O 00015500h 5/x O/x 00015500h 0OOOOO10h OxOO
MOVE *AO,Al,l 00015500h X/5 X/1 FFFFFFFOh OOOOOOOOh 1xOO
MOVE *AO,Al,O 00015500h 5/x O/x 00015500h 00000010h OxOO
MOVE *AO,Al,O 00015500h 18/x O/x 00037770h 00000010h OxOO

MOVE *AO+,Al,O 00015500h 12/x O/x 0001550Ch 00000770h OxOO
MOVE *AO+,Al,l 00015500h X/12 X/1 0001550Ch 00000770h OxOO
MOVE *AO+,Al,O 00015500h 27/x O/x 0001551Bh 07777770h OxOO
MOVE *AO+,Al,l 00015500h X/27 X/1 0001551Bh FF777770h 1xOO

MOVE -*AO,Al,O 00015520h 31/x 1/x 00015501h 3BBBBBB8h OxOO
MOVE -*AO,Al,O 00015520h x/31 X/O 00015501h 3BBBBBB8h OxOO
MOVE -*AO,Al,O 00015520h 32/x Xix 00015500h 77777770h OxOO

MOVE *AO(OO20h),Al,1 0001551 Ch X/13 X/O 0001551Ch 00000443h OxOO
MOVE *AO(OOFFh),Al,O 00015435h 16/x 1/x 00015435h 00004333h OxOO
MOVE *AO(7FFFh),Al,1 0000 D531 h X/22 X/1 0000D531h 00000443h OxOO
MOVE *AO(8000h),Al,O 0001 D530h 27/x 1/x 0001D530h FC443333h 1xOO
MOVE *AO(OFFECh),Al,O 0001554Dh 32/x O/x 0001554Dh AAA22219h 1xOO

MOVE @15504h,Al,O xxxxxxxx 1/x 18/x xxxxxxxx FFFF7777h 1xOO
MOVE @15500h,Al,1 xxxxxxxx x/O X/18 xxxxxxxx 00037770h OxOO
MOVE @15501h,Al,O xxxxxxxx O/x 30/x xxxxxxxx 3BBBBBB8h OxOO
MOVE @15501h,Al,1 xxxxxxxx X/1 X/30 xxxxxxxx FBBBBBB8h 1)(00

This is an example of the following MOVE instructions:

MOVE *Rs, *Rd
MOVE *Rs+, *Rd+
MOVE -*Rs, -*Rd
MOVE @SAddress, @DAddress
MOVE @SAddress, *Rd+

Assume that memory contains the following value before instruction execution:

Address
15500h
15510h
15520h

Data
FFFFh
FFFFh
FFFFh

Address
15530h
15540h
15550h

Data
OOOOh
OOOOh
OOOOh

13-165

MOVE Move Field Instructions

MOVE *AO, *AI, I
MOVE *AO, *AI, 0
MOVE *AO, *AI, I
MOVE *AO, *AI, 0

Before
AO

00015500h
00015500h
00015500h
00015500h

MOVE *AO+, *AH, I 00015510h
MOVE *AO+,*AH,O 00015511h
MOVE *AO+, *AH, I 00015513h
MOVE *AO+,*AH,O 00015510h

After
A1 FSO!1 AO

00015530h xl1 00015500h
00015534h 5/x 00015500h
0001553Ah xl10 00015500h
0001553Fh 19/x 00015500h

00015532h xl7
0001553Ah 13/x
0001553Fh xl8
0001553Ah 28/x

00015517h
0001551Fh
0001551Bh
0001552Ch

MOVE *-AO, *-AI, 000015527h 00015555h 31/x 00015508h
MOVE *-AO, *-AI, 100015527h 00015550h xl31 00015508h
MOVE *-AO, *-AI , 00001552Ah 00015550h 32/x 0001550Ah
MOVE *-AO, *-AI, 100015520h 0001555Ah xl32 00015500h

MOVE @ 15500 h , * A 1+ , 1 0001553Ah xxxxxxxx xl1 0 00015544h
MOVE @15500h,*A1+,00001553Ah xxxxxxxx 19/x 00015552h
MOVE @1550Dh,*A1+,10001553Ah xxxxxxxx 28/x 0001554Ch
MOVE @15505h,*Al+,00001553Ah xxxxxxxx xl32 00015540h

A1 @15530h @15540h

00015530h 0001h OOOOh
00015534h 01FOh OOOOh
0001553Ah FCOOh OOOFh
0001553Fh 8000h FFFFh

00015539h
00015547h
00015547h
00015556h

00015536h
00015531h
00015530h
0001553Ah

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

01FCh OOOOh
FCOOh 007Fh
8000h 007Fh
FCOOh FFFFh

FFCOh FFFFh
FFFEh FFFFh
FFFFh FFFFh
FCOOh FFFFh

FCOOh OOOFh
8000h FFFFh
FFFFh OFFFh
FFEOh OFFFh

@1550h

OOOOh
OOOOh
OOOOh
0003h

OOOOh
OOOOh
OOOOh
003Fh

001Fh
OOOOh
OOOOh
03FFh

OOOOh
0003h
OOOOh
OOOOh

MOVE @15500h, @15530h, I XXXXXXXX xxxxxxxx
MOVE @15500h,@15534h,O XXXXXXXX XXXXXXXX
MOVE @15500h, @15530h, I xxxxxxxx xxxxxxxx
MOVE @15500h,@15530h,O XXXXXXXX XXXXXXXX

xl1 XXXXXXXX XXXXXXXX
5/x XXXXXXXX XXXXXXXX
xl7 XXXXXXXX XXXXXXXX
13/x XXXXXXXX XXXXXXXX

0001h OOOOh OOOOh
01FOh OOOOh OOOOh
007Fh OOOOh OOOOh
1 FFFh OOOOh OOOOh

Example 4 This is an example of the following MOVE instructions:

MOVE *Rs(offset), *Rd+
MOVE *Rs(offset), *Rd(offset)

Assume that memory contains the following value before instruction execution:

Address
15500h
15510h
15520h

MOVE*AO(OOOOh),*AI+,1
MOVE*AO(OOFFh),*AI+,1
MOVE*AO(OFFFh),*AI+,1
MOVE*AO(OFFEOh),*AI+,1

Data
OOOOh
OOOOh
OOOOh

Before After
AO A1 FSO/1 A1 .

00015530h 0015500h xl1 00015501h
00015535h 001550Ch 16/x 0001551 Ch
00015531h 00015510h 19/x 00015523h
00015558h 00015508h xl31 00015527h

Address
15530h
15540h
15550h

Data
3333h
4444h
5555h

@15530h

0001h
3000h
OOOOh
3300h

@15540h

OOOOh
0433h
3333h
4444h

MOVE*AO(OOOlh),*AI(OOOOh),O 0001552Fh 00015504h 5/x 00015504h 0130h
MOVE * AO (00 OFh) , * Al (00 OFh) ,0 00015520h 000154FOh 8/x 000154FOh 3000h
MOVE*AO(7FFFh),*AI(8000h),1 0000D531h 0001D508hxl22 0001D508h 3300h
MOVE *AO (OFFF2h) , *AI (7FFFh) , 100015540h 00000501 h xl25 00000501 h OCCCh

OOOOh
0004h
0433h
0111 h

@1550h

OOOOh
OOOOh
0004h
0055h

OOOOh
OOOOh
OOOOh
OOOOh

13-166 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

M~:,! Immediate, 16 Bits MOVI

MOVI IW, Rd [, W]

16-bit immediate value - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I R Rd

16-bit value

MOVI stores a 16-bit, sign-extended immediate value in the destination regis­
ter. (IW in the instruction syntax represents the 16-bit value.)

The assembler uses the short form if the immediate value has been previously
defined and is in the range -32,768 through 32,767. You can force the assem­
bler to use the short form by following the register operand with ,W:

MOVI IW,Rd,W

The assembler truncates the upper bits and issues an appropriate warning
message.

2

N 1 if the data being moved is negative, 0 otherwise
C Unaffected
Z Unaffected
V 1 if the data being moved is 0, 0 otherwise

Code After
AO NCZV

MOVI 32767,AO 0OOO7FFFh OxOO
MOVI I,AO 0OOOOOO1h OxOO
MOVI O,AO OOOOOOOOh Ox10
MOVI -I,AO FFFFFFFFh 1xOO
MOVI -32768,AO FFFF8000h 1xOO
MOVI OOOOh,AO OOOOOOOOh Ox10
MOVI 7FFFh,AO 0OOO7FFFh OxOO

13-167

~OVI Move Immediate, 32 Bits

Syntax MOVI IL, Rd [, L]

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-168

32-bit immediate value -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 1 I R I Rd

16 LSBs of IL

16 MSBs of IL

MOVI stores a 32-bit immediate value in the destination register. (IL in the
instruction syntax represents the 32-bit value.)

The assembler uses this opcode if it cannot use the MOVI IW, Rd opcode or if
the long opcode is forced by following the register operand with, L:

MOVI IL,Rd,L

2 if immediate data is long-word aligned
3 if immediate data is not long-word aligned

N 1 if the data being moved is negative, 0 otherwise
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise
V 0

Code After
AO NCZV

MOVI 2147483647,AO 7FFFFFFFh OxOO
MOVI 32768,AO 0OOO8000h OxOO
MOVI -32769,AO FFFF7FFFh 1xOO
MOVI -2147483648,AO 80000000h 1xOO
MOVI 8000h,AO 0OOO8000h OxOO
MOVI OFFFFFFFFh,AO FFFFFFFFh 1xOO
MOVI OFFFFh,AO,L FFFFFFFFh 1xOO

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MOVK constant, Rd

5-bit constant ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 1 I 1 I 0 I constant R Rd

MOVK stores a 5-bit constant in the destination register. The constant is
treated as an unsigned number in the range 1-32, where constant = 0 in the
opcode corresponds to a value of 32. The resulting constant value is zero­
extended to 32 bits.

Note that you cannot set a register to 0 with this instruction. You can clear a
register by XORing the register with itself; use CLR Rd (an alternate mnemonic
for XOR Rs, Rd) to accomplish this. Both these methods alter the Z bit (set it
to 1).

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code After
AO

MOVK I,AO 0OOOOOO1h
MOVK 8,AO 0OOOOOO8h
MOVK I6,AO 0OOOOO10h
MOVK 32,AO 0OOOOO20h

13-169

MOVX Move X Half of Register
-=-m_~::;<;:: __ ~~~~_W=-M>"",,,"~~~~w;;m,,,,",,",_~~_w. ___ Ji'$"i? .. m?lI,;ni"'II;>;~

Syntax

Execution

Instruction Words

Description

MOVX RS,Rd

X half of Rs -+ X half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 1 1 1 1 1 0 1 1 I· 1 1 0 1 Rs R Rd

MOVX moves the X half of the source register (16 LSBs) to the X half of the
destination register. The Y halves of both registers are unaffected.

You can also use the MOVX and MOVY instructions for handling packed 16-bit
quantities and XY addresses. You can use the RL instruction to swap the con­
tents of X and Y.

Rs and Rd must be in the same register file.

Machine States 1

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code Before After
AD A1 A1

MOVX AO,AI OOOOOOOOh FFFFFFFFh FFFFOOOOh
MOVX AD,AI 12345678h OOOOOOOOh 00005678h
MOVX AD,AI FFFFFFFFh OOOOOOOOh OOOOFFFFh

13-170 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Move Y Half of MOVY

MOVY Rs,Rd

Y half of Rs ->- Y half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 0 I 1 I 1 I 1 I Rs R Rd

MOVY moves the Y half of the source register (16 MSBs) to the Y half of the
destination register. The X halves of both registers are unaffected.

You can also use the MOVX and MOVY instructions for handling packed 16-bit
quantities and XY addresses. You can use the RL instruction to swap the con­
tents of X and y.

Rs and Rd must be in the same register file.

N Unaffected
C Unaffected

Z Unaffected

V Unaffected

Code Before After
AD A1 A1

MOVY AD,AI OOOOOOOOh FFFFFFFFh OOOOFFFFh
MOVY AD,AI 12345678h OOOOOOOOh 12340000h
MOVY AD,AI FFFFFFFFh OOOOOOOOh FFFFOOOOh

13-171

M PYS Multiply Registers, Signed
~.;w.~':'!:~~~~m~~wm~~:m:%.";;::;>:~"'_~~=-}~::::::::"~>':l:'::ww.~~~~,,~~:~: __ »!:=~~::;::;m::::_~'l.'~:~=~=~>'~":>.<_W»,~~~~~~}'t.~~~,:,::~~~'l1I'

Syntax

Execution

Instruction Words

Description

13-172

MPYS Rs,Rd

If Rd is an even-numbered register, Rs x Rd ~ Rd:Rd+1
If Rd is an odd-numbered register, Rs x Rd --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 1 I 1 I 0 I Rs R Rd

MPYS performs a signed multiply of a variably sized field in the source register
by the 32 bits in the destination register. This produces a 32-bit to a 64-bit
result, depending on the register and field definitions. Note that Rs and Rd
must be in the same register file.

The value offield size 1 (FS1) defines the size of the multiplier in Rs. FS 1 may
have any even value n from 2 to 32 (that is, n = 2, 4, 6 ... 30,32). The instruction
executes a 32-bit-by-n-bit multiply - multiplying the 32 bits in Rd by the n bits
in Rs. All values are signed. The MSB ofthe source field (bit n -1 in Rs) defines
the sign of the field; the bits to the left of bit n are ignored. The MSB of Rd
defines the sign of the multiplicand.

MPYS has two modes, depending on whether Rd is even or odd:

Q Rd Even:

MPYS multiplies the contents of Rd by the n-bit field in Rs, and stores the
result in 2 consecutive registers, Rd and Rd+ 1. (For example, if Rd=B4, the
result is stored in registers B4 and B5.) The result is Sign-extended and
right-justified; the 32 MSBs are stored in Rd, and the 32 LSBs are stored in
Rd+ 1. Note that all 32 bits of both registers are used, regardless ofthe field
size of the multiply.

Do not use A 14 or B 14 as the destination register, because Rd+ 1 (A 15 or
B 15) is the stack painter register (SP). It is not desirable to write over the
contents of the SP.

TMS34020 Assembly Language Instruction Set

Machine States

Status Bits

Example 1

Q Rd Odd:

MPVS multiplies the contents of Rd by the n-bit field in Rs, and stores the
32 LSBs of the result in Rd; neither Rs nor Rd+ 1 are changed.lfthe result is
greater than 32 bits, the extra MSBs are discarded, regardless of the field
size. The Nand Z status bits, however, are set according to the full result,
including the MSBs that are discarded.

5 + (field size)/2

N 1 if the result is negative, a otherwise
C Unaffected
Z 1 if the result is 0, a otherwise
V Unaffected

MPYS AI, AO

Before After
AD Ai FSi AD Ai NCZV
OOOOOOOOh OOOOOOOOh 32 OOOOOOOOh OOOOOOOOh Ox1x
7FFFFFFFh 7FFFFFFFh 32 3FFFFFFFh 00000001h OxOx
7FFFFFFFh FFFFFFFFh 32 FFFFFFFFh 80000001h 1xOx
FFFFFFFFh 7FFFFFFFh 32 FFFFFFFFh 80000001h 1xOx
FFFFFFFFh FFFFFFFFh 32 OOOOOOOOh 000OOOO1h OxOx
80000000h 7FFFFFFFh 32 COOOOOOOh 80000000h 1xOx
80000000h 80000000h 32 40000000h OOOOOOOOh OxOx
80000001h 80000000h 32 3FFFFFFFh 80000000h Ox Ox
8040156Fh 7FF3B074h 32 C0262CDCh 53E486F8h 1xOx
8040156Fh 7FF3B074h 24 000624B1h 53E486F8h OxOx
8040156Fh 7FF3B074h 20 FFFE28B2h 594486F8h 1xOx
8040156Fh 7FF3B074h 16 000027B2h 17EC86F8h OxOx
8040156Fh 7FF3B074h 14 000007C2h 1C0206F8h OxOx
8040156Fh 7FF3B074h 8 FFFFFFC6h 1 D0766F8h 1xOx
8040156Fh 7FF3B074h 6 00OOOO05h FCFF3BF8h OxOx
8040156Fh 7FF3B074h 4 FFFFFFFEh 01004158h 1xOx
8040156Fh 7FF3B074h 2 OOOOOOOOh OOOOOOOOh Ox 1 x

13-173

MPYS Multiply Registers, Signed
~--""<:~~<:'~~:':"m~)w..~,~,*';~'»~~~~~~~~'*,*~_~~~~~~~~w.~~~~

Example 2 MPYS AO,Al

Before After
AO A1 FS1 AO A1 NCZV
OOOOOOOOh OOOOOOOOh 32 unchanged OOOOOOOOh Ox1x
7FFFFFFFh 7FFFFFFFh 32 unchanged 0OOOOOO1h OxOx
7FFFFFFFh 7FFFFFFFh 32 unchanged 80000001h 1xOx
FFFFFFFFh 7FFFFFFFh 32 unchanged 80000001h 1xOx
FFFFFFFFh FFFFFFFFh 32 unchanged 0OOOOO01h OxOx
80000000h 7FFFFFFFh 32 unchanged 80000000h 1xOx
80000000h 80000000h 32 unchanged OOOOOOOOh OxOx
80000001h 80000000h 32 unchanged 80000000h OxOx
7FF3B074h 80401056h 32 unchanged 53E486F8h 1xOx
7FF3B074h 80401056h 24 unchanged 53E486F8h Ox Ox
7FF3B074h 80401056h 20 unchanged 594486F8h 1xOx
7FF3B074h 80401056h 16 unchanged 17EC86F8h OxOx
7FF3B074h 80401056h 14 unchanged 1C0206F8h OxOx
7FF3B074h 80401056h 8 unchanged 1 D0766F8h 1xOx
7FF3B074h 80401056h 6 unchanged FCFF3BF8h OxOx
7FF3B074h 80401056h 4 unchanged 01004158h 1xOx
7FF3B074h 80401056h 2 unchanged OOOOOOOOh Ox1x

13-174 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

MPYU Rs, Rd

If Rd is an even-numbered register: Rs x Rd - Rd:Rd+1
If Rd is an odd-numbered register: Rs x Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 1 I 1 I 1 I Rs R Rd

M PYU performs an unsigned multiply of a variably-sized field in the source reg­
ister by the 32 bits in the destination register. This produces a 32-bit to a 64-bit
result, depending on the register and field definitions. Note that Rs and Rd
must be in the same register file.

The value offield size 1 (FS1) defines the size of the multiplier in Rs. FS1 may
have any even value n from 2 to 32 (that is, n = 2, 4, 6 ... 30, 32). The instruction
executes a 32-bit-by-n-bit multiply - multiplying the 32 bits in Rd by the n bits
in Rs. All values are unsigned.

..

Cont~~tsofRS (~#FS1}(~~nt~nts ofHel:
:31···~~:L{ '0:3'1

•• r=-I-=-ig-n--'o--'re~dr-'. ."'-'-"--'-n---b-it'--m-u~lt-ip'--lie-r--'----'-"-,11

'::::.:.~.;::::" .::': ::::::~:.:: :.: ". ":")

32-bit multiplicand ·····>°1;

MPYS has two modes, depending on whether Rd is even or odd:

a Rd Even:

MPYU multiplies the contents of Rd by the n-bit field in Rs and stores the
result in 2 consecutive registers, Rd and Rd+ 1. (For example, if Rd=B4, the
result is stored in registers B4 and B5.) The result is zero-extended and
right-justified; the 32 MSBs are stored in Rd, and the 32 LSBs are stored in
Rd+ 1. Note that all 32 bits of both registers are used, regardless ofthe field
size of the multiply.

Do not use A 14 or B14 as the destination register, because Rd+ 1 (A 15 or
B 15) is the stack painter register (SP). It is not desirable to write over the
contents of the SP.

.' ...•• y~nt~nts~fRd(ei'J~nr~9isteir) .•...... . ··.··•·.· .•• ·.C~rii~ritibfRd~l(bclcl.regi~t~a •• ··•··
31· 031 0 ..

1 1 l·

a Rd Odd:

MPYU multiplies the contents of Rd by the n-bit field in Rs and stores the 32
LSBs of the result in Rd; Rs is not changed. If the result is greater than 32
bits, the extra MSBs are discarded, regardless of the field size. The Z sta­
tus bit, however, is set according to the full result, including the MSBs that
are discarded.

13-175

Machine States Rs nonnegative: 5 + (field size)/2
Rs negative: 6 + (field size)/2

Status Bits N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Example 1 MPYU Al,AO

Before After
AO A1 FS1 AO A1 NCZV
FFFFOOOOh 10000000h 32 OFFFFOOOh OOOOOOOOh xxOx
FFFFOOOOh 10001010h 32 1000000Fh EFFOOOOOh xxOx
FFFFOOOOh 10001010h 16 0OOO100Fh EFFOOOOOh xxOx
FFFFOOOOh 10001010h 8 OOOOOOOFh FFFOOOOOh xxOx
FFFFOOOOh i000i010h 4 OOOOOOOOh OOOOOOOOh xxix
08001056h 0OO3B074h 32 0OOO1D83h DC4486F8h xxOx
08001056h 0OO3B074h 16 0OOOO583h AB4286F8h xxOx
08001056h 0OO3B074h 14 0OOOO183h A31786F8h xxOx
08001056h 0OO3B074h 8 0OOOOOO3h AOO766F8h xxOx
08001056h 0OO3B074h 6 0OOOOOO1h AOO35178h xxOx
08001056h 0OO3B074h 4 OOOOOOOOh 20004158h xxOx
08001056h 0OO3B074h 2 OOOOOOOOh OOOOOOOOh xx1x

Example 2 MPYU AO,Al

Before After
AO A1 FS1 AO A1 NCZV
10000000h FFFFOOOOh 32 unchanged OOOOOOOOh xxOx
10001010h FFFFOOOOh 32 unchanged EFFOOOOOh xxOx
10001010h FFFFOOOOh 16 unchanged EFFOOOOOh xxOx
10001010h FFFFOOOOh 8 unchanged FFFOOOOOh xxOx
10001010h FFFFOOOOh 4 unchanged OOOOOOOOh xx1x
0OO3B074h 08001056h 32 unchanged DC4486F8h xxOx
0OO3B074h 08001056h 16 unchanged AB4286F8h xx Ox
0OO3B074h 08001056h 14 unchanged A31786F8h xxOx
0OO3B074h 08001056h 8 unchanged AOO766F8h xxOx
0OO3B074h 08001056h 6 unchanged AOO35178h xx Ox
0OO3B074h 08001056h 4 unchanged 20004158h xx Ox
0OO3B074h 08001056h 2 unchanged OOOOOOOOh xx1x

13-176 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

III1"mnnnl Wait MWAIT

MWAIT

Wait for current memory cycle to complete

15 14 13 12 11 10 9 8 7 654 320

I 0 I 0 I 0 0 0 I 0 I 0 I 0 1 I 0 I 0 I 0 o I 0 I 0 I 0

MWAIT delays further instruction execution to allow any pending write cycle
to complete. If no write cycle is currently pending, the next instruction begins
execution immediately. If a write cycle is pending, execution of the next instruc­
tion is delayed until the write cycle completes.

MWAIT is typically used to ensure that all pending I/O register updates have
been completed prior to beginning a graphics instruction execution that
depends on the values in the I/O registers. It may also be used to ensure that
a pending write to a register in a memory-mapped peripheral external to the
TMS34020 has completed prior to executing an instruction whose operation
depends on the value in the register. Refer to Section 4.5.6 on page 4-13 for
a description of the potential latency of writes to I/O registers.

minimum of2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

MOVK 4, BI0
SETF
MOVE

16,0,0
BI0, @C0000150h load PSIZE

MWAIT wait for write to complete
DRAV AO,A2

MOVK
SETF
MOVE

In this case the 16 bit MOVE to PSIZE results
in 1 hidden state at the time MWAIT is
entered. MWAIT will take 2 cycles to execute.

4, BI0
6,0,0
BI0, @C0000150h load PSIZE

MWAIT wait for write to complete
DRAV AO,A2

In this case the 6 bit MOVE to PSIZE results
in 2 hidden states at the time MWAIT is
entered. MWAIT will take 3 cycles to execute.

13-177

NEG Negate Register
1IW_~m'!"Z_=m~~~~~w:w:::~t~·~~~~ __ =-':':-''<:'~'~M''«.:m~=-.'~~~~~~~%-.~~::::m~tI;.- \<'>: AM _,_~~~~-=~m

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-178

NEG Rd

2s complement of Rd -'» Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2 1 D

R Rd

NEG stores the 2s complement ofthe contents of the destination register back
into the destination register.

N 1 if the result is negative, 0 otherwise

C 1 if there is a borrow (Rd ;o! 0), 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow (Rd = 80000000h), 0 otherwise

Code Before After
AO NCZV AO

NEG AD OOOOOOOOh 001 0 OOOOOOOOh
NEG AD 55555555h 1 1 0 0 AAAAAAABh
NEG AD 7FFFFFFFh o 0 80000001h
NEG AD 80000000h o 1 80000000h
NEG AD 80000001h o 1 o 0 7FFFFFFFh
NEG AD FFFFFFFFh o 1 o 0 0OOOOOO1h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

U~'~i~',~rwith Borrow NEGB

NEGB Rd

(2s complement of Rd) - C ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 1 1 I 1 I 1 I 1 I 0 I R Rd

NEGB takes the 2s complement of the destination register's contents and dec­
rements by 1 if the borrow bit (C) is set; the result is stored in the destination
register. This instruction can be used in sequence with itself and with the NEG
instruction for negating multiple-register quantities.

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO C NCZV AO

NEGB AO OOOOOOOOh 0 0010 OOOOOOOOh
NEGB AO OOOOOOOOh 1 1 00 FFFFFFFFh
NEGB AO 55555555h 0 1 1 00 AAAAAAABh
NEGB AO 55555555h 1 1 1 00 AAAAAAAAh
NEGB AO 7FFFFFFFh 0 1 1 00 80000001h
NEGB AO 7FFFFFFFh 1 1 1 00 80000000h
NEGB AO 80000000h 0 1 1 01 80000000h
NEGB AO 80000000h 0100 7FFFFFFFh
NEGB AO 80000001h 0 0100 7FFFFFFFh
NEGB AO 80000001h 1 0100 7FFFFFFEh
NEGB AO FFFFFFFFh 0 0100 00000001h
NEGB AO FFFFFFFFh 01 1 0 OOOOOOOOh

13-179

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Example

13-180

NOP

No operation

15 14 13 12 11 10 9 8 765 4 3 2 0

o I 0 I 0 o I 0 I 0 I 0 I 0

The program counter is incremented to point to the next instruction. The
processor status is otherwise unaffected.

You can use the NOP instruction to pad loops and perform other timing func­
tions.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

~ Before After
PC PC

NOP 00020000h 00020010h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

NOT Rd

NOT Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I 1 R Rd

NOT stores the 1 s complement of the destination register's contents back into
the destination register.

1

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
AD NCZV

NOT AD OOOOOOOOh xxOx
NOT AD 55555555h xxOx
NOT AD FFFFFFFFh xx1x
NOT AD 80000000h xxOx

AD
FFFFFFFFh
AAAAAAAAh
OOOOOOOOh
7FFFFFFFh

13-181

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-182

OR Rs,Rd

Rs OR Rd -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 0 I 1 I 0 I Rs R Rd

This instruction bitwise-ORs the contents of the source register with the con­
tents of the destination register; the result is stored in the destination register.

Rs and Rd must be in the same register file.

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
AD A1 A1 NCZV

OR AO,AI FFFFFFFFh OOOOOOOOh FFFFFFFFh xxOx
OR AO,AI OOOOOOOOh FFFFFFFFh FFFFFFFFh xxOx
OR AO,AI 55555555h AAAAAAAAh FFFFFFFFh xxOx
OR AO,AI OOOOOOOOh OOOOOOOOh OOOOOOOOh xx1x

TMS34020 Assembly Language IfJstruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

ORI IL, Rd

32-bit immediate value OR Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I 1 I R I Rd

16 LSBs of IL

16 MSBs of IL

This instruction bitwise-ORs a 32-bit immediate value with the contents of the
destination register and stores the result in the destination register. (IL in the
syntax represents the 32-bit value.)

2 if immediate data is long-word aligned
3 if immediate data is long-word aligned

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Before
AO

ORr OFFFFFFFFh,AO OOOOOOOOh
ORr OOOOOOOOh,AO FFFFFFFFh
ORr OAAAAAAAAh,AO 55555555h
ORr OOOOOOOOh,AO OOOOOOOOh

After
AO NCZV
FFFFFFFFh xxOx
FFFFFFFFh xxOx
FFFFFFFFh xxOx
OOOOOOOOh xxix

13-183

PFILL Pattern Fill

Syntax

Execution

Instruction Words

Description

PFILL XV

COLORO and COLOR1 pixels ~ pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111011101010111110111111
PFI LL XY fills a pixel array, one row at a time, with a 2-color pattern. The pattern
is defined by the PATTERN register. The 2 colors are defined by the COLORO
and COLOR1 registers. PFILL replaces the 1s in pattern with the pixel value
in COLOR1; it replaces the Os in the pattern with the pixel value in COLORO.

To fill an array with a 2-dimensional pattern, execute PFILL once for each row
of the array. If the width of the specified fill region (defined by OX in DYDX) is
more than 32 pixels, PFILL replicates the same 32-bit pattern as many times
as necessary to fill the row. After each line is drawn, you will typically update
the contents of the PATTERN register to define the next row of the pattern.

If you do not update the PATTERN register between rows, or if the number of
rows in the fill region is .. 1, then the same 1-dimensional pattern is repeated
for each row of the destination array. If the destination array pitch is a power
of 2, and a pattern is drawn to the screen in this manner, then the filled area
appears to contain stripes. If the destination array pitch is not a power of 2, then
the pattern is defined for only the first line of the array.

Aligning a pattern -------------------------

The contents ofthe PATTERN register control the pattern. As an example, con­
sider the pixel addressed by the XY address in DADDR at the start of the PFI LL
instruction. Let that pixel be the nth pixel from the least significant end of a long­
word boundary, where n is in the range:

Bit n in the PATTERN register determines if the first pixel drawn is a COLORO
or COLOR1 pixel. Bitn +1 determines if the second pixel drawn is a COLORO
or COLOR 1 pixel, and so on. The PATTERN register works cyclically to draw
a line. If the OXvalue in DYDX is large, then eventually bit 31 of the PATTERN
register will be used to control an output pixel. If a further pixel is drawn, then
it will be controlled by bit 0 of the pattern and so on.

Prealigning a pattern -------------------------­

The last example demonstrated that PFILLdoes not perform any internal align­
ment of the PATTERN register. This cuts the overhead time required to start
executing and enables you to perform a pattern prealignment to suit your
needs.

13-184 TMS34020 Assembly Language Instruction Set

Consider this case where no prealignment is performed:

PSIZE
DADDR
DPTCH
OFFSET
DYDX
COLORO
COLOR1
PATTERN

(82)
(83)
(84)
(87)
(88)
(89)
(813)

= 04h
= 00000 OOOOh
= 00000 OOOOh
= 00000 OOOOh
= 00020 0060h
= 00000 OOOOh
= OFFFFFFFFh
= OFFFO OOFFh

Pattern Fill PFILL

For this example, PFILL draws a rectangle 96 pixels wide and 32 pixels high.
The rectangle contains vertical stripes, alternating between COLOR1 and
COLOR1. The first pixel drawn, at bit address OOOOOOOOh, is controlled by bit
o of the PATTERN register.

If the screen is clear and the X part of DADDR is incremented by 1 to
00000001 h, PFILL will redraw the rectangle. The first pixel drawn by PFILL,
now at bit address 00000004h, will be controlled by bit 1 of the pattern register.
The drawn pattern now appears as if it were fixed relative to the screen (not
the rectangle edge).

This continues as the X component of DADDR is incremented until DADDR =
000000008h; at this point the first pixel drawn by PFILL, now at bit address
000000020h, will no longer be in the first 32-bit long-word ofthe screen. In this
case, by the argument used above, the first drawn pixel is controlled, once
again, by bit 0 of the PATTERN register and thus changing from DADDR =
000000007h to DADDR = 0000000008h the pattern will appear to jump within
the rectangle. This may not always be a desirable way to manage the pattern.
You may wish to do one of the following:

[J Create a pattern that appears to be fixed relative to the screen background.
[J Create a pattern that appears fixed relative to the edge of the rectangle.

Placing the pattern relative to the screen background ------------

There are three ways to fixing or placing a pattern relative to the screen back­
ground.

1) Let the number of pixels in a long-word be P, where

32
p = PSIZE'

If the pattern in the PATTERN register repeats every p pixels, then it will
appear fixed with respect to the screen background.

If you set 813 = FFOOFFOOFFh in the last example, the pattern will not
jump.

13-185

PFILL Pattern Fill

2) Use a pixel size of 1 bit.

3) Manually rotate the contents of B13 before executing PFILL. The rotation
amount depends on the following two things:

o Pixel size
o X component of DADDR

Let the total number of bits controlled by the entire pattern (that is 32 x
PSIZE bits), be known as a super-word (range 32 to 1024 bits in size).

Let the long-word containing the pixel addressed by DADDR at the start of
the PFILL XY be the nth long-word in a super-word (range a to 32).

Let the number of pixels in a 32-bit long-word be p, where

32
P = PSIZE (range a to 32).

Before starting PFILL XY, the pattern should be rotated right by m x p bits,
before placing it in PATTERN.

This may appear complex, but because pixel size is usually fixed, the
prealignment operation can be reduced to a simple sequence of instruc­
tions. For example, at 4 bits per pixel, ANDing the XY address in DADDR
(available before execution of PFILL) with 018h yields the value m x p
which can be used to rotate the pattern before placing it into the PATTERN
register. At other pixel sizes the following will yield m x p:

PSIZE
1
2
4
8
16
32

mxp
OOOh AND DADDR always a (no rotation required)
010h AND DADDR
018h AND DADDR
01 Ch AND DADDR
01 Eh AND DADDR
01 Fh AND DADDR

Placing the pattern relative to the rectangle ----------------

13-186

Placing or fixing the pattern relative to the rectangle means that the first pixel
drawn by PFILL is always controlled by bit a of the PATTERN register. (This
is how the LINE and FLINE instructions use PATTERN register.)

You can achieve a similar effectfor PFILL by rotating the pattern left by a certain
amount before plaCing it into the PATTERN register. The rotation amount
depends on the following two things: .

o Pixel size
Q X component of DADDR

TMS34020 Assembly Language Instruction Set

Implied Operands

Pixel Processing

Window Checking

The rotation amount is derived by ANDing DADDR with a constant as follows:

PSIZE
1
2
4
8
16
32

Note:

Rotate Amount
01 Fh AND DADDR
OOFh AND DADDR
007h AND DADDR
003h AND DADDR
001 hAND DADDR
OOOh AND DADDR always 0 (no rotation required)

This description describes a striped rectangle, but in practice PFILL is used
to pattern-fill a single line followed by a change of pattern before pattern filling
a second line, and so on. The reference to a rectangle is made for the purpose
of illustration only.

Register Name Format Description

B2 DADDR XY Destination pixel block address

B3 t DPTCH Linear Destination pixel block pitch

B7 DYDX XV Dimensions of drawn rectangle

B13 PATTERN Binary Pattern register

B14 POFFSET Integer Offset into the pattern
f If DY > 1, then DPTCH must be a power of 2, or the pattern will not be well defined.

Address

COOOOOBOh

C0000150h

C0000160h

Name

CONTROL

PSIZE

PMASK
(32 bits)

Description and Elements (Bits)

PPOP Pixel-processing operations (22 options)
T Transparency operation
TM Sets transparency mode

Pixel size (1,2,4,8,16,32)

Plane mask - pixel format

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the PFILL
instruction. To ensure thatthis register contains the correct value for execution,
you may want to follow the write to that location with an MWAIT (page 13-177).
Refer to Section 4.5.6 on page 4-13 for a description of the potential latency
of writes to I/O registers.

Pixel processing can be used with this instruction. For more information, refer
to Section 12.8, Pixel Processing, on page 12-27.

Window checking can be used with this instruction.

13-187

PFILL Pattern Fill

Transparency

Plane Masking

Corner Adjust

Machine States

Status Bits

Examples

STK .set
DADDR .set
DYDX .set
PATTERN • set

.globl
_fillJ>atnrect:

mmtm
mmtm
move
move
move
move
move
move
move
sl1
movy
sl1
movy
clip
jrz
move
move
srl
movi

13-188

You can enable transparency for this instruction by setting T[CONTROL.] to 1.
Select 1 of 3 transparency modes by setting TM[CONTROL]. For more infor­
mation, refer to Section 12.9, Transparency. on page 12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

Corner adjust cannot be used with this instruction.

Complex Instruction

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws a rectan­
gle on the screen; the screen is filled with a 16 x 16 binary pattern. This routine
expects 5 arguments on the C parameter stack: width, height, xl eft, ytop, and
a pOinter to the pattern.

This routine assumes the following registers were previously initialized by the
caller:

A14
B2
B7

B-file registers
I/O registers

B13
_fi11J>atnrect

DPTCH, OFFSET, WSTART, WEND, COLOR1, COLORO
CONTROL, CONVDP, PSIZE and PMASK

ie-parameter stack pointer
iDestination address register
iDelta X/delta Y register
iPattern register
iprovide reference for external calls

SP,AO,A1,A2,A3 isave required registers
SP,BO,B1,B2,B7,B10,B11,B13,B14
STK,B14
*-B14,DYDX,1
*-B14,B10,1
*-B14,DADDR,1
*-B14, B11, 1
B14,STK
*-STK,A3,1
16,B10
B10,DYDX
16,B11
B11,DADDR

exit
DYDX,A1
A1,A2
16,A1
00010000H,AO

iPOP w
iPOP h
iPOP xleft
iPOP ytop

iPOP pointer to pattern

iconcatenate w, h

iconcatenate xleft, ytop
iclip the rectangle to the window
ijump if rectangle outside window
iSet up Y count

TMS34020 Assembly Language Instruction Set

Pattern Fill PFILL

movy AO,A2
move A2,DYDX
move DADDR,A2
getps BO jcalculate pattern adjustment
rmo BO,BO
neg BO
movk 32,Bl
srl BO,Bl jnumber pixels per 32 bit word
subk 1,Bl JSO complement will count pix's wrd
move DADDR,BO
andn Bl,BO jaddress rounded to pix's/word bndry
neg BO jshift count = -(LSBs of xl

loop:
move A3,B1O jpattern start address
movk 15, Bll jload 4-bit mask
sll l6,Bll jalign mask with 4 LSBs of y
and DADDR,Bll jisolate 4 LSBs of y
srl l2,Bll jconvert y to index value
add Bll,B1O jindex into pattern
move *B1O,B1O,O jget l6-bit row of pattern
move B1O,Bll
sll l6,Bll
movy Bll,B1O jreplicate row to 32 bits
rl BO,B1O jalign pattern for x address
move B1O,PATTERN jload aligned pattern
pfill XY
addxy AO,A2
move A2,DADDR
dsj Al,loop

exit:
mmfm SP,BO,Bl,B2,B7,B1O,Bll,B13,B14
mmfm SP ,AO ,Al ,A2 ,A3 jrestore required registers
rets 2 jreturn

13-189

PIXBLT Pixel Block Transfer Instructions

PIXBLT Instructions The PIXBLT instruction moves a 2-dimensional array of pixels from one
memory location to another. Section 12.5, Pixel-Array Instructions, on page
12-8 provides additional information about the PIXBLT instructions. The fol­
lowing list describes characteristics common to all PIXBLT instructions. Note
that PIXBLT L,M,L is discussed independently on page 13-204.

13-190

Q The source and destination addresses of the arrays are designated by the
SADDR and DADDR registers, respectively.

Q B, L, and XV are not actually operands. Instead, they identify the source
or destination array starting addresses as binary, linear, or XY addresses.
B, L, and XY are referred to as qualifiers.

Q Qualifiers are entered exactly as shown in the syntax; for example,
PIXBLT B, L. The first qualifier indicates the format of the starting address
of the source array; the second qualifier indicates the format of the starting
address of the destination array.

Q You can select a pixel-processing option by setting PPOP[CONTROL].
When the PIXBLT has binary source data, the pixel-processing operation
is applied to expanded pixels as they are processed with the destination
array; that is, the data is first expanded and then processed. There are 16
Boolean and 6 arithmetic operations; the default case at reset is the S ~
D operation. Not that the 6 arithmetic operations do not operate with pixel
sizes of 1 bit per pixel. For more information, refer to Section 12.8, Pixel
Processing, on page 12-27.

Q You can enable transparency by setting T[CONTROL] to 1. The
TMS34020 supports 3 transparency modes; TM[CONTROL] selects 1 of
3 transparency options. For more information, refer to Section 12.9,
Transparency, on page 12-36.

Q The plane mask is enabled. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

Q This instruction can be interrupted at a word or row boundary of the desti­
nation array. For more information, refer to Section6.6, Interrupting Graph­
ics Instructions, on page 6-13.

Q If CST[DPYCTL] is set, each memory read orwrite initiated by the PIXBLT
generates a shift register transfer read or write cycle at the selected ad­
dress. This operation can be used for bulk memory clears or transfers. (Not
all VRAMs support this capability.) For more information, refer to subsec­
tion 9.13.4, VRAM Bulk Initialization, on page 9-47.

Q The status bits are undefined unless otherwise noted in the individual
descriptions.

Q The machine states are not presented because the PIXBLT instructions
are complex instructions.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT

Table 13-6. Summary of Array Types for the PIXBLT Instruction

Destination Array

Linear XY

Binary

Linear

XY

Table 13-7. Summary of B-File Registers for PIXBLT Instructions

Format

Reg. Name B,L B,XY L, L L,XY XY, L XY,XY Description

BO SADDR Linear Linear Linear Linear XY XY Source pixel array starting
address

B1 SPTCH Linear Linear Linear Linear Linear Linear Source pixel array pitch

B2 DADDR Linear XY Linear XY Linear XY Destination pixel array
starting address

B3 DPTCH Linear Linear Linear Linear Linear Linear Destination pixel array
pitch

B4 OFFSET Linear Linear Linear Linear Screen origin (0,0)

B5 WSTART XY XY XY Window starting corner

B6 WEND XY XY XY Window ending corner

B7 DYDX XY XY XY XY XY XY Pixel array dimensions
(rows:columns)

B8 COLORO Pixel Pixel Background expansion
color

B9 COLOR1 Pixel Pixel Foreground expansion
color

B14 res res res res res res Reserved register

Note: PIXBLT L,M,L is discussed independently on page 13-204.

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT.
Refer to Section 4.5.6 on page 4-13 for a description of the potential latency
of writes to I/O registers.

13-191

PIXBLT Pixel Block Transfer Instructions

Table 13-8. Summary of I/O Registers for the PIXBLT Instructions

Format

Address Name B,l B,XY l,l l,XY XY,l XY,XY Description and Elements

COOOOOBOh CONTROL V V V V V V PPOP-Pixel-processing
operations (22 options)

v v v W - Window clipping or pick
operation

V V V V V v T - Enables transparency

v v v v v v TM - selects 1 of 3 transpar-
ency options

v v v v PBH - PIXBLT horizontal di-
rection

V V V v PBV - PIXBLT vertical direc-
tion

COOO0130h CONVSP v v v v XY-to-linear conversion
(source pitch) Used for
source preclipping.

COOO0140h CONVDP v v v v XY-to-linear conversion
(destination pitch)

COOO0150h PSIZE v v v v v v Pixel size (1,2,4,8,16,32)

COOO0160h PMASK / v v v v v Plane mask - pixel format
(32 bits)

Note: PIXBLT L,M,L is discussed independently on page 13-204.

PIXBLT B, L
binary to linear

Description

Source Array

13-192

The PIXBLT instruction has 6 combinations, which are listed below with their
corresponding instruction words and descriptions. Note that PIXBLT L,M,L is
discussed independently on page 13-204.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o I 0

This instruction expands, transfers, and processes a binary source pixel array;
it operates on 2-dimensional arrays of pixels using linear starting addresses
for both the source and the destination. The source pixel array is treated as a
1-bit-per-pixel array. As the PIXBLT proceeds, the source pixels are expanded
and then combined with the corresponding destination pixels based on the
selected graphics operations.

The source pixel array for the expand operation is defined by the contents of
the SADDR, SPTCH, and DYDX registers. For more details, refer to Section
12.5, Pixel-Array I nstructions, on page 12-8.

TMS34020 Assembly Language Instruction Set

Source Expansion

Destination Array

Corner Adjust

Window Checking

PIXBLT B,XY
binary to XY

Description

Source Array

Source Expansion

Destination Array

Corner Adjust

Pixel Block Transfer Instructions PIXBLT

The actual values of the source pixels are determined by the interaction of the
source array with contents of the COLOR1 and COLORO registers. In the
expansion operation, a 1 bit in the source array selects a pixel from the
COLOR1 register for operation on the destination array. A 0 bit in the source
array selects a COLORO pixel for this purpose. The pixels selected from the
COLOR1 and COLORO registers are those that align directly with their
intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADDR, DPTCH, and DYDX registers. For more details, refer to Section 12.5,
Pixel-Array Instructions, on page 12-8.

No corner adjust is performed for this instruction.The pixel transfer simply
proceeds in the order of increasing linear addresses.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

15 14 13 12 11 10 9 8 7 6 54320

1 1 0 1010101010

This PIXBLT instruction expands, transfers, and processes a binary source
pixel array with a destinatiori pixel array; it operates on 2-dimensional arrays
of pixels using a linear starting address for the source and an XY address for
the destination. The source pixel array is treated as a 1-bit-per-pixel array. As
the PIXBLT proceeds, the source pixels are expanded and then combined with
the corresponding destination pixels based on the selected graphics opera­
tions.

The source pixel array for the expand operation is defined by the contents of
the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The actual values of the source pixels are determined by the interaction of the
source array with contents of the COLOR1 and COLORO registers. In the
expansion operation, a 1 bit in the source array selects a pixel from the
COLOR1 register for operation on the destination array. A 0 bit in the source
array selects a COLORO pixel for this purpose. The pixels selected from the
COLOR1 and COLORO registers are those that align directly with their
intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADOR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

No corner adjust is performed for this instruction. The transfer executes in the
order of increasing linear addresses.

13-193

Window Checking

Status Bits

PIXBLT L, L
linear to linear

Description

Source Array

Destination Array

Corner Adjust

Window Checking

PIXBLT L, XV
linear to XY

Description

13-194

You can use window checking with this instruction by setting the W bits in the
CONTROL register to the desired value. If you select window checking mode
1,2, or 3, the WSTART and WEND registers define the XY starting and ending
corners of a rectangular window. For more information, refer to Section 12.7,
Window Checking, on page 12-19.

N Undefined
C Undefined
Z Undefined
V 1 if a window violation occurs, 0 otherwise; undefined if window checking is

not enabled 0N=OO)

15 14 13 12 11 10 9 8 76543 2 1 0

o I 0 I 0 I 0 I 0 I 0 o I 0

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using
linear starting addresses for both the source and the destination. As the
PIXBLT proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

The source pixel array for the processing operation is defined by the contents
ofthe SADDR, SPTCH, and DYDX registers. For more details, refer to Section
12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, and DYDX registers. For more details, refer to Section 12.5,
Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL.] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
o I 1 o o o 0 o

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using a
linear starting address for the source array and an XY address for the
destination array. As the PIXBLT proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

TMS34020 Assembly Language Instruction Set

Source Array

Destination Array

Corner Adjust

Window Checking

Status Bits

PIXBLTXY, L
XY to linear

Description

Source Array

Destination Array

Corner Adjust

Window Checking

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DAD DR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. If you select window checking mode 1, 2, or 3, the
WSTART and WEND registers define the XY starting and ending corners of
a rectangular window. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

N Undefined
C Undefined
Z Undefined
V 1 if window violation occurs, 0 otherwise; undefined if window checking is

not enabled (W=002)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o I 1 I 0 o I 0 o I 0 I 0

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using an
XY starting address for the source pixel array and a linear address for the
destination array. As the PIXBLT proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, DYDX, and (potentially) CONVDP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

13-195

PIXBLT XY, XY Pixel Block Transfer Examples ,

PIXBLT XY, XY -----------------------
XYtoXY

Description

Source Array

Destination Array

Corner Adjust

Window Checking

Status Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101010101111111110111110101010101

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using XY
starting addresses for both the source and destination pixel arrays. As the
PIXBLT proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROIJ and PBV[CONTROIJ govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

You can use window checking with this instruction by setting W[CONTROIJ
to the desired value. If you select window checking mode 1, 2, or 3, the
WSTART and WEND registers define the XY starting and ending corners of
a rectangular window. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise; unaffected if window clipping

not enabled

Transparency example for PIXBlT B, l ------------------­

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied op­
erand setup:

Register File B: 1/0 Registers:
SADDR = 0OOO2030h PSIZE = 0010h
SPTCH = 0OOOO100h
DADDR = 0OO33000h
DPTCH = 0OOO1000h
DYDX = 0OO20010h
COLORO = FEDCFEDCh
COLOR1 = BA98BA98h

13-196 TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples
W~';~~,~~,'!"o';>"""'*'~(~~~:~~~:~:='~~:~*~!Oi~'=~::;:;:'=<::':·~~:>i:~;;'):~='":=~"<:<i~l:.;:t.)I;,~;.A,"'~~~~~~l':"~~,::.:~~~m:~~~_::»~~~~_w.~~«_"W'- q- <:Z1IWT ~"'>;l)ll~~_

Example 1

Example 2

Additional implied operand values are listed with each example. Forthis exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data
Address
02000h xxxxh, xxxxh, xxxxh, 1234h, xxxxh, xxxxh, xxxxh, xxxxh
02080h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, 5678h, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

33000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
33080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
34080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

This example uses the replace (S ~ 0) pixel-processing operation. Before in­
struction execution, PMASK = OOOOh and CONTROL = OOOOh (T =0,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear Data
Address
33000h FEDCh, FEDCh, BA98h, FEDCh, BA98h, BA98h, FEDCh, FEDCh
33080h FEDCh, BA98h, FEDCh, FEDCh, BA98h, FEDCh, FEDCh, FEDCh

34000h FEDCh, FEDCh, FEDCh, BA98h, BA98h, BA98h, BA98h, FEDCh
34080h FEDCh, BA98h, BA98h, FEDCh, BA98h, FEDCh, BA98h, FEDCh

This example uses transparency with COLORO = OOOOOOOOh. Before instruc­
tion execution, PMASK = OOOOh and CONTROL = 0020h (T =1, W=OO,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear Data
Address
33000h FFFFh, FFFFh, BA98h, FFFFh, BA98h, BA98h, FFFFh, FFFFh
33080h FFFFh, BA98h, FFFFh, FFFFh, BA98h, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, BA98h, BA98h, BA98h, BA98h, FFFFh
34080h FFFFh, BA98h, BA98h, FFFFh, BA98h, FFFFh, BA98h, FFFFh

13-197

Window-clipping example for PIXBLT B, XV -----------------­

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLTexamples usethefollowing implied op­
erand setup:

Example 1

13-198

Register File B: I/O Registers:
SADDR
SPTCH
DADDR
DPTCH
OFFSET
WSTART
WEND
DYDX
COLORO
COLOR1

00002010h
00000010h
00300022h
00001000h
00010000h
00000026h

= 00400050h
00040010h
OOOOOOOOh
7C7C7C7Ch

PSIZE
CONVSP
CONVDP

0008h
001Bh
0013h

Additional implied operand values are listed with each example. For this exam­
ple, assume that memory contains the following data before instruction execu­
tion.

Linear Data
Address
2000h xxxxh, 0123h 4567h, 89ABh, CDEFh, xxxxh, xxxxh, xxxh
40000h to
43200h FFFFh

This example uses the replace (8 ~ D) pixel-processing operation. Before in­
struction execution, PMA8K = OOOOh and CONTROL = OOOOh (T =0, W=OO,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address
41100h
41180h
42100h
42180h
43100h
43180h

Data

FFFFh, 7C7Ch, 007Ch, 7COOh, 007Ch, 007Ch,
007Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh,
FFFFh, 7C7Ch, 7COOh, 7COOh, 7COOh, 007Ch,
7COOh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh,
FFFFh, 7C7Ch, 7C7Ch, 7COOh, 7C7Ch, 007Ch,
7C7Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh,

007Ch, OOOOh
FFFFh, FFFFh
7COOh, OOOOh
FFFFh, FFFFh
7C7Ch, OOOOh
FFFFh, FFFFh

xv Addressing

Y

A

X Address
222222222222222233333
0123456789ABCDEF01234

d 30 FF FF 7C 7C 00 00 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
r 31 FF FF 7C 7C 7C 00 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF 7C 7C 00 7C 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF
s 33 FF FF 7C 7C 7C 7C 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

TMS34 020 Assembly Language Instruction Set

Example 2 This example uses window operation 3 (clipped destination). Before instruc­
tion execution, PMASK = OOOOh and CONTROL = OOCOh (T =0, W=11,
PP=OOOOO).

After instruction execution, memory contains the following values:

XV Addressing

y

A

X Address
222222222222222233333
0123456789ABCDEF01234

d 30 FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
r 31 FF FF FF FF FF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF FF FF FF FF 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF
s

33 FF FF FF FF FF FF 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

Pixel-processing example for PIXBLT L, L ------------------­

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLTexamples use the following implied op­
erand setup:

Register File B: I/O Registers:
SADDR = 00002004h PSIZE = 0004h
SPTCH = 00000080h
DADDR = 0OO02228h
DPTCH = 0OOOO080h
OFFSET = OOOOOOOOh
DYDX = 0000200Dh

Additional implied operand values are listed with each example. For this exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data
Address
02000h OOOxh, 1111 h 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh. xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh. xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02300h xxxxh. xxxxh. xxxxh. xxxxh xxxxh, xxxxh. xxxxh, xxxxh

13-199

Example 1

Example 2

This example uses the replace (S ~ D) pixel-processing operation. Before in­
struction execution, PMASK = OOOOh and CONTROL = OOOOh (T =0, W=OO,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear Data
Address
02000h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, EEEFh, DDDEh, xCCDh, xxxxh, xxxxh
02280h xxxxh, xxxxh, OOxxh, 1110h, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

This example uses the (D - S) ~ D pixel-processing operation. Before instruc­
tion execution, PMASK = OOOOh and CONTROL = 4800h T =0, W=OO,
PP=10010).

After instruction execution, memory contains the following values:

Linear Data
Address
02000h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, OFFxxh,111Fh, 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, OFFxxh,111Fh, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

. Plane mask example for L, XV

13-200

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. This PIXBLT examples uses the following implied op­
erand setup:

Register File B: I/O Registers:
SADDR = 00002004h PSIZE = 0004h
SPTCH 00000080h PMASK OOOOh
DADDR = 00520007h CONVDP = 0017h
DPTCH = 00000100h CONTROL = OOOOh
OFFSET 00001000h (W=OO, T =0, PP=OOOOO)
WSTART = 0030000Ch
WEND = 00530014h
DYDX = 00030016h

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples
~:~~~«':':¥.-·*·:-:':>~ffi~=~~~~=~-y;:.~':':'S~~=«$.""-""""'"m'''''~;;:;:''=>;'''-'-*~~~:::W-'WIJIo=~·::»)~~l'»".IAA':'$~~'~~':'I'W~:::::"'.Im';IiIi

Example

Linear Data
Address

I

02000h OOOxh, 1111 h 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh

This example uses transparency. Before instruction execution, PMASK =
OOOOh and CONTROL = 0200h (T =1 ,W=OO, PP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address
02000h
02000h
02100h
02180h
02200h
02280h
02300h

OOOxh,
OOOxh,
xxxxh,
xxxxh,
xxxxh
xxxxh,
xxxxh,

1111 h,
1111 h,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,

2222h, xx33h,
2222h, xx33h,
xxxxh, xxxxh,
xxxxh, xxxxh,
FFxxh, 111Fh
FFxxh, 111 Fh,
xxxxh, xxxxh,

Data

xxxxh, xxxxh,
xxxxh, xxxxh,
xxxxh, xxxxh,
xxxxh, xxxxh,
2221 h, x332h,
2221 h, x332h,
xxxxh, xxxxh,

xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,

xxxxh
xxxxh
xxxxh
xxxxh
xxxxh
xxxxh
xxxxh

Example for PIXBLT XV, XV ------------------------

13-202

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLTexamples use the following implied op­
erand setup:

Register File B: I/O Registers:
SADDR = 00200004h PSIZE = 0004h
SPTCH = 00000200h CONVSP = 0016h
DADDR 00410004h CONVDP = 0016h
DPTCH 00000200h PMASK = OOOOh
OFFSET 0OO10000h CONTROL OOOOh
WSTART = 00300009h 011/=00, T =00, PP=OOOOO)
WEND 00420012h
DYDX 00030016h

For this example, assume that memory contains the following data before in­
struction execution.

TMS34020 Assembly Language Instruction Set

Example

Linear
Address
04000h
04200h
04400h
18200h to
18680h

Data

3210h, 7654h, BA98h, FEDCh, 3210h, 7654h,
3210h, 7654h, BA98h, FEDCh, 3210h, 7654h,
3210h, 7654h, BA98h, FEDCh, 3210h, 7654h,

3333h

BA98h, FEDCh
BA98h, FEDCh
BA98h, FEDCh

This example uses the (0 ADDS S) -'>0 0 pixel-processing operation. Before
instruction execution, PMASK = OOOOh and CONTROL = 4400h (T =0, W=OO,
PP=10001).

After instruction execution, memory contains the following values:
xv Addressing

y

A

X Address
00000000000000001111111111111111
o 1 2 345 6 7 8 9 ABC D E F 0 1 2 345 6 7 8 9 8 C C D E F

d 41 3 3 3 3 7 8 9 ABC D E F F F F 3 4 5 6 7 8 9 ABC 3 3 3 3 3 3
d
r 41 3 3 3 3 7 8 9 ABC D E F F F F 3 4 5 6 7 8 9 ABC 3 3 3 3 3 3
e
s 41 3 3 3 3 7 8 9 ABC D E F F F F 3 4 5 6 7 8 9 ABC 3 3 3 3 3 3
s

13-203

PIXBLT L,L with Mask Pixel Block Transfer Instructions
~:::;:<~'!'>.":;'~';:'i'!*",'m;l?!:;:'f~<:-:.~:.m_::;:::~~'~~=M~~~~~~~~~::;:::_~_:.m>$";:"<:<:<:<~X'{~w.·=~:».-=~~_~~~~~=-:'~~~~"""_~~~~<:IllI<:I5:<"tIi

Syntax

Execution

Instruction Words

Description

Implied Operands

Corner Adjust

Window Checking

13-204

PIXBLT L, M, L

Linear pixel array to linear pixel array using a binary mask array

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

This instruction transfers a pixel array from the source location specified by a
linear address in SADDR to the destination location specified by a linear
address in DADDR, which is under the control of the binary mask pixel array
specified by a linear address in MADDR. The array dimensions are in DYDX.

Each source pixel is combined with the destination pixel according to the
selected pixel-processing option. The resulting pixel can then be written to the
destination pixel only if the corresponding bit in the mask array is a 1.

Register Name Format Description

BO t SADDR Linear Source pixel array address

B1 SPTCH Linear Source pixel array pitch

B2 t DADDR Linear Destination pixel array address

B3 DPTCH Linear Destination pixel array pitch

B7 DYDX b:a Dimensions of drawn rectangle

B10 t MADDR Linear Mask pixel array address

B11 MPTCH Linear Mask array pitch

B12&B14 t Reserved Temporary Registers
t These registers are changed by instruction execution

Address

COOOOOBOh

C0000150h

C0000160h

Name Description and Elements (Bits)

CONTROL PPOP Pixel-processing operations (22 options)
T Transparency operation
TM Sets transparency mode
PBH PIXBLT horizontal direction
PBV PIXBLT vertical direction

PSIZE Pixel size (1,2,4,8,16,32)

PMASK Plane mask - pixel format
(32 bits)

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT L,L with Mask
__ ~ ___ 7<~-f;1~"~",,_~ __ ~~<~,,,~ . "':>I':~"'wm ·W? :>$:~~~~~~_;; __ "

Pixel Processing

Transparency

Plane Masking

Machine States

Status Bits

Select a pixel processing option for this instruction by setting PPOP[CON­
TROL]. The pixel processing option is applied to pixels as they are processed
with the destination array. Note that the data is read through the plane mask
and then processed. There are 16 Boolean and 6 arithmetic operations; the
default case at reset is the rep/ace (S -- D) operation. The 6 arithmetic opera­
tions do not operate with pixel sizes of 1 or 2 bits per pixel. For more informa­
tion, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

complex instruction

N Undefined
C Undefined
Z Undefined
V Undefined

13-205

PIXT Pixel Transfer Instructions -
PIXT Instructions The PIXT instruction transfers a pixel from one location to another. The follow­

ing list describes characteristics common to all PIAl instructions.

Q Rs and Rd must be in the same register file.

Q The plane mask is enabled for all PIXT instructions. For more information,
refer to Section 12.10, Plane Masking, on page 12-39.

Q The status bits are undefined unless otherwise noted in the individual
descriptions.

Q For machine states information, refer to Section 15.1 on page 15-2.

Section 12.3, Single-Pixel Instructions, on page 12-6 provides additional
information about the PIXBLT instructions.

Table 13-9. Summary of Operand Formats for the PIXT Instructions

Destination Pixel

Rd *Rd *Rd.X'f

Rs

*Rs

*Rs.XY v

Table 13-10.Summary of B-File Registers for PIXT Instructions

Reg. Name

81 SPTCH

83 DPTCH

84 OFFSET

85 WSTART

86 WEND

13-206

Format

Rs, *Rd.X'f *Rs.XY, Rd *Rs.XY, *Rd.XY Description

Linear Linear Source pixel array pitch

Linear Linear Linear Destination pixel array pitch

Linear Linear Linear Screen origin (0,0)

XY xy Window starting corner

xy Xy Window ending corner

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT
(page 13-177). Refer to Section 4.5.6 on page 4-13 for a description of the
potential latency of writes to I/O registers.

TMS34020 Assembly Language Instruction Set

Pixel Transfer Instructions PIXT

Table 13-11. Summary of I/O Registers for the PIXT Instructions

Address

COOOOOBOh

COOO0130h

COOO0140h

COOO0150h

COOO0160h

>-
><:

>.
~

'ti
><:

~
\l=

~ 'ti "0 >." >.: \l= a: ><: ><:
Name ~ tt ~" ~ eti

~ Description and Elements .. g::

CONTROL V V V V PPOP - Pixel processing operations (22
options)

V V W - Window clipping or pick operation

V V V V T - Enables transparency

V V V V TM - Selects transparency options

CONVSP V V XV-to-linear conversion (source pitch)
Used for source preclipping.

CONVDP v v XY-ta-linear conversion (destination
pitch)

PSIZE v v v v v v Pixel size (1,2,4,8,16,32)

PMASK I v v v v V Plane mask - pixel format
(32 bits)

The PIXT instruction has 6 addressing modes, which are listed below with their
corresponding instruction words and descriptions.

PIXT Rs, *Rd
register to memory

15 14 13 12 11 10 9 8 7 6 543 2 1 o
I 1 I 1 I 1 I 1 I 1 I 0 I 0 I Rs Rd

The source pixel is the 1, 2, 4, 8, 16, or 32 LSBs of the source register, depend­
ing on the pixel size specified in the PSIZE register. The destination register
contains a linear address; the source pixel is transferred to this memory loca­
tion.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

Window checking cannot be used with this instruction.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. At reset, the default case for transparency is off. For more information,
refer to Section 12.9, Transparency, on page 12-36.

13-207

PIXT Pixel Transfer Instructions

PIXT Rs, *Rd.XY
register to memory

Status Bits

PIXT*Rs, Rd
memory to register

Status Bits

13-208

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 1 I 1 I 1 I 1 I 0 I 0 I 0 I Rs I R I Rd

The source pixel is the 1, 2, 4, 8, 16, or 32 LSBs of the source register, depend­
ing on the pixel size specified in the PSIZE register. The destination register
contains an XY address; the X value occupies the 16 LSBs of the register, and
the Y value occupies the 16 MSBs. The source pixel is moved to the XY
address specified in Rd.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

N Unaffected
C Unaffected
Z Unaffected
V 1 if pixel is outside the window and W = 1,2,3; 0 otherwise. Unaffected ifW

= O.

15 14 13 12 11 10 9 8 7654321 o
Rs I R I Rd

The source register contains a linear address; the pixel at this address is trans­
ferred into the destination register. When the pixel is moved into Rd, it is
right-justified and zero-extended to 32 bits, according to the pixel size specified
in the PSIZE register.

Window checking cannot be used with this instruction. The W bits are
ignored.

Pixel processing cannot be used with this instruction.

Transparency cannot be used with this instruction.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

TMS34020 Assembly Language Instruction Set

PIXT *Rs, *Rd
memory to memory

PIXT *Rs.XY, Rd
memory to register

Status Bits

Pixel Transfer Instructions PIXT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 1 I 1 I 1 I 1 I 1 I 1 I 0 I Rs R I Rd

The source and destination registers both contain linear addresses. The
address in Rs is the address of the source pixel; the pixel is moved into the
address in Rd.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

Window checking cannot be used with this instruction.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 1 I 0 I 0 I 1 I Rs R Rd

The source register contains an XY address; the X value occupies the 16 LSBs
of the register, and the Y value occupies the 16 MSBs. The address in Rs is
the address of the source pixel; this pixel is moved into the destination register.
When the pixel is moved into Rd, it is right-justified and zero-extended to 32
bits according to the pixel size specified in the PSIZE register.

Pixel processing cannot be used with this instruction.

Transparency cannot be used with this instruction.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

PIXT *Rs.XY, *Rd.XY -----------------------­
memory to memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 1 I 0 I 1 I 0 I Rs R Rd

The source and destination registers both contain XY addresses; the X value
occupies the 16 LSBs of the register, and the Yvalue occupies the 16 MSBs.
Rs contains the address of the source pixel; Rd contains the address where
the pixel is moved.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

13-209

PIXT Pixel Transfer Instructions

Status Bits

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM [CONTROL.] selects 1 of 3 transparency
options. At reset, the default case for transparency is off. For more information,
refer to Section 12.9, Transparency, on page 12-36.

N Unaffected
C Unaffected
Z Unaffected
V 1 if the pixel lies outside the window and W=1, W=2, or W=3; 0 otherwise.

Unaffected if W=O.

Section 12.3, Single-Pixel Instructions, on page 12-6 provides additional
information about the PIXT instructions.

PIXT examples ----------------------------

Example 1

Example 2

13-210

PIXT AO, *Al

Before After
AO A1 @20500H PSIZE PP T PMASK @20500h

1) OOOOFFFFh 00020500h OOOOh 0001h 00000 0 OOOOh 0001h
1) OOOOFFFFh 00020500h OOOOh 0002h 00000 0 OOOOh 0003h
1) OOOOFFFFh 00020500h OOOOh 0004h 00000 0 OOOOh OOOFh
1) OOOOFFFFh 00020500h OOOOh 0008h 00000 0 OOOOh OOFFh
1) OOOOFFFFh 00020500h OOOOh 0010h 00000 0 OOOOh FFFFh
1) 000OOO06h 00020508h OOOOh 0004h 00000 0 OOOOh 0600h
2) 00000006h 00020508h 0300h 0004h 01010 0 OOOOh 0500h
3) 00000006h 00020508h 0100h 0004h 00001 0 OOOOh OOOOh
4) 00000006h 00020508h 0100h 0004h 00001 0 OOOOh 0100h
5) 00000006h 00020508h OOOOh 0004h 00000 0 AAAAh 0400h

Notes:
1) S replaces D
2) (S XOR D) = 0, replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D is not replaced
5) S replaces unmasked bit of D

Before executing a PIXT instruction, load the implied operand registers with
appropriate values. These PIXT examples use thefollowing implied operand
setup:

Register File B:
DPTCH
OFFSET
WSTART
WEND

00000800h
= OOOOOOOOh
= 00300020h

00500142h

I/O Registers:
CONVDP 0014h

TMS34020 Assembly Language Instruction Set

Example 3

Pixel Transfer

PIXT AO, *Al.XY

Before After
AO A1 @20500H PSIZE PP W T PMASK @20500h

1) OOOOFFFFh 00400500h OOOOh 0001h 00000 00 0 OOOOh 0001h
1) OOOOFFFFh 00400280h OOOOh 0002h 00000 00 0 OOOOh 0003h
1) OOOOFFFFh 00400140h OOOOh 0004h 00000 00 0 OOOOh OOOFh
1) OOOOFFFFh 004000AOh OOOOh 0008h 00000 00 0 OOOOh OOFFh
1) OOOOFFFFh 00400050h OOOOh 0010h 00000 00 0 OOOOh FFFFh
1) 00000006h 00400142h OOOOh 0004h 00000 00 0 OOOOh 0600h
2) 00000006h 00400142h 0300h 0004h 01010 00 0 OOOOh 0500h
3) 00000006h 00400142h 0100h 0004h 00001 00 0 OOOOh OOOOh
4) 00000006h 00400142h 0100h 0004h 00001 00 0 OOOOh 0100h
5) 00000006h 00400142h OOOOh 0004h 00000 00 0 AAAAh 0400h
6) 00000006h 00400142h OOOOh 0004h 00000 00 0 OOOOh 0600h
7) 00000006h 00400143h OOOOh 0004h 00000 00 0 OOOOh OOOOh
8) 00000006h 00400143h OOOOh 0004h 00000 00 0 OOOOh OOOOh

XY Address in A1 = Linear Address 20500h

Notes:
1) 8 replaces D
2) (8 XOR D) = 0, replaces D
3) (8 AND D) = 0, transparency is off, D is replaced
4) (8 + D) = 0, transparency is on, D is not replaced
5) 8 replaces unmasked bit of D
6) Window Option = 3, D inside window, 8 replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in status

register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

Assume that memory contains the following values:

Address Data
@20500h OFFFFh
@20510h 3333h

PIXT *AO,Al

Before After
AO PSIZE PMASK A1
00020500h 0001h OOOOh 00000001h
00020500h 0001h FFFFh OOOOOOOOh
00020500h 0002h OOOOh 00000003h
00020500h 0002h 5555h 00000002h
00020500h 0004h OOOOh OOOOOOOFh
00020510h 0004h 9999h 00000002h
00020500h 0008h OOOOh OOOOOOFFh
00020510h 0008h 5454h 00000023h
00020500h 0010h OOOOh OOOOFFFFh
00020500h 0010h BA98h 00004567h
00020510h 0010h BA98h 00000123h

13-211

• .fixel !!!nsfer Examples

Example 4

13-212

PIXT *AO,*Al

Before After

1)
1)
1)
1)
1)
2)
3)
4)
5)

AO A1 @20500H PSIZE PP T PMASK @20500h 20510h
00020500h 00020508h OOOFh 0001h 00000 o OOOOh 010Fh XXX)(

00020500h 00020508h OOOFh 002h 00000 o OOOOh 030Fh XXX)(

00020500h 00020508h OOOFh 0004h 00000 o OOOOh OFOFh XXX)(

00020500h 00020508h OOEFh 0008h 00000 o OOOOh EFEFh XXX)(

00020500h 00020508h 1234h 0010h 00000 o OOOOh 3434h xx12h
00020500h 00020508h 030Fh 0004h 01010 o OOOOh OCOFh XXX)(

00020500h 00020508h 010Eh 0004h 00001 o OOOOh OOOEh XXX)(

00020500h 00020508h 020Eh 0004h 00001 o OOOOh 020Eh XXX)(

000020500hOO020508h OOOFh 0004h 00000 o AAAAh 050Fh XXX)(

Notes:
1) 8 replaces D
2) (8 XOR D) replaces D
3) (8 AND D) = 0, transparency is off, D is replaced
4) (8 + D) = 0, transparency in on, D not replaced
5) 8 replaces unmasked bits of D

These PIXT examples use the following implied operand setup.

Register File B: I/O Registers:
DPTCH =800h CONVSP = 0014h
OFFSET =OOOOOOOOh

Assume that memory address @20500h contains CF3Fh before instruction
execution.

PIXT *AO.XY,Al

~ Arm
AO PSIZE PMASK A1
00400500h 0001h OOpOh 00000001h
00400500h 0001h FFFFh OOOOOOOOh
00400280h 0002h OOOOh 0OOOOO03h
0400280h 0002h AAAAh 0000OO01h
00400140h 0004h OOOOh OOOOOOOFh
00400140h 0OO4h 9999h 000OOO06h
004000AOh 0008h OOOOh 0OOOO03Fh
004000AOh 0008h 8989h 0OOOO036h
00400050h 0010h OOOOh OOOOCFCFh
00400050h 0010h 7310h 00008C2F

Note:

The XV addresses stored in register A 1 in these examples translate to the lin­
ear memory address 20500h. The pitch of the line source was not changed
for any of these examples

TMS34020 Assembly Language Instruction Set

Pixel Transfer Examples
_.#~:;'<-"J;,<.~·W;tlt~l'¥~~ ~ll':'~~=~~~~~~~~~w,.m'~m~ .. ~~~~_m~~

ExampleS These PIXT examples use the following implied operand setup.

Register File B: I/O Registers:
SPTCH = 800h CONVSP 0014h
DPTCH 800h CONVDP 0014h
OFFSET OOOOOOOOh
WSTART = 00300020h
WEND 00500142h

PIXT *AO.XY,*Al.XY

Before After

1)
1)
1)
1)
1)
2)
3)
4)
5)
6)
7)
8)

AO A1 @20500H PSIZE PP W T PMASK @20500h @20510h
00400500h 00400508h OOOFh 0001h 00000 00 0 OOOOh 010Fh xxxx
00400280h 00400284h OOOFh 0002h 00000 00 0 OOOOh 030Fh xxxx
00400140h 0400142h OOOFh 0004h 00000 00 0 OOOOh OFOFh xxxx
004000AOh 004000A1h OOOFh 0008h 00000 00 0 OOOOh EFEFh xxxx
0040005Fh 00400051h OOEFh 0010h 00000 00 0 OOOOh CDEFh CDEFh
00400050h 00400142h 0306h 0004h 01010 00 0 OOOOh 0506h xxxx
00400140h 00400142h 0106h 0004h 00001 00 0 OOOOh 0006h xxxx
00400140h 00400142h 0106h 0004h 10001 00 0 OOOOh 0106h xxxx
00400140h 00400142h 0006h 0004h 00001 00 0 OOOOh 0406h xxxx
00400140h 00400142h 0006h 0004h 00000 11 0 AAAAh 0606h xxxx
00400140h 00400142h 0006h 0004h 00000 11 0 OOOOh 0006h xxxx
00400140h 00400143h 0006h 0004h 00000 10 0 OOOOh 0006h xxxxy

XY Address in A 1 = Linear Address 20500h

Notes:
1) 8 replaces D
2) (8 XOR D) replaces D
3) (8 AND D) = 0, transparency is off, D is replaced
4) (8 + D) = 0, transparency in on, D not replaced
5) 8 replaces unmasked bits of D
6) Window Option = 3, D inside window, 8 replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in status

register
8) Window Option = 2, D outside window, D not replaced, WV interrupt gener­

ated, V bit set in status register

13-213

POPST !:2P Status Register from Stack

Syntax

Execution

Instruction Words

Description

POPST

*SP+ --+ ST

15 14 13 12 11 10 9 8 7 6 5 432 o
I 0 I 0 I 0 I 0 I 0 I 0 I 0 o 0 000 o

POPST pops the status register from the stack and increments the SP by 32
after the status register is removed from the stack.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

Examples

13-214

For more information, refer to Section 4.1, The Status Register, on page 4-2.

6 if the SP is aligned
7 if the SP is not aligned

All bits are restored.

Assume that memory contains the following values before instruction execu­
tion:

Address Data
OFFOOOOOh 0010h
OFFOOO10h COOOh

~ Before After
SP ST SP

POPST OFFOOOOOh COOOOO10h OFFOOO20h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

PUSHST

ST - -*SP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 0 o 0 o o o o o o o o

PUSHST writes the status register contents to the address contained in the
SP-32.

Note: Shaded portions are reserved.

Machine States

Status Bits

Example

For more information, refer to Section 4.1, The Status Register, on page 4-2.

2 (1) if the SP is aligned
2 (2) if the SP is not aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before
SP

PUSHST OFF00020h
ST
C0000010h

After
SP
OFFOOOOOh

Memory contains the following values after instruction execution:

Address
OFF00010h
OFF00020h

Data
0010h
COOOh

13-215

Syntax PUTST Rs

Execution Rs ->0 ST

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
001010101010 o R Rd

Description PUTST copies the contents of the specified register into the status register.

Note: Shaded portions are reserved.

Machine States

Status Bits

Example

13-216

For more information, refer to Section 4.1, The Status Register, on page 4-2.

3

N Set from bit 31 of Rs
C Set from bit 30 of Rs
Z Set from bit 29 of Rs
V Set from bit 28 of Rs

Code Before
AO

PUTST AO C0000010h

After
ST ST
xxxxxxxxh C0000010h

TMS34 020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Interrupts

Return from Interrupt RETI

RETI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111010111011101010101010
RETI returns to an interrupted routine from an interrupt service routine. The
instruction restores the ST and PC to their original values that were stored on
the system stack.

The stack is located in external memory and the top is indicated by the stack
pOinter (SP). The stack grows in the direction of decreasing linear address. The
ST and PC are popped from the stack and the SP is incremented by 32 after
each register is removed from the stack.

Note:

RETI checks the IX (instruction execution) and SF (bus fault) bits in the
restored ST register. If IX or SF is set, the RETI expects to find the internal
register values that define the state of the TMS34020 on the stack along with
the ST and PC.

If this is the case, the RETI restores the additional register values that were
pushed on the stack and clears the IX and SF bits in the restored ST value.

The CONTROL register and any S-file registers modified by an interrupt
routine should be restored before RETI is executed. Otherwise, interrupted
instructions may not resume execution correctly.

52 if SF status bit = 1
38 if IX status bit = 1
else 7

N Copy of corresponding ,bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

If the IE bit in the restored STisa 1, interrupts are enabled bythetimethe RETI
instruction finishes executing. If an interrupt request is active during the last
state ofthe RETI instruction, and the interrupt is enabled in the INTENS regis­
ter, the interrupt will be taken immediately following the RETI. If the source of
the interrupt is not cleared automatically, the interrupt service routine should
take steps to clear the source of the interrupt. If this is not done, the interrupt
will be serviced repeatedly. Sections 6.7, External Interrupts, on page 6-15,

13-217

fl ETI Return from Interrupt

Examples

13-218

6.8, Internal Interrupts, on page 6-16, and 6.9, The Bus Fault Interrupt, on page
6-19 discuss each interrupt and the details for clearing the source of the inter­
rupt.

Assume that memory contains the following values before instruction execu­
tion:

Address
CCCOOOOh
CCCOO10h
CCCOO20h
CCCOO30h

~~
SP

Data
0010h
COOOh
FFFOh
0044h

RETI CCCOOOOh

An.!t!:
ST
C0000010h

PC
0044FFFOh

SP
CCC0040h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Return From Monitor R ETM

RETM

15 14 13 12 11 10 9 8 7 6 543 2 0

o I 1 1 0 I 0 o I 0 I 0

RETM is used at the end of a single step trap routine. RETM acts similar to
RETI, but RETM forces the next instruction from the interrupted program to be
read directly from memory, that is, it is not read from the cache. The fetched
instruction is executed and the single step trap is then taken again; this
sequence repeats.

Note:

RETM uses the cache read mechanism to access the next instruction in the
interrupted code. When the single-step bit (bit 22 in ST) is set the cache fills
are blocked, so if the next instruction in the interrupted code is not already in
cache when RETM is executed, then the single step trap will be taken repeat­
edly without executing any of the main program opcodes. This makes RETM
unsuitable for terminating single-step traps.

52 if SF status bit = 1
38 if IX status bit = 1
else 10

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

Assume that memory contains the following values before instruction execu­
tion:

Address
CCCOOOOh

CCC0010h
CCC0020h

CCC0030h

Code Before
SP

Data
0010h

COOOh
FFFOh

0044h

RETM CCCOOOOh

After
ST
C0000010h

PC
0044FFFOh

SP
CCC0040h

13-219

Syntax

Execution

Instruction Words

Description

RETS [N]

*SP --+ PC (N defaults to 0)
SP + 32 + 16N --+ SP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

RETS returns from a subroutine by popping the program counter from the
stack and incrementing the stack pOinter.

The parameter N is a value in the range of 0 to 31; it specifies the number of
words by which the stack pointer SP is incremented after the return address
is popped from the system stack. N is optional; if the value of N is not specified
explicitly, the assembler sets it to the default value of O.

Following completion of the RETS instruction, execution continues at the
address pointed to by the PC popped from the stack.

Machine States 5

Status Bits

Examples

13-220

6 if the stack isn't aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction execu­
tion:

Address Data
OFFOOOOOh OFFFOh
OFFOO010h 0001h

~ Before After
SP PC SP

RETS OFFOOOOOh 0001FFFOh OFFOO020h
RETS 1 OFFOOOOOh 0001FFFOh OFFOOO30h
RETS 2 OFFOOOOOh 0OO1FFFOh OFFOOO40h
RETS 16 OFFOOOOOh 0001FFFOh OFF00120h
RETS 31 OFFOOOOOh 0001FFFOh OFF00210h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Store Revision Number in Register REV

REV Rd

revision number - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 R Rd

REV stores the number which uniquely identifies the revision of silicon in the
destination register. The format of the REV number is:

bits 0-2 silicon revision number

bit 3 = 1 if TMS34010 (if bit 3 = 0, then TMS34020; bits 3 and 4
cannot both be 1)

bit 4 = 1 if TMS34020 (if bit 4 = 0, then TMS3401 0; bits 3 and 4
cannot both be 1))

bits 5-15 reserved for future generation parts

bits 16--23 spin-ofts

bits 24-31 reserved

1

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

REV AD

Before

After

After

AO = FFFFFFFF

AO = 00000010 (TMS34020 revision 1.0)

AO = 00000011 (TMS34020 revision 2.0)

13-221

RL Rotate Left, Constant

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-222

RL constant, Rd

left-rotate Rd by constant - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 1 I 0 I 0 I constant R Rd

RL rotates the contents of the destination register left by the specifed number
of bits. RL performs a circular left shift that moves each bit shifted out the MSB
of the register into the register's LSB. The rotate count is specified as a value
in the range 0 to 31 and is stored in the 5-bit constant field of the RL instruction
word.

The assembler only accepts absolute expressions for the rotate count. If the
specified rotation value is greater than 31, the assembler issues a warning and
sets the constant to its 5 LSBs.

The carry bit is set to the value of the last bit that is shifted out of the MSB (this
value is the same as the final value of the LSB). You can use a rotate count of
o to clear the carry and test a register for 0 simultaneously.

1

N Unaffected
C Set to value of bit [32 - constant], 0 for rotate count of constant = 0
Z 1 if result is 0, 0 otherwise
V Unaffected

Code Before After
A1 NCZV A1

RL O,Al OOOOOOOFh x 00 x OOOOOOOFh
RL 1,Al FOOOOOOOh x 1 0 x EOOOOOO1h
RL 4,Al FOOOOOOOh x 1 0 x OOOOOOOFh
RL 5,Al FOOOOOOOh x 00 x 0OOOOO1Eh
RL 30,Al FOOOOOOOh x 1 0 x 3COOOOOOh
RL 5,Al OOOOOOOOh x 0 1 x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

RL Rs, Rd

left-rotate Rd by 5 LSBs of Rs ->0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 0 I 1 I 0 I 0 I Rs R Rd

RL rotates the contents of the destination register left by the number of bits
specified in the source register. RL performs a circular left shift that moves
each bit shifted out of the MSB of the register into the register's LSB. The rotate
count is specified as a value in the range 0 to 31 and is taken from the 5 LSBs
of the source register; the 27 MSBs of the source register are ignored.

The carry bit is set to the value of the last bit that is shifted out of the MSB (this
value is the same as the final value of the LSB). You can use a rotate count to
o to clear the carry and text Rd for 0 simultaneously.

Rs and Rd must be in the same register file.

N Unaffected
C Set to value of bit [32 - Rs], 0 for rotate count of 0
Z 1 if result is 0, 0 otherwise
V Unaffected

Code Before After
5 LSBs AO A1 NCZV A1

RL AD,AI 00000 OOOOOOOFh x a Ox OOOOOOOFh
RL AD,AI 00100 FOOOOOOOh x 1 a x OOOOOOOFh
RL AD,AI a a 1 01 FOOOOOOOh x a a x 0000001Eh
RL AD,AI 1 1 111 FOOOOOOOh x 0 Ox 78000000h
RL AD,AI xxxxx OOOOOOOOh x a 1 x OOOOOOOOh

13-223

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-224

RMO Rs, Rd

bit number of rightmost 1 in Rs - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 1 I 1 I 0 I 1 I Rs R Rd

The RMO instruction locates the rightmost (least significant) 1 in the source
register. It then loads the bit number of the rightmost 1 bit into the destination
register. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the LSB (rightmost). If
there are no 1 bits in the source register, then the destination result is 0 and
status bit Z is set.

The rightmost 1 in the source register can be right-justified by following the
RMO instruction with RL Rs, Rd instruction, where Rs is the destination regis­
ter of the RMO instruction and Rd is the source register.

The source and destination registers must be in the same register.

N Unaffected
C Unaffected
Z 1 if the source register contents are 0, 0 otherwise.
V Unaffected

~ Before After
AO NCZV A1

RMO AO,Al OOOOOOOOh xx1x OOOOOOOOh
RMO AO,Al 0OOOOOO1h xxOx OOOOOOOOh
RMO AO,Al 0OOOOO10h xxOx 0OOOOOO4h
RMO AO,Al 08000000h xxOx 0OOOOO1Bh
RMO AO,Al 80000000h xxOx 0OOOOO1Fh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

RPIX Rd

Rdnew = Rdold

LS pixel replicated (32) 5 times
PSIZE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 0 I R Rd

RPIX replicates the pixel value in the specified destination register. Prior to
executing the instruction, you should right-justifiy the value in Rd. The pixel
size is specified by PSIZE and must be 1, 2, 4, 8, 16, or 32 bits. Immediately
following completion of the instruction, the pixel value will have been replicated
throughout the 32 bits of the register.

Given a pixel size of n bits, the replication operation replaces the original pixel
value with 32/n copies of the pixel. The replication process overwrites the 32-n
bits to the left of the original pixel. For more information, refer to Section 12.6,
Auxiliary Graphics Instructions, on page 12-17.

Address Name Description and Elements (Bits)

C0000150h PSIZE Pixel size (1,2,4,8,16,32)

2
4
5
6
7
8

if PSIZE = 32
if if PSIZE = 16
if PSIZE = 8
if PSIZE = 4
if PSIZE = 2
if PSIZE = 1

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

RPXL AO
PSIZE = 8 Before AO = XXXXXX34

After AO = 3434343434

RPXL B8

PSIZE = 4 Before 88 = XXXXXXXA
After 88 = AAAAAAAA

Cycles = 5

Cycles = 6

13-225

Syntax

Execution

Instruction Words

Description

SETC

1-C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 0 001 1 0 1 0 0 o 0 o

SETC sets the carry bit (C) in the status register to 1. The rest of the status reg­
ister is unaffected.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

13-226

This instruction is useful for returning a true/false value (in the carry bit) from
a subroutine without using a general-purpose register.

1

N Unaffected
C 1
Z Unaffected
V Unaffected

Code Before After
ST NCZV ST NCZV

SETC OOOOOOOOh 0000 40000000h 0100
SETC BOOOO010h 1 01 1 FOOOO010h 1 111
SETC 4000001Fh 0100 4000001Fh 0100

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

Set CONVDP SETCDP

SETCDP

Destination pitch conversion factor -- CONVDP

15 14 13 12 11 10 9 8 7 6 5 4 320

SETCDP loads the CONVDP register with the appropriate value used in XY
to linear conversion based on the DPTCH register.

Remember to execute MWAIT after SETCDP to ensure that the CONVDP reg­
ister has been set before using its value in a CVXYL or similar instruction. For
more information, refer to Section 12.11, Setting up the Implied Operands for
Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)

83 DPTCH (linear) Destination array pitch

C0000140h CONVDP Destination pitch conversion register

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before:
After:

Before:
After:

Before:
After:

Before:
After:

B3 = 00001 OOOh (512 x 8)
C0000140 = 0013h

B3 = 00000400h (128 x 8)
C0000140 = 0015h

B3 = 00001400h (640 x 8)
C0000140 = 1513h

B3 = 00000019h (25 x 1)
C0000140 = OOOOh

13-227

SETCMP Set CONVMP
~,,<!~_'K ~ ~~R_",_~:::'?II'f

Syntax SETCMP

Execution Mask pitch conversion factor - CONVMP

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

13-228

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
1 I 1 o I 1

SETCMP loads the CONVMP register with the appropriate value used in XV
to linear conversion based on the M PTCH register.

Remember to execute MWAIT after SETCMP to ensure that the CONVMP reg­
ister has been set before using its value in a CVMXVL or similar instruction.
For more information, refer to Section 12.11, Setting up the Implied Operands
for Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)

811 MPTCH (linear) Mask array pitch

C0000180h CONVMP Mask pitch conversion register

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before: B3 = 00001000 (512 x 8)
After: C0000180 = 0013

Before: B3 = 00000400 (128 x 8)
After: C0000180 = 0015

Before: 83 = 00001400 (640 x 8)
After: C0000180 = 1513

Before: B3 = 00000019 (25 x 1)
After: C0000180 = 0000

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

SETCSP

Source pitch conversion factor - CONVSP

15 14 13 12 11 10 9 8 7 6 5 4 320

SETCSP loads the CONVSP register with the appropriate value used in XY
to linear conversion based on the SPTCH register.

Remember to execute MWAIT after SETCSP to ensure that the CONVSP
register has been set before using its value in a CVSXYL or similar instruction.
For more information, refer to Section 12.11, Setting up the Implied Operands
for Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)

B1 SPTCH (linear) Source array pitch

C0000130h CONVSP Source pitch conversion register

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before: B3 = 00001000 (512 x 8)
After: C0000130 = 0013

Before: B3 = 00000400 (128 x 8)
After: C0000130 = 0015

Before: B3 = 00001400 (640 x 8)
After: C0000130 = 1513

Before: B3 = 00000019 (25 x 1)
After: C0000130 = 0000

13-229

SETF Set Field Parameters
r:::::l mO$M_~r ~~l':'I

Syntax SETF FS, FE [, F]

Execution

Instruction Words

Description

FS, FE - ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 0 I 0 I 0 I 0 I 1 I F I 1 I 0 I 1 I FE I FS

SETF loads specified field size (FS) and field extension (FE) values into the
status register; depending on the value of the F parameter, this information
sets the field size and extension for either field 0 or field 1. (The remainder of
the status register is not affected.)

Note: Shaded portions are reserved.

Machine States

Status Bits

For more information, refer to Section 4.1, The Status Register, on page 4-2.

!J The FS parameter is a value between 1 and 32; it selects the field size.
(Note that an FS value of 0 in the opcode corresponds to an actual selected
field size of 32.)

!J The FE parameter is a value of 0 or 1 :

FE=O selects zero-extension for a field.
FE=1 selects sign-extension for a field.

!J The F parameter is optional; the default value for F is O. The Fvalue deter­
mines whether the SETF instruction sets the field size and extension for
field 0 or for field 1.

F=O selects FSO, FEO to be altered.
F=1 selects FS1, FE1 to be altered.

Each MOVE instruction also has an F parameter that selects the field size and
extension of either field 0 or field 1 for the individual move. You can use the
SETF instruction to prepare for MOVE instructions.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

13-230 TMS34020 Assembly Language Instruction Set

Set Field Parameters SETF .
Examples Code Before After

ST ST
SETF 32,0,0 xxxxxOOOh xxxxxOOOh
SETF 32,1,0 xxxxxOOOh xxxxx020h
SETF 31,1,0 xxxxxOOOh xxxxxQ3Fh
SETF 16,0,0 xxxxxOOOh xxxxx010h
SETF 32,0,1 xxxxxOOOh xxxxxOOOh
SETF 32,1,1 xxxxxOOOh xxxxx800h
SETF 31,1,1 xxxxxOOOh xxxxxFCOh
SETF 16,0,1 xxxxxOOOh xxxxx400h

13-231

SEXT Sign-Extend to Lonfl.

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-232

SEXT Rd [, F]

field in Rd -+ sign-extended field Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 1 I F I 1 I 0 I 0 I 0 I R Rd

SEXT sign-extends the right-justified field contained in the destination register
by copying the MSB of the field data into all the nonfield bits of the destination
register. The size of the field is determined by the current field size. The
optional F parameter, which must be specified as a 0 or a 1, selects the field
size:

F=O selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is O.

2

N 1 if the result is negative, 0 otherwise
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before
FSO/1 AO

SEXT AO,O 17/x 0OOO8000h
SEXT AO,O 16/x 0OOO8000h
SEXT AO,O 15/x 0OOO8000h
SEXT AO,l x/17 0OOO8000h
SEXT AO,l x/16 0OOO8000h
SEXT AO,l x/15 0OOO8000h

After
NCZV
OxOx
1xOx
Ox1x
OxOx
1xOx
Ox1x

AO
0OOO8000h
FFFF8000h
OOOOOOOOh
0OOO8000h
FFFF8000h
OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Shift Left Arithmetic, Constant SLA
~~;#"""wA0:-~;::.~~m:~=,~'>:·~~~;.<:'::mV"««:;:;::'~=~:.>"R;~=~<""=":::'<:""':«~:;'-@~~::;.:;l';I':"'''<:<(.;"~~~_'X-""'~"'«'~"'~"X».';:;l;m>:i:'~<,:«'=:~:«,=Mo:<::~wm'»<~~ml;<:;;;:<:'~,~~O:<:{-:':""<:~~~=~..;>l>M:~~~~~~~j:;W;;R@=<@~;~W=~,>:~~

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SLA constant, Rd

left-shift Rd by constant ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 0 I 0 I 0 I constant R Rd

SLA left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant; this is a value between
o and 31.

As shown in the diagram, Os are shifted into the LSBs. The last bit shifted out
of the destination register (the original value of bit [32 - constant]) is shifted into
the carry bit. If either the new sign bit (N) or any of the bits shifted out of the
register differ from the original sign bit, the overflow bit (V) is set.

The assembler accepts only absolute expressions forthe shift count. Ifthe shift
count is greater than 31, the assembler issues a warning and sets the constant
to its 5 LSBs.

Note that SLA executes slower than SLL because it provides overflow detec­
tion.

3

N 1 if the result is negative, a otherwise
C Set to the value of bit [32 - constant], a for shift count of 0
Z 1 if a 0 result generated, a otherwise
V 1 if the MSB changes during shift operation, a otherwise

Code Before After
A1 A1 NCZV

SLA o ,AI 33333333h 33333333h 0000
SLA o ,AI CCCCCCCCh CCCCCCCh 1000
SLA 1,Al CCCCCCCCh 99999998h 1 1 00
SLA 2,Al 33333333h CCCCCCCCh 1 001
SLA 2,Al CCCCCCCCh 33333330h 01 01
SLA 3,Al CCCCCCCCh 66666660h 0001
SLA S,AI CCCCCCCCh 99999980h 1 1 01
SLA 30,AI CCCCCCCCh o OOOOOOOh 01 1 1
SLA 3l,AI CCCCCCCCh o OOOOOOOh 001 1
SLA 3l,Al OOOOOOOOh o OOOOOOOh 0010

13-233

Syntax

Execution

Instruction Words

Description

SLA Rs, Rd

left-shift Rd by 5 LSBs of Rs ~ Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2 1 D

I D I 1 I 1 I D I D I D I D I Rs R Rd

SLA left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count from 0 to 31.

The last bit shifted out of the destination register (the original value of bit
[32-Rs]) is shifted into the carry bit. If either the new sign bit (N) or any of the
bits shifted out of the register differ from the original sign bit, the overflow bit
01) is set.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

13-234

Note that SLA executes slower than SLL because it provides overflow detec­
tion.

3

N 1 if the result is negative, 0 otherwise
C Set to the value of [32 - Rs], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V 1 if the MSB changes during shift operation, 0 otherwise

Code Before After
5 LSBs AO A1 A1 NCZV

SLA AD,AI 00000 33333333h 33333333h 0000
SLA AD,AI 00000 CCCCCCCCh CCCCCCC Ch 1000
SLA AD,AI 00001 CCCCCCCCh 99999998h 1100
SLA AD,AI 00010 33333333h CCCCCCCCh 1 001
SLA AD,AI 00010 CCCCCCCCh 33333330h 0101
SLA AD,AI 00011 CCCCCCCCh 66666660h 0001
SLA AD,AI 00101 CCCCCCCCh 99999980h 1 1 01
SLA AD,AI 11110 CCCCCCCCh o OOOOOOOh 011 1
SLA AD,AI 11111 CCCCCCCCh o OOOOOOOh 001 1
SLA AD,AI 11111 o OOOOOOOh o OOOOOOOh 0010

TMS34020 Assembly Language Instruction Set

Shift Left Logical, Constant SLL
,o/.Y»:.;.-mm>,~,,,,<~:~,,~.~.;i~~,,,,':':"'~«$:'>r>.4=~·»!OM>m,>~:@:<»>~~,~~·>~m""·~MW;:':.l-=·r.;'~'':::;;:I';w.;v-.w"m~,)'':''>!~~","':'»>'''>'2'~<!':'»~:~~''::::;;~~)':<'»Wi''»>>>S""">?i>*>"~~;::»l<'=~.wl==-w.-~~=~~~=~=~~)~,r~~m

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SLL constant, Rd

left-shift Rd by constant ~ Rd

15 14 13 12 11 1a 9 8 7 6 5 4 3 2 1 a

I a I a I 1 I a I a I 1 I constant R Rd

SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant, which is a value between
o and 31.

The last bit shifted out of the destination register (the original value of bit [32
- constant]) is shifted into the carry bit. Os are shifted into the LSBs. This
instruction differs from the SLA instruction only in its effect on the overflow 01)
bit.

The assembler only accepts absolute expressions for the shift count. If the
specified shift count is greater than 31, the assembler issues a warning and
sets the constants to its 5 LSBs.

N Unaffected
C set to the value of bit [32 - constant], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
A1 A1 NCZV

SLL o ,AI OOOOOOOOh OOOOOOOOh x 01 X

SLL a,AI 88888888h 88888888h xOOx
SLL I,AI 88888888h 11111110h x10x
SLL 4,AI 88888888h 88888880h xOOx
SLL 30,AI FFFFFFFCh OOOOOOOOh x 1 1 x
SLL 31,AI FFFFFFFCh OOOOOOOOh x01x

13-235

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-236

SLL Rs, Rd

left-shift Rd by 5 LSBs of Rs -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 0 I 0 I 0 I 1 I Rs R Rd

SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count between 0 and 31.

The last bit shifted out of the destination register (the original value of bit [32
- Rs]) is shifted into the carry bit. Os are shifted into the LSBs. This instruction
differs from the SLA instruction only in its effect on the overflow M bit.

C 31 D----~-- _.,.::..:.--;-, ----"----'---~4 ~~
...• MSB .. ' ". ·.··.i\{SB:.'.;·.>

Rs and Rd must be in the same register file.

1

N Unaffected
C set to the value of bit [32 - Rs], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ ~ After
5 LSBs AO A1 A1

SLL AO,AI 00000 OOOOOOOOh OOOOOOOOh
SLL AO,AI ·00000 88888888h 88888888h
SLL AO,AI 00001 88888888h 11111110h
SLL AO,AI 00100 88888888h 88888880h
SLL AO,AI 11110 FFFFFFFCh OOOOOOOOh
SLL AO,AI 11111 FFFFFFFCh OOOOOOOOh

NCZV
x01x
xOOx
x10x
xOOx
x 11 x
x01x

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SRA constant, Rd

right-shift Rd by constant -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 0 I 1 I 0 I 25 complement of constant R Rd

SRA right-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by constant which is a 5-bit immediate value;
this produces a shift count of 0 to 31.

The last bit shifted out of the destination register (the original value of
[constant-1]) is shifted into the carry bit. The sign bit (MSB) is extended into
the MSBs.

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning,
takes the 2s complement of the constant and places it in the opcode.

1

N 1 if the result is negative, 0 otherwise
C Set to the value of [constant - 1], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ Before After
A1 A1 NCZV

SRA D,AI OOOOOOOOh OOOOOOOOh 001x
SRA D,AI FFFFOOOOh FFFFOOOOh 100x
SRA B ,AI 7FFFOOOOh 007FFFOOh OOOx
SRA B,AI FFFFOOOOh FFFFFFOOh 100x
SRA 3D,AI 7FFFOOOOh 0OOOOOO1h 010x
SRA 31,AI 7FFFOOOOh OOOOOOOOh 01 1 X

SRA 31,AI FFFFOOOOh FFFFFFFFh 1 1 0 x

13-237

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-238

SRA Rs,Rd

right-shift Rd by 2s complement of 5 LSBs in Rs ->- Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2 D

Rs I R I Rd

SRA right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the 2s complement-of the 5 LSBs of
Rs (the 27 MSBs of Rs are ignored); this produces a shift count between a and
31.

The last bit shifted out of the destination register (the original value of bit
[shift amount - 1]) is shifted into the carry bit. The sign bit (MSB) is extended
into the MSBs.

N 1 if the result is negative, 0 otherwise
C Set to the value of bit [shift amount - 1], 0 for shift count of a
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
5 LSBs AO A1 A1 NCZV

SRA AO,A! 00000 OOOOOOOOh OOOOOOOOh 001x
SRA AD,A! 00000 FFFFOOOOh FFFFOOOOh 100x
SRA AO,A! 11111 7FFFOOOOh 3FFF8000h OOOx
SRA AD,A! 11111 FFFFOOOOh FFFF8000h 100x
SRA AD,A! 11000 7FFFOOOOh 007FFFOOh OOOx
SRA AO,A! 11000 FFFFOOOOh FFFFFFOOh 100x
SRA AD,A! 00010 7FFFOOOOh 00000001h 010x
SRA AO,A! 00001 7FFFOOOOh OOOOOOOOh 01 1 X

SRA AO,A! 00001 FFFFOOOOh FFFFFFFFh 1 1 0 x

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SRL constant, Rd

right-shift Rd by constant - Rd

15 14 13 12 11 10 9 8 7 6 5· 4 3 2 o
I 0 I 0 I 1 I 0 I 1 I 1 I 2s complement of constant R Rd

SRL right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the constant which is a 5-bit immediate
value; this produces a shift count between 0 and 31.

The last bit shifted out of the destination register (the original value of
[constant-1]) is shifted into the carry bit. Os are shifted into the MSBs.

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning,
takes the 2s complement of the constant and places it in the opcode.

1

N Unaffected
C Set to the value of [constant -1],0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ Before After
Ai Ai NCZV

SRL o ,AI OOOOOOOOh OOOOOOOOh xOix
SRL O,Al 7FFFFFFFh 7FFFFFFFh xOOx
SRL 1,Al 7FFFFFFFh 3FFFFFFFh x10x
SRL 8,Al 7FFFOOOOh 007FFFOOh xOOx
SRL 30,Al 7FFFOOOOh 0OOOOOO1h x10x
SRL 3l,Al 7FFFOOOOh OOOOOOOOh xi 1 X

SRL 3l,Al 3FFFOOOOh OOOOOOOOh x01x

13-239

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-240

SRL Rs, Rd

right-shift Rd by 2s complement of 5 LSBs in Rs -+ Rd

15 14 13 12 11 1D 9 8 76543 2 D

Rs I R I Rd

SRL right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the 2s complement of the 5 LSBs of
Rs (the 27 MSBs of Rs are ignored); this produces a shift value of 0 to 31.

The last bit shifted out of the destination register (the original value of bit
[shift amount - 1]) is shifted into the carry bit. Os are shifted into the MSBs.

N Unaffected
C Set to the value of bit [shift amount -1],0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
5 LSBs AO A1 A1 NCZV

SRL AD,AI 00000 OOOOOOOOh OOOOOOOOh x01x
SRL AO,AI 00000 7FFFFFFFh 7FFFFFFFh xOOx
SRL AD,AI 11111 7FFFFFFFh 3FFFFFFFh x10x
SRL AD,AI 11000 7FFFOOOOh 007FFFOOh xOOx
SRL AD,AI 00010 7FFFOOOOh 00000001h x10x
SRL AD,AI 00001 7FFFOOOOh OOOOOOOOh x 1 1 X

SRL AD,AI 00001 3FFFOOOOh OOOOOOOOh x01x

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SUB Rs, Rd

Rd - Rs -'" Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I 1 I 0 I Rs R Rd

SUB subtracts the contents of the source register from the contents of the
destination register and stores the result in the destination register.

You can accomplish multiple-precision arithmetic by using SUB in conjunction
with the SUBB instruction.

Rs and Rd must be in the same register file.

1

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO A1 NCZV AO

SUB Al,AO 7FFFFFF2h 7FFFFFF1h 0000 00000001h
SUB Al,AO 7FFFFFF2h 7FFFFFF2h 0010 OOOOOOOOh
SUB Al,AO 7FFFFFF1h 7FFFFFF2h 1 1 a a FFFFFFFFh
SUB Al,AO 7FFFFFF1h FFFFFFFFh 0100 7FFFFFF2h
SUB Al,AO 7FFFFFFFh FFFFFFFFh 1 1 01 80000000h

I

SUB Al,AO FFFFFFFDh FFFFFFFFh 1 1 a a FFFFFFFEh
SUB Al,AO FFFFFFFDh FFFFFFFDh 0010 OOOOOOOOh
SUB Al,AO FFFFFFFEh FFFFFFFDh 0000 00000001h
SUB Al,AO FFFFFFFFh 0000OO01h 1000 FFFFFFFEh
SUB Al,AO 80000000h 00000001h 0001 7FFFFFFFh

13-241

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-242

SUBB Rs, Rd

Rd - Rs - C ~ Rd (the carry bit acts as a borrow)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I 1 I 1 I Rs R Rd

SUBB subtracts both the contents of the source register and the carry bit from
the contents of the destination register, and stores the result in the destination
register.

You can use this instruction with the SUB, SUBK, and SUBI instructions for
extended-precision arithmetic.

Rs and Rd must be in the same register file.

N 1 if the result is negative, a otherwise
C 1 if there is a borrow, a otherwise
Z 1 if the result is 0, a otherwise
V 1 if there is an overflow, a otherwise

Code Before After
C AD A1 NCZV AD

SUBB AI,AO a 00000002h 00000001h 0000 00000001h
SUBB AI,AO 1 00000002h 00000001h 0010 OOOOOOOOh
SUBB AI,AO a 00000002h 00000002h 0010 OOOOOOOOh
SUBB AI,AO 00000002h 00000002h 1 1 0 a FFFFFFFFh
SUBB AI,AO a 00000002h 00000003h 1 1 a a FFFFFFFFh
SUBB AI,AO a 7FFFFFFEh FFFFFFFFh 0100 7FFFFFFFh
SUBB AI,AO a 7FFFFFFEh FFFFFFFEh 1 1 01 80000000h
SUBB AI,AO 7FFFFFFEh FFFFFFFEh 0100 7FFFFFFFh
SUBB AI,AO a FFFFFFFEh FFFFFFFFh 1 100 FFFFFFFFh
SUBB AI,AO a FFFFFFFEh FFFFFFFEh 0010 OOOOOOOOh
SUBB AI,AO 1 FFFFFFFEh FFFFFFFEh 1 1 a a FFFFFFFFh
SUBB AI,AO 0 FFFFFFFEh FFFFFFFDh 0000 00000001h
SUBB AI,AO 1 FFFFFFFEh FFFFFFFDh 0010 OOOOOOOOh
SUBB AI,AO a 80000001h 00000001h 1000 80000000h
SUBB AI,AO 80000001h 00000001h 0001 7FFFFFFFh
SUBB AI,AO 0 80000001h 00000002h 0001 7FFFFFFFh

TMS34020 Assembly Language Instruction Set

Subtract Immediate, 16 Bits SUBI
"~~'l$;:<!l;'>~<:~;:;;;'~""lo>:<·~,!;:"""~",;:~w-,::«<~,,<,m<~:,;,,<,:No:@"'''-:;:~~~""~<=':;"'<!<"":l"';'~>=:.r...,«~~~:>~~~~~!{~~~,,":::,~=~;:«,,;:;=,":i:'~~~:~_=~::::;~~~="'~_~_~_~ __ ~

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SUBI IW, Rd [, W]

Rd -IW --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 1 I 1 I R I Rd

1 s complement of IW

SUBI subtracts a sign-extended, 16-bit immediate value from the contents of
the destination register, and stores the result in the destination register. (The
IL in the syntax represents a sign-extended, 16-bit immediate value.)

The assembler uses this form of the SUBI instruction if the immediate value
was previously defined and is in the range -32,768 to 32,767. You can force
the assembler to use the short form by following the register operand with ,W:

SUBI IW, Rd, w

The assembler truncates any upper bits and issues an appropriate warning
message. You can accomplish multiple-precision arithmetic by using SUBI in
conjunction with the SUBB instruction.

2

N 1 if the result is negative, 0 otherwise

C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO AO NCZV

SUBI 32765,AO 0OO07FFEh 0OOOOO01h 0000
SUBI 32766,AO 00007FFEh OOOOOOOOh 0010
SUBI 32767,AO 0OO07FFEh FFFFFFFFh 1 1 00
SUBI 32766,AO 80007FFEh 80000000h 1000
SUBI 32767,AO 80007FFEh 7FFFFFFFh 0001
SUBI -32766,AO FFFF8001h FFFFFFFFh 1 1 00
SUBI -32767,AO FFFF8001h OOOOOOOOh 0010
SUBI -3276B,AO FFFF8001h 0OOOOO01h 0000
SUBI -32767,AO FFFF8000h 7FFFFFFFh 0100
SUBI -3276B,AO 7FFF8000h 80000000h 1 1 01

13-243

SUBI Subtact Immediate, 32 Bits
.,.)~,~~r':"~~,*~''I«l~:;:;:::«:~'I>."«':<i~~=~_..,_'';(~~:'\-.'t'l<'~~';::. __ ~=-==:'~ __ X::::I:':l'_R»>:>;»:~~~~~-=''''''''''''.,..,......,.,.'''''''''''==_

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-244

SUBI IL, Rd [, L]

Rd -IL -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 I 0 I 1 I 1 I 0 I 1 I 0 I 0 I 0 I R I

1 s complement of 16 LSBs of IL

1 s complement of 16 MSBs of IL

o
Rd

SUBI subtracts a signed 32-bit immediate value from the contents ofthe desti­
nation register, and stores the result in the destination register. (The IL in the
syntax represents a signed 32-bit immediate value.)

The assembler uses this version of the SUBI instruction if it cannot use the
SUBIIW,Rd opcode, orifyou request the long opcode by following the register
operand with ,L:

SUBI IL, Rd, L

You can accomplish multiple-precision arithmetic by using SUBI in conjunction
with the SUBB instruction.

2 if immediate data is long-word aligned
3 if immediate data is not long-word aligned

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO AO NCZV

SUBI 2147483647,AO 7FFFFFFFh OOOOOOOOh 0001
SUBI 3276B,AO 00008001h 00000001h 0000
SUBI 32769,AO 00008001h OOOOOOOOh 0010
SUBI 32770,AO 00008001h FFFFFFFFh 1 1 a a
SUBI 3276B,AO 80008000h 80000000h 1000
SUBI 32769,AO 80008000h 7FFFFFFFh 0001
SUBI -2147483648,AO 80000000h OOOOOOOOh 0010
SUBI -32769,AO FFFF7FFEh FFFFFFFFh 1 1 a a
SUBI -32770,AO FFFF7FFEh OOOOOOOOh 0010
SUBI -32771,AO FFFF7FFEh 00000001h 0000
SUBI -32770,AO 7FFF7FFDh 7FFFFFFFh 0100
SUBI -32771,AO 7FFF7FFDh 80000000h 1 1 01

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Subtract Constant SUBK

SUBK constant, Rd

Rd - constant ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 0 I 0 I 1 I 0 I 1 I constant R Rd

SUBKsubtracts the 5-bit constant from the contents ofthe destination register;
the result is stored in the destination register. The constant is an unsigned num­
ber in the range 1-32. Note that constant=O in the opcode corresponds to the
value 32; the assembler converts the value 32 to O. Using this instruction, the
assembler issues an error if you try to subtract a from a register.

You can accomplish multiple-precision arithmetic by using SUBK in conjunc­
tion with the SUBB instruction.

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO AO NCZV

SUBK 5,AO 00000009h 00000004h 0000
SUBK 9,AO 00000009h OOOOOOOOh 0010
SUBK 32,AO 00000009h FFFFFFE9h 1 1 00
SUBK I,AO 80000000h 7FFFFFFFh 0001

13-245

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-246

SUBXY Rs, Rd

Rd.X - Rs.X - Rd.X
Rd.Y - Rs.Y - Rd.Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 0 I 0 I 0 I 1 I Rs R Rd

SUBXY subtracts the source X and Y values individually from the destination
X and Y values; the result is stored in the destination register.

You can use this instruction for manipulating XY addresses; it is particularly
useful for incremental figure drawing. These addresses are stored as XY pairs
in the register file.

Rs and Rd must be in the same register file.

N 1 if source X field = destination X field, 0 otherwise
C 1 if source Y field> destination Y field, 0 otherwise
Z 1 if source Y field = destination Y field, 0 otherwise
V 1 if source X field> destination X field, 0 otherwise

Code Before After
AD A1 AD NCZV

SUBXY Al,AO 00090009h 00010001h 00080008h 0000
SUBXY Al,AO 00090009h 00090001h 00000008h 0010
SUBXY Al,AO 00090009h 00010009h 00080000h 1000
SUBXY Al,AO 00090009h 00090009h OOOOOOOOh 1 01 0
SUBXY Al,AO 00090009h 00000010h 0009FFF9h 0001
SUBXY Al,AO 00090009h 00090010h 0000FFF9h a 01 1
SUBXY Al,AO 00090009h 00100000h FFF90009h 0100
SUBXY Al,AO 00090009h 00100009h FFF90000h 1 1 00
SUBXY Al,AO 00090009h 00100010h FFF9FFF9h a 10 1

TMS34 020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

SWAPF *Rs, Rd,O

Field specified by *Rs and FSO -+ Rd
Rd -+ field specified by *Rs and FSO

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 0 I 1 I 1 I 1 I 1 I 1 I 1 I Rs R Rd

o

This instruction performs a read (modify) write operation on a field in the
memory space. It exchanges the field specified by the contents of Rs and FSO
with Rd. The new contents of Rd are right-justified and either sign- or zero­
extended, depending on the value of FEO.

The main reason for the inclusion of this instruction is to allow the implementa­
tion ofthe test and set and test and clear operations needed for the lowest level
of interprocess and interprocessor synchronization.

Note that this instruction does not complete until the write is complete (implicit
MWAIT). This makes the instruction useful in some I/O register operations.
Once the instruction starts, host access requests will not be granted until all
the memory SWAPF accesses required are complete. Ifthe read (modify) write
is interrupted after the read by a screen refresh or a loss of of bus grant (GI
high), or if a retry or bus fault occurs at any time during the cycle, the operation
is restarted from the beginning of the read. This makes the operation indivis­
ible. The bus lock status code is output during all SWAPF cycles.

Note:

The following restrictions apply to SWAPF:

1) The field must not span a 32-bit word boundary. The field is ignored if any
part of it is not contained in the same 32-bit word specified by the bit
address contained in Rs.

2) If SWAPF is used to access 16-bit memories, any part ofthe field not con­
tained in the first 16-bit word is ignored.

Refer to Section 15.1 on page 15-2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.

C Unaffected

Z 1 if the field-extended data moved to register 0, 0 otherwise.
V 0

13-247

Examples

13-248

SETF 1,0,0
MOVI SEMA,A1

WAS SET: MOVK 1,AO
SWAPF *A1,AO
JRNE WAS SET

SETF
MOVI

WAS CLR: CLR

1,0,0
SEMA,A1

AD
SWAPF *A1,AO

JREQ WAS CLR

;Test and Set-wait for resource
;Single bit
;Bit to test and set
iSet is not already set
;Test and set
;Already set-did not get resource
;Test and Clear-wait for resource
;Single bit
iBit to test and clear
iClear if not already clear
;Test and clear
;Already clear-did not get resource
iGraphics mode save

MOVI CONTROL+5,A1 iPoint at CONTROL register
SETF

MOVI
10,0,0
NEWMODE,AO

SWAPF *A1,AO
CALL GRAPHOP

MOVE AO, *A1, 0

;Ten bits
;New value
;Read oldmode, set new mode
;Perform some operation

;Restore old mode

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

TFILLXY

COLOR1 pixels fill the horizontal line from (X1' Y) to (X2' Y) then

X1 : = X1 + DX1
X2 : = X2 + DX2
Y := Y+1

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o I 1

o
o

TFI LL draws a horizontal line and then adjusts its implied operands. The oper­
ands are set so that each subsequent call to TFILL will draw one more horizon­
tal line, creating lines that build up to form a trapezoid.

The trapezoid is defined as shown in the diagram:

Figure 13-11. A Trapezoidal Fill

Note that the coordinate parameters for this instruction are specified in the
fixed-point format; that is, the 16 MS Bs define the signed part of the coordinate
and the 16 LSBs define the fractional part of the coordinate. This is the case
for both X and Y coordinates, although the Y coordinate will never have a
fractional part.

The DX1 and DX2 values can have fractional components. This allows for
non integral slopes at the trapezoid sides. The fractional components are used
to determine the new endpoints for the next line. However, only the 16 MSBs
are used to determine the XY address of the endpoints.

Note that if X2:S X1 no pixels are drawn, but the contents of X1 and X2 are still
incremented by DX1 and DX2 respectively.

13-249

TFILL Trapezoidal Fill w_ ;mxm;WnNm l~n~~~lr~u~' ~f~r:;,:;: 'III '101

Implied Operands

Pixel Processing

Window Checking

13-250

Register Name Format Description

80 SADDR

81 SPTCH

82 DADDR

83 DPTCH

84

85

86

87

89

810

811

Address

COOOO080h

C0000140h

C0000150h

C0000160h

OFFSET

WSTART

WEND

DYDX

COLOR1

MADDR

MPTCH

Name

CONTROL

CONVDP

PSIZE

PMASK (32
bits)

Fixed X coordinate of X1

Fixed DX1 (adjustment for X1)

XY Used as temp (not user determined)

Linear Destination pixel array pitch (usually
screen pitch)

Linear Screen offset

XY Window start

XY Window end

Fixed X coordinate of of X2

Pixel Foreground color

Fixed DX2 (adjustment for X2)

Fixed Y coordinate of X1 and X2

Description and Elements (Bits)

PP - Pixel-processing operations (22 options)
W - Window checking operation
T - Transparency operation
TMODE - Selects 1 of 3 transparency options

XY-to-Iinear conversion (destination pitch)

Pixel size (1,2,4,8,16,32)

Plane mask - pixel format

To set up the initial values for X1, X2, and Y from 2 starting addresses (X1' Y)
and (X2' y), complete the following steps:

1) Use MOVY to copy the Y address into MPTCH.

2) Use SLL to shift the 2 XY addresses left by 16 bits. This results in 2 fixed­
point X coordinates.

3) Use MOVY to copy the 2 X addresses into SADDR and DYDX, respec-
tively.

Pixel processing can be used with this instruction. PPOP[CONTROL] speci­
fies the pixel-processing operation that is applied to pixels as they are
processed with the destination array. There are 16 Boolean and 6 arithmetic
operations; the default case at reset is the rep/ace (5 - 0) operation. Note that
the destination data is read through the plane mask and then processed. The
6 arithmetic operations do not operate with a pixel size of 1 bit per pixel. For
more information, refer to Section 12.8, Pixel Processing, on page 12-27.

The window operations can be used with this instruction. For more information,
refer to Section 12.7, Window Checking, on page 12-19.

TMS34020 Assembly Language Instruction Set

Transparency

Interrupts

Plane Masking

Status Bits

Example

STK .set
SADDR .set
SPTCH .set
DYDX .set
MADDR .set
MPTCH .set
tfill: -

mmtm
move
move
sl1
move
sl1
move
move
sl1
move
sl1
move
move
sub
sub
sub
divs

You can enable transparency for this instruction by setting T[CONTROL.] to 1 .
Select 1 of 3 transparency modes by setting TM[CONTROL.]. For more infor­
mation, refer to Section 12.9, Transparency, on page 12-36.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Opera­
tions, on page 6-13.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws trape­
ziums on the screen, using the TFILL instruction. This function has 6 argu­
ments:

(x1 a, x2a, ya) - coordinates of top of trapezoid
(x1 b, x2b, yb) - coordinates of bottom of trapezoid

This routine assumes the following registers have been initialized by the caller:

Al4
BD
Bl
B7
BlD
Bll

B-file registers
I/O registers

DPTCH, OFFSET, WSTART, WEND, and COLOR1
CONTROL, CONVDP, PSIZE and PMASK

C-parameter stack pointer
Source address register
Source pitch re"gister
Delta X/delta Y register
Mask address register
Mask pitch register .globl _tfill

SP,BD,Bl,B2,B7,BlD,Bll,Bl2,Bl3,Bl4
STK,Bl4
*-Bl4,SADDR,l
l6,SADDR
*-Bl4,DYDX,l
l6,DYDX
*-Bl4,MPTCH,l
*-Bl4,SPTCH,l
l6,SPTCH
*-B14,B13,1
16,B13
*-Bl4,Bl2,l
Bl4,STK
SADDR,SPTCH
DYDX,Bl3
MPTCH,B12
Bl2,SPTCH

iget C-parameter stack into B-file
iPOP xla
iconvert to fixed point
iPOP x2a
iconvert to fixed point
iPOP ya
iPOP xlb
iconvert to fixed point
;pop x2b
;convert to fixed point
;pop yb
;update C-parameter stack
idelta xl
idelta x2
;delta y
idxl

13-251

loop:

13-252

divs

move
sll

tfill
dsjs
mfm
rets

B12,B13

B13 ,MADDR
16,MPTCH

;dxl (cant use MADDR since divs
;requires odd numbered register)
;copy into MADDR
;convert y to fixed point

B12,loop
SP,BO,Bl,B2,B7,B10,Bll,B12,B13,B14
2

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

TRAP N

PC ~ -*SP

ST - -*SP
trap vector N ~ PC

Software

15 14 13 12 11 10 9 B 7 6 5 4 3 2

TRAP

o

TRAP executes a software interrupt. The N parameter is a trap number from
o to 31 that selects the trap to be executed. During a software interrupt:

Q The 32-bit return address, PC (the address of the next instruction), is
pushed on the stack.

Q The 32-bit status register, ST, is pushed on the stack.

Q The stack pointer, SP, is decremented by 64.

Q The IE (interrupt enable) bit in ST is setto 0, disabling maskable interrupts,
and ST is set to 0000001 Oh.

Q Finally, the trap vector is loaded into the PC.

The TMS34020 generates the trap vector addresses as shown on the following
page:

13-253

Status Bits

Examples

N 0
C 0
Z 0
V 0

Assume that memory contains the following values before instruction
execution:

Address Data
FFFFFCOO 0000
FFFFFC10 FFEO
FFFFFC20 0000
FFFFFC30 FFDO

FFFFFFCO 0000
FFFFFFDO FFBO
FFFFFFEO 0000
FFFFFFFO FFAO

Code Before After
PC SP PC SP ST

TRAP 0 xxxxxxxxh 80000000 FFAOOOOO 80000000h 00000010h
TRAP 1 xxxxxxxxh 80000000 FFBOOOOO 7FFFFFCOh 00000010h
TRAP 30 xxxxxxxxh 80000000 FFDOOOOO 7FFFFFCOh 00000010h
TRAP 31 xxxxxxxxh 80000000 FFEOOOOO 7FFFFFCOh 00000010h

13-255

Syntax

Execution

Instruction Words

Description

13-256

TRAPL

PC ---+ -*SP
ST ---+ -*SP
trap vector N ---+ PC

15 14 13 12 11 10 9 8 7 6 5
1010101011101010101010

16-bit trap number N

4 3 2 o
o 1 1 1 1

TRAPL executes a software interrupt. The N parameter is a signed number
from -32,768 to 32,767. The trap address is formed by taking the 16-bit signed
immediate operand N, shifting it left by 5 bits and then sign-extending it. TRAPL
can cover a significantly larger address range than the TRAP instruction.
During a software interrupt:

Q The 32-bit return address, PC (the address of the next instruction), is
pushed on the stack.

Q The 32-bit status register, ST, is pushed on the stack.

Q The stack pOinter, SP, is decremented by 64.

Q The IE (interrupt enable) bit in ST is set to 0, disabling maskable interrupts,
and ST is set to 0000001 Oh.

Q Finally, the trap vector is loaded into the PC.

Note that unlike TRAP 0, the TRAPL 0 is not treated as an exception. That is,
TRAPL 0 saves the PC and ST on the stack, whereas TRAP 0 does not.

The TMS34020 generates the trap vector addresses as shown on the following
page:

TMS34020 Assembly Language Instruction Set

Software TRAPL

Figure 13-13. Vector Address Map

Machine States

Trap Number Address Name Description

-32768 OOOF FFEOh

0000 OOOOh
J.-"---':'''-''----l

FFFF FFEOh ~-----l
FFFF FFCOh I---...!!..!...!....:...----l

FFFF FFAOh h:T70'7"~~0'7";;:1
FFFF FF80h
FFFF FF60h li.···\·.i·..;:::.:L:;. ••• ··.ii·
FFFF FF40h

FFFF FF20h

FFFF FFOOh
I--====~

Application defined

Reset

External interrupt 1

External interrupt 2

Reserved for future
hardware or on-chip
interrupts

FFFF FEEOh I--_-.:...:.:..:.!!..._~ Nonmaskable interrupt

FFFF FECOh Host interrupt

FFFF FEAOh Display interrupt

-1

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

FFFF FE80h Window violation interrupt

FFFF FE60h

FFFF FE40h

FFFF FE20h

15 FFFF FEOOh I--=;..;..;:;:Jr;;.;;.;..;~~
16 FFFF FDEOh

29 FFFF FC40h I--~='="..;;..;..;...;~

Reserved for future
hardware or on-chip
interrupts

Application defined

30

31

32

33

FFFF FC20h Illegal opcode interrupt
I------~

FFFF FCOOh Application defined

FFFF FBEOh Single-step/Emulator

FFFF FBCOh Bus fault

34 FFFF FBAOh

32767 FFFO OOOOh L-:.;......:..:..:::=:::.:...::~....J

~32 bitS---1

Application defined

Notes: 1) Traps (-1)- (-32,768) use the memory at the bottom ofthe address space
for vector addresses. Traps 0-32,767 use the memory at the top ofthe ad­
dress space.

2) Traps 0-31 may be accessed by either TRAP or TRAPL instructions.

3) Traps (-1)- (-32,768) and 32-32,767 are only accessed by TRAPL.

4) Traps 3-7 and 12-15 are reserved for future interrupts.

10 if ST is aligned
else 12

13-257

TRAPL." Software Interrupt, Signed

Status Bits

Examples

13-258

N 0
C 0
Z 0
V 0

Assume that memory contains the following values before instruction execu­
tion:

Address Data
FFFFFBCO 0000
FFFFFBDO FFOE

FFFFFCOO 0000
FFFFFC10 FFEO

FFFFFFEO 0000
FFFFFFFO FFAO
00000000 0000
00000010 FFOF

Code Before After
PC SP PC SP ST

TRAPL -1 xxxxxxxxh 80000000 FFOFOOOO 7FFFFFCOh 00000010h
TRAPL 0 xxxxxxxxh 80000000 FFAOOOOO 7FFFFFCOh 00000010h
TRAPL. 31 xxxxxxxxh 80000000 FFEOOOOO 7FFFFFCOh 00000010h
TRAPL 33 xxxxxxxxh 80000000 FFOEOOOO 7FFFFFCOh 00000010h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Pixel Processing

Linear VRAM Block Transfer V~IB,.~

VBLT B, L

Binary pixel array -+ linear pixel array using VRAM block write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101010]110101010111011101111

VBLT moves a binary array of pixels defined by SADDR and DYDX to a
corresponding block defined by DADDR and DYDX using VRAM block mode
expansion. Both SADDR and DADDR contain linear starting addresses.There
is an expansion implicit in the transfer, such that a bit value of 1 in the source
data is written to the destination array as a COLOR1 pixel (from the VRAM
color register). Source bits of the value a leave the corresponding destination
pixel unchanged. Note this instruction assumes that the VRAM color register
has been loaded by the VLCOL instruction. For more information, refer to
subsection 12.5.4, VRAM Block Mode, page 12-14.

Note:

1) DPTCH must be an integral multiple of 80h, and

2) this instruction works only if the PSIZE is 4,8,16, and 32.

Register Name Format Description

80 SADDR Linear Source pixel array address

81 SPTCH Linear Source pixel array pitch

82 DADDR Linear Destination pixel array address

83 DPTCH Linear Destination pixel array pitch

87 DYDX XY Pixel array dimensions

814 TEMP Temp Intermediate value

Address Name Description and Elements (Bits)

C0000150h PSIZE Pixel size (4,8,16,32)

C0000160h PMASK (32 bits) Plane mask - pixel format

C00001 AOh CONFIG 8it 8 (YEN) enables VRAM write mask

Address Name Description

VRAM Pixel Must have COLOR1 pixels loaded using VLCOL
Color Register

VRAM Pixel Loaded automatically when PMASK is written and
Write Mask VEN = 1

Pixel processing is not possible with this instruction, because the pixel data is
written from the VRAM color register into the VRAM memory array.

13-259

VBLT 8, L Linear VRAM Block Transfer

Window Checking

Transparency

Plane Masking

Interrupts

Corner Adjust

Machine States

Status Bits

Example

13-260

Window checking cannot be used with this instruction.

Transparency bits are ignored. This instruction has a form of implicit transpar­
ency in that source pixels which are 0 correspond to destination pixels which
are not changed.

The plane mask is implemented in the VRAM using the write mask function,
enabled by VEN[CONFIG]. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Instruc­
tions, on page 6-13.

Corner adjust cannot be used with this instruction.

complex instruction

N Undefined
C Undefined
Z Undefined
V Undefined

This is an example of a C-compatible assembly routine which draws a charac­
ter on the screen using the VBLT instruction. It expects the following arguments

.. on the C parameter stack: width, height, xleft, ytop, and a pointer to the start
of the character data. The character data should be a binary representation of
the character.

This routine makes the following assumptions:

[J These B registers and I/O registers have been initialized by the calling
program:

B-file registers DPTCH, OFFSET, WSTART, WEND, COLORO, COLOR1

I/O registers CONTROL, CONVDP, PSIZE, PMASK and CON FIG

[J The system contains a global flag _ vblt_ ok which is cleared if the VBLT is
not possible. Reasons for this. may be:

• DPTCH is not an integral multiple of 80 hex

• PSIZE is 1 or 2
• Pixel processing is not set to replace
• Transparency is not set to source equals 0
• The system does not contain VRAMs that support this feature

TMS34020 Assembly Language Instruction Set

STK
SAD DR
SPTCH
DADDR
DPTCH
DYDX

vblt:

vblt:

no vblt:

exit:

rets

.set

.set

.set

.set

.set

.set

.globl

.ref

mmtm
move
move
move
move
s11
movy
move
move
move
move
sll
movy
move
jrz

clip
jrz
cvdxyl
vlcol
vblt
jruc

A14
BO
B1
B2
B3

C-parameter stack pointer
Source address register
Source pitch register
Destination address register
Dest. pitch register

B7
_vblt

i Delta X/delta Y register
provide reference for external calls

vblt ok i flag to enable VBLTs

SP,BO,B1,B2,B7,B10,B11,B12 isave required registers
STK,B10 imove c-stack pointer into B-file
*-B10,DYDX,1 iget width
DYDX,SPTCH isave the width as source pitch
*-B10,B12,1 iget height
16,B12
B12,DYDX
*-B10,DADDR,1
*-B10,B12,1
*-B10,SADDR,1
B10,STK
16,B12
B12,DADDR
@_vblt_ok,AS,1
no_vblt

exit
DAD DR

B,L
exit

iconcatenate width & height
iget xleft
iget ytop
iget source address
irestore c-stack pointer

iconcatenate xleft & ytop
iget state of vblt flag

iclip to the window
iif outside the window, exit
iconvert to linear dest address
iload VRAM color latches
iperform linear vblt

pixblt B,XY

mmfm
2

SP,BO,B1,B2,B7,B10,B11,B12 irestore required registers

13-261

VFILL L Linear VRAM Fast Fill

Syntax

Execution

Instruction Words

Description

Implied Operands

Pixel Processing

Window Checking

Transparency

Plane Masking

Interrupts

Corner Adjust

13-262

VFILL L

Contents of VRAM color latch -.. array of pixels

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111011101011101110111111
VFILL fills an array of pixels defined by DADDR and DYDX using the VRAM
block mode writes. Note this instruction assumes that the VRAM color register
has been loaded by the VLCOL instruction. For more information, refer to
subsection 12.5.7, VRAM Block Mode Fill, on page 12-16.

,

Note:

1) DPTCH must be an integral multiple of 80h, and

2) this instruction works only for PSIZE's 4,8,16, and 32.

Register Name Format Description

B2 DADDR Linear Destination pixel block address

B3 DPTCH Linear Destination pixel block pitch

B7 DYDX XY Pixel block dimensions

Address Name Description and Elements (Bits)

C0000150h PSIZE Pixel size (4,8,16,32)

C0000160h PMASK (32 bits) Plane mask - pixel format

C00001 AOh CON FIG Bit 8 (YEN) enables VRAM write mask

Address

VRAM
Color Register

VRAM
Write Mask

Name Description

Pixel Must have COLOR1 pixels loaded using VLCOL

Pixel Loaded automatically when PMASK is written and
VEN = 1

Pixel processing is not possible with this instruction, because the pixel data is
written from the VRAM color register into the VRAM memory array.

Window checking cannot be used with this instruction.

Transparency cannot be used with this instruction.

The plane mask is implemented in the VRAM using the write mask function,
enabled by VEN[CONFIG]. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Instruc­
tions, on page 6-13.

There is no corner adjust for this instruction.

TMS34020 Assembly Language Instruction Set

Linear VRAM Fast Fill VFILL L

Machine States complex instruction

N Unaffected Status Bits

Example

DADDR
DYDX
CONTROL

fi11_rect:

no_vfill:
exit:

C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLIP instruction is used to clip the rectangle to the screen.

This routine makes the following assumptions:

[J The calling program sets up these registers:

B-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1

I/O registers CONTROL, CONVDP, PSIZE, PMASK and CON FIG

[J The system contains a global flag _vfilLok which is cleared if the VFILL
is not possible. Reasons for this may be:

• DPTCH is not an integral multiple of 80 hex

• PSIZE is 1 or 2
• Pixel processing is not set to replace
• Transparency is not set
• The system does not contain VRAMs that support this feature

· set B2
.set B7
.set oCOOOOOBOh
· globl _fi11_rect
· ref _vfi11_ok
mmtm SP,B2,B7,BI0,Bll,BI2
move AI4,BI0
move *-BI0,DYDX,1
move *-BI0,BI2,1
sl1 16,B12
movy BI2,DYDX
move *-BI0,DADDR,1
move *-BI0,BI2,1
move BIO,AI4
sll 16,B12
movy BI2,DADDR
move @_vfill_ok,A8,1
jrz no vfill
clip
jrz exit
cvdxyl DADDR
vlcol
vfi11 L
jruc exit

iDestination address register
iDelta X/delta Y register
iControl IO register
iprovide reference for external calls
i flag to enable VFILLs
isave required registers
imove c-stack pointer into B-file
iget width
iget height

iconcate~ate width & height
iget xleft
iget ytop
irestore c-stack pointer

iconcatenate xleft & ytop
iget state of vfil1 flag

iclip to the window
iif outside the window, exit
iconvert to linear dest address
iload VRAM color latches
iperform linear fill

fill XY ifill the rectangle using standard fill
mmfm SP,B2,B7,BI0,Bll,BI2 irestore required registers
rets 2

13-263

VLCOL Latch the COLOR1 Register (89) in the VRAM C%r Latches

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Example

13-264

VLCOL

COLOR1 - Color Registers in all VRAMS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101010111011101010000000

VLCOL writes the value in the COLOR1 register to the color registers in all
external VRAMS. The field size is ignored and the flood write outputs to nomi­
nal address O. This instruction should be executed before attempting to use
VFILL or VBLT. This instruction performs color expansion in the VRAM as pix­
els are written. The VRAM color registers are used for this purpose.

Register Name Format Description

89 COLOR1

2 (1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Pixel COLOR1

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLI P instruction is used to clip the rectangle to the screen.

This routine makes the following assumptions:

Q These B-registers and 1/0 registers have been set up by the calling pro­
gram:

B-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1

1/0 registers CONTROL, CONVDP, PSIZE, PMASK and CONFIG

Q The system contains a global flag _vfilLok which is cleared if the VFILL
is not possible. Reasons for this may be:

• DPTCH is not an integral multiple of 80 hex

• PSIZE is 1 or 2
• Pixel processing is not set to replace

• Transparency is not set
• The system does not contain VRAMs that support this feature

TMS34020 Assembly Language Instruction Set

DADDR .set
DYDX .set
CONTROL .set

.globl

.ref

_fill_rect:
mmtm
move
move
move
s11
movy
move
move
move
s11
movy
move
jrz
clip
jrz
cvdxyl
vlcol
vfi11
jruc

no_vfill:
fill

exit:
mmfm
rets

Latch the COLOR1 Register (89) in the VRAM C%r Latches VLCOL

82 ;Destination address register
87 ;Delta X/delta Y register
OCOOOO080h ;Control IO register

_fi11_rect provide reference for external calls
vfill ok - -

SP,82,87,810,811,812
A14,810 ;move
*-810,DYDX,1
*-810,812,1
16,812
812,DYDX
*-810,DADDR,1
*-810,812,1
810,A14
16,812
812,DADDR
@ vfi11 ok,A8,1
no_vfill

exit
DADDR

L
exit

; flag to enable VFILLs

;save required registers
c-stack pointer into B-file

;get width
;get height

;concatenate width & height
;get xleft
;get ytop
;restore c-stack pointer

;concatenate xleft & ytop
;get state of vfill flag

;clip to the window
;if outside the window, exit
;convert to linear dest address
; load VRAM color latches
;perform linear fill

XY ;fill the rectangle using standard fill

SP,82,87,810,811,812
2

;restore required registers

13-265

XOR Ex:'usive-OR Registers

Syntax XOR Rs, Rd

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-266

RsXOR Rd --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 0 I 1 I 1 I Rs R Rd

XOR bitwise-exciusive-ORs the contents of the source register with the con­
tents ofthe destination register, and stores the result in the destination register.

You can use this instruction to clear registers (for example, XOR BO I BO); the
CLR instruction also supports this function.

Rs and Rd must be in the same register file.

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before
AO A1

XOR AO,AI FFFFFFFFh OOOOOOOOh
XOR AO,AI FFFFFFFFh AAAAAAAAh
XOR AO,AI FFFFFFFFh FFFFFFFFh

After
NCZV A1
xx Ox FFFFFFFFh
xxOx 55555555h
xx1x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Exclusive-OR Immediate XORI

XORI IL, Rd

ILXOR Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 1'0 1 0 1 1 1011111111 1 0 I R I
16 LSBs of IL

16 MSBs of IL

o
Rd

XORI bit-wise exclusive-ORs a 32-bit immediate data with the contents of the
destination register and stores the result in the destination register. (The IL
parameter in the syntax above represents a 32-bit immediate value.)

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before
AO

XORIOFFFFFFFFh,AO OOOOOOOOh
XORIOFFFFFFFFh,AO AAAAAAAAh
XORIOFFFFFFFFh,AO FFFFFFFFh
XORIOOOOOOOOh,AO OOOOOOOOh
XORIOOOOOOOOh,AO FFFFFFFFh

After
NCZV
xxOx
xxOx
xx1x
xx1x
xx Ox

AO
FFFFFFFFh
55555555h
OOOOOOOOh
OOOOOOOOh
FFFFFFFFh

13-267

ZEXT Zero-..Exte.,.nd to Long

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-268

ZEXT Rd [, F]

field in Rd -+ zero-extended field Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 1 I F I 1 I 0 I 0 I 1 R Rd

ZEXT zero-extends a right-justified field in the destination register by zeroing
all the nonfield bits in Rd. The size of the field is determined by the current field
size. The optional F parameter, which must be specified as a 0 or a 1, selects
the field size:

F=O selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is o.

1

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

.c.rum Before After
FSO FS1 AO

ZEXT AO,O 32 x FFFFFFFFh
ZEXT AO,O 31 x FFFFFFFFh
ZEXT AO,O 1 x FFFFFFFFh
ZEXT AO,O 16 x FFFFOOOOh
ZEXT AO,l x 16 FFFFOOOOh

N CZV AO
x x 0 x FFFFFFFFh
x x 0 x 7FFFFFFFh
x x 0 x 00000001 h
x x 1 x OOOOOOOOh
x x 1 x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Chapter 14

TMS34082 Pseudo-ops
~: ::: ~ ~r . ~~mm~~~0<mw~Wt::r~W$::::::::::::r~m:~~m~U~~1:"M:::mm::;!:"ilW,am
~~~t;:::;::='r?;q ·7'~r·1~··::n·$;~7 ;:;-;;:w.·~f"~?mw.::X»,:Z7;i:·Z X'" 'W'"«';;~Z,;;;:""{7'7' "'m·~';:::;:.~;:m-;:;:;:::;:;':;'illK«=:wY.::::::w;:-w:wm;:~~::~:)~ .... ..a~{~ s; . w;<.~·~::a~ 

Many TMS34020 applications require floating-point operations. The 
TMS34082 Floating-Point Processor is designed specifically to serve as a 
coprocessor in a TMS34020 system. To extend the TMS34020's direct inter­
face to the TMS34082, the TMS34020 supports a subset of the TMS34082 
assembly-language instruction set by supplying a group of TMS34082 
pseudo-ops. These pseudo-ops are special versions of the TMS34020's gen­
eral-purpose coprocessor instructions. Instead of designing a protocol for 
sending instructions and data back and forth between the TMS34020 and 
TMS34082, you can use these pseudo-ops, which are hard-coded versions of 
instructions such as the CMOVCG instruction. 

This chapter provides a general description of the pseudo-op protocol and 
provides an alphabetical reference to the TMS34082 pseudo-ops. 

Basic information includes a 
review of related TMS34020 

signals and an overview of the 
coprocessor interface. 

Section Page 

14.1 Overview and Key Features 
of the TMS34082 ..................... 14-2 

14.2 Pseudo-op Format . . . . . . . . . . . . . . . . . . .. 14-3 

14.3 Register Operands . . . . . . . . . . . . . . . . . . .. 14-6 

Alphabetical reference of begins on page ............................... . 
pseudo-ops 

14-1 



Overview and Key Features of the TMS34082 
~"-;~"-"".::x:m~ . ;;;;;::;;::::::::::::;<t::::::::::::: -r";·:::wx.v;..~!;s(~::::::-..~~;;~::::::::::::::::x::::::::::::x~~~~~~~~;~~ 

14.1 Overview and Key Features of the TMS34082 

14-2 

The TMS34082 is a high-speed floating-point processor, implemented in TI's 
advanced 1-micron CMOS technology. On a single chip, the TMS34082 com­
bines a 16-bit sequencer, a 3-operand FPU, and 22 64-bit data registers. An 
instruction register controls FPU execution, and a status register retains the 
most recent FPU status outputs. The TMS34082 also contains 8 control regis­
ters and a 2-deep stack. 

The TMS34082 is fully compatible with IEEE Standard 754-1985 for binary 
floating-point arithmetic. Floating-point operands can be in either single- or 
double-precision IEEE format. 

Key features and benefits include 

o Closely coupled with the TMS34020 
- Direct TMS34020 instruction extension 
- Multiple-TMS34082 capability 

Q Internal programs for vector, matrix, and graphics operation 

Q Fast multiply/accumulate cycle time 
- 40 MHz (TMS34082-40) ... 50 ns 
- 32 MHz (TMS34082-32) ... 60 ns 

Q External memory addressing capability 
- External program storage (up to 64K words) 
- External data storage (up to 64K words) 

Q Full IEEE standard 754-1985 compatibility 
- Addition - Subtraction 
- Multiplication - Division 
- Square root - Comparison 

Q Selectable data formats 
- 32-bit integer 
- 32-bit, single-precision floating-point value 
- 64-bit, double-precision floating-point value 

Q Supported by TMS34020 code-generation tools 

Q More than 30 complex instructions targeted at graphics math 

Q Use as a floating-point coprocessor eliminates the need for external logic 
interface 

Q Standardized approach to floating-point for full system compatibility 

Q Eliminates multiple-cycle software implementation 

Q Superior performance for 2-D and 3-D graphics applications 

TMS34082 Psuedo-ops 



Pseudo-op Format 
:xm::::~~:::.:x-r_ ............ _w",w_·W:"= __ """",·~.~~x:::::::::::::::~·w~~'( ~ ........ :::'~ ........ :iX'n .... *'*W'W .... "" .......... "~".:xw:Nw.:::::;.:;,::::.~~~ .... ~~ 

14.2 Pseudo-op Format 

Section 10.2, Overview of the Coprocessor Interface (page 10-3), lists the 
TMS34020's general-purpose coprocessor instructions. Section 10.3, Format 
of Commands Passed to a Coprocessor (page 10-5), describes the general 
format of these instructions; specific implementations of this format depend 
entirely on the coprocessor that you choose to include in your system. 

The TMS34020 provides a set of TMS34082 pseudo-ops. These pseudo-ops 
extend the general-purpose format by hard-coding TMS34082 opcodes into 
certain fields of the general-pl!rpose coprocessor instructions. 

Figure 10-1 (which appears in Section1 0.3, page 10-5) is repeated below as 
Figure 14--1 (a). This figure shows the general format of coprocessor informa­
tion that is placed on the LAD bus. Figure 10-1 (b) shows the TMS34082 im­
plementation of this format. 

Figure 14-1. Coprocessor Instruction Information on the LAD bus 
(a) General Format 

~~ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
S 11111111111 

10 coprocessor command i 11111111111 
I S BeST 

Z 1111111I111 
e 1111111 

Ku: 10 3-bit coprocessor 10 field size Parameter size field 
I Coprocessor parameter index bit S 16-bit word select (always output as 0) 
BCST 4-bit bus status (always 0 for coprocessor cycles) 
Coprocessor command 21-bit instruction for the coprocessor 
fZI Reserved (always output as 0) 

Note: Section 10.3 (page 10-5) describes these bit fields in detail. 

(b) TMS34082-Specific Format 

LAO # 
31-29 28 

I 10 I CRs1 

25 24 21 20 16 15 14 13 987654 0 

I CRs2 I CRd fpuop 

I:l As Figure 10-1 (b) shows, the bus cycle status code portion is 00002' 
This indicates that the local-memory cycle generated by this type of 
instruction is a coprocessor cycle. 

I:l Bit 4, the S (16-bit word select) bit, is also 0; this indicates that only 32-bit 
accesses will occur. 

I:l The I bit serves the same purpose for the TMS34082 as it does for other 
processors (refer to subsection 10.3.4, Coprocessor Parameter Index, on 
page 10-7). 

14-3 



14-4 

Q Bit 7 still serves as the size (parameter size) bit. The TMS34082 uses the 
LSB of the coprocessor command as T (bit 8) that works with the size bit 
to identify the type and size of the parameter(s) that are passed to the 
TMS34082: 

T size Operand Type 

o 0 32-bit integer 

o reserved 

1 0 single-precision (32-bit) floating-point number 

double-precision (64-bit) floating-point number 

Q The coprocessor command is divided into 5 fields: 

• The 5-bit fpuop field contains the opcode of a TMS34082 assembly­
language instruction. 

• The 2-bit md field conveys the coprocessor command's addressing 
mode: 

Mode Operation 

002 FPU internal operation, no jumps or external moves 

012 Transfer to/from TMS34020 registers 

102 Transfer to/from TMS34020 local memory 

112 External microcode 

• CRd is the TMS34082 destination register. 

• CRS2 is the second TMS34082 source register for instructions that 
use two source operands. CRS2 also serves as the count operand for 
instructions that use a count operand. CRS2 must be a member of the 
TMS34082 B register file. 

• CRS1 is the TMS34082 source register for instructions that have one 
source operand; it is the first source register for instructions that use 
two source operands. CRS1 must be a member of the TMS34082 A 
register file. 

Q The ID field serves the same purpose in the TMS34082 protocol as it 
serves in the general-purpose protocol. For more details, refer to subsec­
tion 10.3.1, Coprocessor 10, on page 10-5. The pseudo-ops default to an 
10 of 0002; to define another 10 as the current 10, use the .coproc assem­
bler directive. 

For the TMS34082, these bits are hard-coded into special versions of the 
TMS34020's general-purpose coprocessor instructions. As an example, 
Figure :14-2 compares the general syntax of the CMOVGC instruction (a gen­
eral-purpose coprocessor instruction) to the LOAD-and-ADD (ADD) pseudo­
op. 

TMS34082 Psuedo-ops 





Register Operands 

14.3 Register Operands 

The TMS34082 pseudo-ops use register operands only. Table 14-1 lists the 
register-operand symbols used in the psuedo-op syntaxes in this chapter. 

Table 14-1. Symbols Used in Pseudo-op Syntax Listings 

Symbol Description Symbol Description 

CRs TMS34082 source register CRd TMS34082 destination register 

CRst For pseudo-ops that use 2 TMS34082 
source registers, this register supplies 
the first operand 

CR5;! For pseudo-ops that use 2 TMS34082 
source registers, this register supplies the 
second operand 

This operand must be a TMS34082 A-file 
register 

This operand must be a TMS34082 B-file 
register 

Rs TMS34020 source register Rd TMS34020 destination register 

Note that some pseudo-ops use information from a TMS34020 register or 
place information into a TMS34020 register. In this case, Rs or Rdshould be 
a TMS34020 general-purpose register (AO-A 14 or Bo-B14), just as it would 
be for a TMS34020 instruction. Most of the pseudo-ops, however, use 
TMS34082 registers as operands. As Figure 14-3 shows, the TMS34082 con­
tains 2 register bariks of 10 64-bit registers, plus 2 feedback registers. 

Figure 14-3. TMS34082 Registers That Can Be Used as Pseudo-op Operands 

Note: These register files contain TMS34082 registers. 

14-6 

Most pseudo-ops operate on one value from TMS34082 register file A or B, 
and return the result to file A, file B, or one of the feedback registers. Valid oper­
and/register use includes: 

TMS34082 Psuedo-ops 



Register Operands 
~~~~~"="'<==""""'~f'~~~~~mm= ___ """""~mm~~;;;~%~~,.:.~~~mmm~~~m:::;»~m:r4~~~~::»~~~~~~~,~,'Y;~~~":.~:::.~-::::~m;-;-;-.::.~~ 

CRs or CRst: RAQ-RA9 CRS2: RBO-RB9

CRd: RAO-RA9, RBO-RB9, C, and CT

When more than one value is requested from/sent to the TMS34082, the regis­
ters are read from/written to in the sequence shown in Figure 14-4. Note that
the control, status, and stack registers are in the middle of the list. The
sequence bypasses C and CT because they can't be accessed externally.

Figure 14-4. TMS34082 Register Sequence List

14-7

ABORT Abort Coprocessor Operation
~x-;;:*::~;:::;;;:;:;::~~:::::~:::::::::~::~::;::*::;:;:~:*::::::::::::~:::::*:::~::::::~::::~:::~;::-;~~::~0:;:;*:~~*;::~:::;:::::::::~;:::::::::~:~~x~:;.-..:;:;~:::::~:::·:::::::::~::*:*::~:*::;::::~::~:::::::;::::~:::;:;*"~:~:~~:::~:;::~~~~:::;::.:;:~:*:::~:::::;:;::~:,.;::::~::::::~::~::~~~:~:~ ::::::~~:~:::~~::::~~::::::::::~x::::::::::~~::::::~~::x::~::-;~r...:::;:=:;o;:::~:::~:::::::::~:~~:~:~~:m:::~:~:~:::~:~~..»~~:::;x~;:o;::::::~:::::::::~~:::~~::::::~~::~:::.

Syntax

Execution

Instruction Words

Description

Machine States

Instruction Type

Example

14-8

ABORT

Halts coprocessor

ABORT halts the operation of the TMS34082 coprocessor and places the
coprocessor in a wait-tor-next-instruction state. Register values are indetermi­
nate.

2

CEXEC, short

ABORT

This example halts the TMS34082 coprocessor.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ABS CRs, CRd

ICRsl ~ CRd

Absolute Value, ABS

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

ASS takes the absolute value of the contents (integer) of CRs and stores the
result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

ABS RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RS?

14-9

ABS Load and Absolute Value,

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-10

ABS Rs, CRs, CRd

Rs ~ CRs
iCRsi ~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o J 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

01 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 I 0 I 0 I 0
Default ID CRs 0 0 1 0 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

ASS loads the contents (integer) of Rs into CRs, takes the absolute value of
the contents of CRs, and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long-word aligned
2 if the first instruction word is not long-word aligned

CMOVGC, one register

ABS AS, RA6, RB7

This example loads the contents of TMS34020 register AS into coprocessor
register RA6, takes the absolute value of the contents of RA6, and stores the
result in RS7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ABSD CRs, CRd

ICRsl ~CRd

Absolute Value, Double Precision ABSD

CRs Coprocessor source register containing a 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

ABSD takes the absolute value of the contents of CRs and stores the result in
CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

ABSD RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB7.

14-11

ABSF Absolute Value, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-12

-
ABSF CRs, CRd

ICRsl ~ CRd

CRs Coprocessor source register containing a 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

ABSF takes the absolute value of the contents (single-precision value) of CRs
and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

ABSF RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB?

TMS34082 Pseudo-ops

Load and Absolute Value, Single Precision ABSF
~""""'''''''''-'*,:::;:-rm~ ~::=::«:::::xm'r·r··'''''''''*,::f('''''''''~M~~~;~~~~ .. z:::::::''m::::x:::.:~~$'..~~r~*,*,~~~

Syntax

Execution

InstriJction Words

Operands

Description

Machine States

Instruction Type

Example

ABSF Rs, CRs, CRd

Rs~CRs

ICRsl ~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0

Default 10 CRs 0 0 1 0 CRd

Rs TMS34020 source register for the 32-bit single-precision
floating-point value to coprocessor

CRs Coprocessor register containing a 32-bit single-precision floating­
point operand

CRd Coprocessor destination register

ABSF loads the contents (single-precision value) of Rs into CRs, takes the
absolute value of the contents of CRs, and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

ABSF AS, RA6, RB7

This example loads TMS34020 register A5 into coprocessor register RA6,
takes the absolute value of the contents of RA6, and stores the result in RB7.

14-13

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ADD RS1, RS2, CRS1, CRS2, CRd

RS1 ~ CRS1
RS2~CRs2
CRS1 + CRS2 ~ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01010 o 1 0 1 1 1 1 01 0 1 1 1 0 R 1

01110 0101010 0101010 R 1

Default 10 CRs1 CRs2

o
RS1

RS2

CRd

TMS34020 source register for the first 32-bit integer value to
coprocessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRS1 Coprocessor register to contain the first 32-bit integer operand

CRS2 Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

ADD loads the contents (integer) of RS1 and RS2 into CRs1 and CRS2
respectively, adds the contents of C~S1 and CRS2, and stores the result in
CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

ADD AS, A6, RAS, RB6, RB7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RS6 respectively, adds the contents of RA5 and RS6, and stores the
result in RS?

14-15

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-16

AD DO CRSt, CRS2, CRd

CRS1 + CRS2 ~ CRd

CRS1 Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRS2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

ADDD adds the contents (double-precision value) of CRS1 and CRS2 and
stores the result in CRd.

2

CEXEC, short

ADDD RA5, RB6, RA7

This example adds the contents of RA5 and RB6 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ADDF CRSt, CRS2, CRd

CRS1 + CRS2 ~ CRd

Add, Precision 'ADDF

CRS1 Coprocessor register containing the first 32-bit single-precision
floating-point operand

CRs2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

ADDF adds the contents (single-precision value) of CRS1 and CRS2 and stores
the result in CRd.

2

CEXEC, short

ADDF RAS, RB6, RB7

This example adds the contents of RA5 and RB6 and stores the result in RB7.

14-17

ADDF Load and Add, Precision

Execution RS1 -7 CRS1
RS2 -7 CRS2

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-18

CRS1 + CRs2 -7 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 01 0 I 0 I 0 1 I 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

TMS34020 source register for the first 32-bit single-precision
floating-point value to coprocessor

RS2 TMS34020 source register for the second 32-bit single-precision
floating-point value to coprocessor

CRS1 Coprocessor register to contain the first 32-bit single-precision
floating-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

ADDF loads the contents (single-precision value) of RS1 and RS2 into CRS1
and CRS2 respectively, adds CRS1 and CRS2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

ADDF AS, A6, RAS, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, adds the contents of RA5 and RB6, and stores the
result in RA7.

TMS34082 Pseudo-ops

Check Coprocessor Status CHECK
::;;;~~:::;::X~::;:X:;$~~~~0X~~=.;:;:;:;~-::~~;.-::;:::::::~~;:;:~z.:;::::~~:::::;;;:.-::~:;:;::::.::w~:::~:::::;x::::xz:;:;:;::::m~:::~iliX:.x::~::~:~:::~::;;~~::;;Y"...x:::;:~:~~:::::~::::;::~:::~;::::::::~~:::;::::~~:.'*::::;X::::':::::::;:~;:;:;~;;::~~~X»-:::'X::::::~~;;:::::::::.-:;~~~:~:~:~~::::M~~:~:~~~~:::;x~xz::.::x::-;x:::::::~~::::::::;::::::;;::::r.:::~~~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CHECK Rd

If coprocessor is busy
FFFF FFFFh ~ Rd

If coprocessor is idle
0000 OOOOh ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 0 1 1 R RS1

o I 1 I 0 1 1 1 1 0 0 0 0 0 01 0 I 0 I 0

Default ID 0 0 0 0 1 1 0 1 0 010 I 0 I 0

Rd Destination register for status information

CHECK checks the status of the coprocessor. If the TMS34082 c.oprocessor
is busy, CHECK sets all the bits in Rd to 1. If the TMS34082 coprocessor is idle,
CHECK sets all the bits in Rd to o.
5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVGC, one register

CHECK A4

If the TMS34082 coprocessor is busy, this example sets all the bits in register
A4 to 1. If the TMS34082 coprocessor is idle, this example resets all the bits
in register A4 to o.

14-19

CMP Compare, Integer
:;::~:;:~;:;:~::::;~:::::;:::;:::;::~~:::::~:*«q/.<,.:~:~~:~::~::::::;;:::::~'::::'-:;~:;:;:;::::::::::::~::~X!~:::::X~9.::;~~:;:::::::::::::::::::::::;::~~~::::::~::::~%~W/"",h::::~::-;~~:::::;~-:;:;~::::::::::::~~X!::;X~~X'7/,::-;~~~:;~?';::$:~/.49";:;:;:;r..:;-»"..:""·,,»";xx·;-m.:::~.$'';:'«.:l'»y.«@y.f.'.l:l:"(f.«f..:%'';-/."m;-Y'<<<J:'"<<(q//.('7/'<</"l:l:".:w.~~f.~f..::::0$~.$$:;,/.q...:'.xX"«.X:;W//hf.:;~::$W'::W~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-20

CMP CRSt, CRS2

Flags (CRS1 - CRS2) ~ Coprocessor Status Registers

CRS1 Coprocessor register containing the first 32-bit integer operand

CRS2 Coprocessor register containing the second 32-bit integer operand

CMP subtracts the contents (integer) of CRS2 from CRS1 and sets the appro­
priate status bits in the coprocessor status register.

2

CEXEC, short

CMP RA5, RB6

This example subtracts the contents of RA5 from RS6 and sets the status bits
in the coprocessor status register.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CMP RS1, RS2, CRS1, CRS2

RS1 ~ CRS1
RS2~ CRs2
Flags (CRS1 - CRS2) ~ Coprocessor Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 01 0 I 1 I 1 o I 0 I 1 I 0 R

o I 1 I 0 o I 0 I 1 I 0 01 0 I 0 I 0 R

o
RS1

RS2

Default 10 CRs1 CRs2 0 010 I 0 I 0

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRs1 Coprocessor register to contain the first 32-bit integer operand

CRS2 Coprocessor register to contain the second 32-bit integer operand

CMP loads the contents (integer) of RS1 and RS2 into CRS1 and CRS2 respec­
tively, subtracts CRS2 from CRS1, and sets the appropriate status bits in the
coprocessor status register.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

eMF AS, A6, RAS, RB6

This example loads TMS34020 registers AS and A6 into coprocessor registers
RAS and RB6, subtracts the contents of RB6 from RAS, and sets the status bits
in the coprocessor status register

14-21

CMPD ~ompare, Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

E~ample

14-22

CMPD CRS1, CRS2

Flags (CRS1 - CRS2) ~ Coprocessor Status Registers

CRS1 Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRS2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CMPD subtracts the contents (double-precision value) of CRS2 from CRS1 and
sets the appropriate status bits in the coprocessor status register.

2

CEXEC, short

CMPD RAS, RBG

This example subtracts the contents of RB6 from RA5 and sets the status bits
in the coprocessor status register.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Compare, Single Precision CMPF
~~%:::,:w:::m::'-::W:~~"m ::x ~~~::::::.:::.o;::.~~(<<.::~(<<::"~

CMPF CRS1, CRS2

Flags (CRS1 - CRS2) ~ Coprocessor Status Register

CRS1 Coprocessor register containing the first 32-bit single-precision
floating-point operand

CRS2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CMPF subtracts the contents (single-precision value) of CRS2 from CRS1 and
sets the appropriate status bits in the coprocessor status register.

2

CEXEC, short

CMPF RAS, RB6

This example subtracts the contents of RB6 from RA5 and sets the status bits
in the coprocessor status register.

14-23

CMPF Load and Compare, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-24

CMPF RS1, RS2, CRS1, CRS2

RS1 ~ CRS1
RS2 ~ CRS2
Flags (CRS1 - CRS2) ~ Coprocessor Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R RS1

o I 1 I 0 o I 0 I 1 I 0 1 I 0 I 0 I 0 R RS2

Default 10 CRs1 CRs2 0 010 I 0 I 0

RS1 TMS34020 source register for first the 32-bit single-precision float­
ing-point value to coprocessor

RS2 TMS34020 source registerforthe second 32-bit single-precision float­
ing-point value to coprocessor

CRS1 Coprocessor register to contain the first 32-bit single-precision
floating-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CMPF loads the contents (single-precision value) of RS1 and RS2 into CRS1
and CRS2 respectively, subtracts CRS2 from CRS1, and sets the appropriate
status bits in the coprocessor status register.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

CMPF AS, AG, RAS, RBG

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, subtracts the contents of RB6 from the contents of
RA5, and sets the status bits in the coprocessor status register.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Convert, Double Precision to Single Precision CVDF
m:;::w~~~uwww:,w:,:,·~":r';:'$«:""""'«m":,:,:r:r:,~~.w..x::~~;~w m::::X~':r:,:r:r:r:r :::o::x:::::::'~

CVDF CRs, CRd

(CRs)~CRd

CRs Coprocessor source register containing a 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

CVDF converts a 64-bit IEEE double-precision floating-point number to a
32-bit IEEE single-precision floating-point number. The double-precision num­
ber resides in CRs, and the converted single-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVDr RA5, RA 7

This example converts the contents of RA5 to a single-precision floating-point
number and stores the result in RA7.

14-25

CVDI Convert, Double Precision to Integer
mi~~~ ~

Syntax CVDI CRs, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-26

(CRs)-7 CRd

CRs Coprocessor source register containing a 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

CVDI converts a 64-bit IEEE double-precision floating-point numberto a 32-bit
integer number. The double-precision number resides in CRs, and the con­
verted integer number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVDr RA5, RB7

This example converts the contents of RA5 to an integer and stores the result
in RB7.

TMS34082 Pseudo-ops

Convert, Single Precision to Double Precision CVFD
..... :::::~:mm;~:m~.::;::x~ms~'wr''SM~~;;:;$~mm:-::m:;:;~~~~~~, ~.:::::::~~~~~,;:;v.«::::;:w.;xz.~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVFD CRs, CRd

(CRs)~CRd

CRs Coprocessor source register containing a 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

CVFD converts a 32-bit IEEE single-precision floating-point value to a 64-bit
IEEE double-precision floating-point value. The single-precision number
resides in CRs, and the converted double-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVFD RA5, RB7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

14-27

CVFD Load and Convert, Single Precision to Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-28

:lSfSU:' $:' ~::sz $:'

CVFD Rs, CRs, CRd

Rs~CRs

(CRs)~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

01 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0
Default ID CRs 0 1 0 0 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision floating­
point operand

CRd Coprocessor destination register

CVFD loads the contents (single-precision) of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-preci­
sion floating-point value. The single-precision number resides in CRs, and the
converted double-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

CVFD B5, RA5, RA7

This example loads TMS34020 register 85 into coprocessor register RA5, con­
verts the contents of RA5 to a double-precision number, and stores the result
in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVFI CRs, CRd

(CRs)~ CRd

Convert, CVFI

CRs Coprocessor source register containing a 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

CVFI converts a 32-bit IEEE single-precision floating-point value to a 32-bit
integer value. The single-precision number resides in CRs, and the converted
integer number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVFI RA5, RA 7

This example converts the contents of RA5 to an integer and stores the result
in RA7.

14-29

CVFI Load and Convert, Single Precision to Integer
m~~g~~::X~0»Y~$.«;:;.x~~~,:.;x~::.::xx:;.;:;::.:::wax*7":::::::::Y..x:x¥...xx::w~:»r"::::$x,;xw .. .x:":».:x::::*"WH.::r..::x~W"':::;'X::::X-'::;W~~~~~$Wh-X'.:::::::~~.,m::.x:;xr~::.::x:::;..:::::::0;~:::::~7..::::~~~~.:::::x-.:x::::::9'M:l';~W"::W~::':~r.~~~,:,;::::::X',::r.::~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-30

CVFI Rs, CRs, CRd

Rs -1 CRs
(CRs) -1 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 01 0 I 1 I 1 0 0 0 1 R I
o

Rs

01 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0
Default ID CRs 0 1 0 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision floating-
point operand

CRd Coprocessor destination register

CVFI loads the contents (single-precision) of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 32-bit integer value. The
single-precision number resides in CRs, and the converted integer number
resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

CVFI B5, RA5, RB7

This example loads TMS34020 register B5 into coprocessor register RA5, con­
verts the contents of RA5 to an integer, and stores the result in RB7.

TMS34082 Pseudo-ops

Convert, Integer to Double Precision CVID
==«=. nm~~~'=' ='_~~*,.f'f.::::"~m::'_::7;; __ ='_::::W...m0~.Mfim::~&&,--;::::~ff::::ffffffffffm.~·~f::7;f~f~'»~;,;~;m::::::::~.:rMY'~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVID CRs, CRd

(CRs)~ CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

CVID converts a32-bit integer value to a 64-bit IEEE double-precision floating­
point value. The integer resides in CRs, and the converted double-precision
number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVID RA5, RB 7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

14-31

CVID Load and Convert, Integer to Double Precision
'"

Syntax CVID Rs, CRs, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-32

Rs~CRs

(CRs)~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 1 0 R I Rs

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs

Default ID CRs 0 1 1 0 CRd

o

Rs TMS34020 source registerforthe 32-bit integer values to coprocessor

CRs Coprocessor source register to contain the 32-bit integer operand

CRd Coprocessor destination register

CVID loads the contents (integer) of Rs into CRs and converts a 32-bit integer
value to a 64-bit IEEE double-precision floating-point value. The integer
resides in CRs, and the converted double-precision number resides in CRd.
(Constraints of the TMS34082 require that the integer in Rs be sent as both
words of the 64-bit transfer.)

The coprocessor source register, CRs, must be in the A coprocessor file.

4 if first instruction word is long word-aligned
3 if first instruction word is not long word-aligned

CMOVGC, two registers

cvrn BS, RAS, RA7

This example loads TMS3420 register 85 into coprocessor register RA5, con­
verts the contents of RA5 to a double-precision number, and stores the result
in RA7.

TMS34082 Pseudo-ops

Convert. Integer to Single Precision CVIF
~;smS$ ~m-mtm~~sm~~mmAAo~sms::m~fi~s~s~~~~~mm;s*"-nx~:=-»m7;:ms~n»,~)fir.m».

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVIF CRs, CRd

(CRs)~CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

CVIF converts a 32-bit integer value to a 32-bit IEEE single-precision floating­
point value. The integer resides in CRs, and the converted single-precision
number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVIF RA5, RA 7

This example converts the contents of RA5 to a single-precision number and
stores the result in RA7.

14-33

CVIF Load and Convert, Integer to Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-34

.

CVIF Rs, CRs, CRd

Rs~CRs

(CRs)~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 RI
o

Rs
o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0

Default ID CRs 0 1 1 0 CRd
Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor source register to contain the 32-bit integer operand

CRd Coprocessor destination register

CVIF loads the contents (integer) of Rs into CRs and converts a 32-bit integer
value to a 32-bit IEEE single-precision floating-point value. The integer resides
in CRs, and the converted single-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if first instruction word is long word-aligned
2 if first instruction word is not long word-aligned

CMOVGC, one register

CVIF RAS, RA7

This example converts the contents of RA5 to a single-precision number and
stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

DIVD CRSt, CRS2, CRd

(CRS1) _ CRd
CRs2

Divide, Double Precision DIVD ,

CRS1 Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRS2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

DIVD divides the contents (double-precision value) of CRS1 by CRS2 and
stores the result CRd.

2

CEXEC, short

OIVO RA5, RB6, RA7

This example divides the contents of RA5 by RB6 and stores the result in RA7.

14-35

OIVF Divide, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-36

DIVF CRS1, CRs2, CRd

(CRS1) -+ CRd
CRs2

CRS1 Coprocessor register containing the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

DIVF divides the contents (single-precision value) of CRs1 by CRs2 and stores
the result in CRd.

2

CEXEC, short

OIVF RA5, RB6, RA7

This example divides the contents of RA5 by RB6 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Divide, Single Precision DIVF

(CRS1) _ CRd
CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 010 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 1 I 0 I 0 I 1 1 I 0 I 0 I 0 R I RS2

Default 10 CRs1 CRs2 CRd

o

TMS34020 source register for the first 32-bit floating-point single-pre­
cision value to coprocessor

RS2 TMS34020 source register for the second 32-bit floating-point single­
precision value to coprocessor

CRS1 Coprocessor register to contain the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

DIVF loads the contents (single precision, floating point) of RS1 and RS2 into
CRs1 and CRs2 respectively, divides the contents of CRs1 by CRs2, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

OIVF AS, A6, RAS, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, divides the contents of RA5 by RB6, and stores the
result in RA7.

14-37

DIVS Divide, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-38

DIVS CRSt. CRS2, CRd

(CRS1) -+ CRd
CRs2

CRS1 Coprocessor register containing the first 32-bit integer operand

CRs2 Coprocessor register containing the second 32-bit integer operand

CRd Coprocessor destination register

DIVS divides the contents (integer) of CRS1 by CRS2 and stores the result in
CRd.

2

CEXEC, short

OIVS RA5, RB6, RB7

This example divides the contents of RA5 by RB6 and stores the result in RB7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Divide, Integer DIVS

(CRS1) _ CRd
CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 1 I 0 I 0 I 1 010 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRs1 Coprocessor register to contain the first 32-bit integer operand

CRs2 Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

DIVS loads the contents (integer) of RS1 and RS2 into CRs1 and CRs2 respec­
tively, divides the contents of CRS1 by CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

DIVS AS, A6, RAS, RB6, RB7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RS6 respectively, divides the contents of RA5 by RS6, and stores the
result in RS?

14-39

GET~ST Get Coprocessor Status.Register

Syntax

Execution

Instruction Words

Description

Machine States

Instruction Type

Example

14-40

GETCST

Coprocessor Status Register - ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 0 1 1 0 0 0 0 0

o I 1 I 0 0 1 1 1 0 0 0 0 0 0 0 0 1

Default ID 0 0 0 0 0 0 0 0 0 1 1 0 0

GETCST loads 4 MSBs of the coprocessor status register (STATUS) into the
TMS34020 status register (ST).

·5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVCS

GETCST

This example sends the coprocessor status register to the TMS34020. The
TMS34020 takes the value and masks off the 4 MSBs; it then stuffs the values
in the TMS34020 status register corresponding to the N, C, Z, V bits.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Invert, Double Precision INVD

INVD CRS2, CRd

(_1)-CRd
CRs2

CRS2 Coprocessor register-B file containing the 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

INVD divides 1.0 by the contents (double precision) of CRs2 and stores the
result in CRd.

2

CEXEC, short

INVD R83, RAl

This example divides 1.0 by RB3 and stores the result in RA 1 .

14-41

INVF Invert, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-42

(_1) -CRd
CRs2

CRS2 Coprocessor register-B file containing the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

I NVF divides 1.0 by the contents (single precision, floating point) of CRs2 and
stores the result in CRd.

2

CEXEC, short

INVF RB3, RAI

This example divides 1.0 by RB3 and stores the result in RA 1.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Invert, Single Precision INVF

INVF Rs, CRs2, CRd

Rs - CRs2

(_1)-CRd
CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 0 0 1 1 o I 0 I 0 I 1 R I Rs

o I 1 I 0 1 0 1 0 1 I 0 I 0 I 0 010 I 0 I 0 I 0

Default ID 0 0 0 0 CRs2 CRd

Rs TMS34020 source register for the 32-bit floating-point single-preci­
sion value to coprocessor

CRs2 Coprocessor register-B file to contain the 32-bit single-precision floa­
ting-point operand

CRd Coprocessor destination register

INVF loads the contents (single precision, floating point) of Rs into CRs2,
divides 1.0 by CRs2, and stores the result in CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

INVF A7, RB3, RAI

This example loads TMS34020 register A7 into coprocessor register RB3,
divides 1.0 by RB3, and stores the result in RA 1.

14-43

JUMPC Execute Coprocessor External Instructions

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-44

JUMPCn

Execute external coprocessor instructions found at address 2 x n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 I 0 I 0 I 1 I 1 0 0 0 0 0 0 0 0 0

1 I 1 I n '0 0 0 0 0 0 0 0 0

Default ID I 0 I 0 I 0 I 0 0 0 0 0 0 0 0 0 0

n Specifies the address to which the TMS34082 instruction execution
is sent

JUMPC begins execution of TMS34082 external instructions stored in
TMS34082 local memory. The starting address is specified as TMS34082 local
memory address 2 x n. Usually, ajump table is stored in these locations to per­
mit complex operations.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CEXEC, long

JUMPC 4

This example executes TMS34082 instructions stored in the default
TMS34082's local memory. The executed instructions are stored beginning in
address 8.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Double Precision, Two Registers to Coprocessor MOVD

MOVO RS1, RS2, CRd

RS1, RS2 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 0 1 1 0 0 1 0 R I RS1

o I 1 I 0 0 1 1 0 1 1 0 0 R I RS2

Default ID 0 0 0 0 0 0 0 0 CRd

o

TMS34020 source register for the 32 MSBs (sign, exponent, and 20
MSBs of mantissa) of the 64-bit double-precision floating-paint value
to coprocessor .

RS2 TMS34020 source register for the 32 LSBs of the 64-bit
double-precision floating-point value to coprocessor

CRd Coprocessor destination register that holds the 64-bit double-preci­
sion floating-point vaiue

MOVD moves the double-precision value in RS1 and RS2 into CRd. RS1 holds
the 32 MSBs, and RS2 holds the 32 LSBs ofthe double. You must setthe LOAD
bit of the TMS34082 configuration register to 0 to indicate that the MSBs are
transferred before the LSBs.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

This example uses the MOVD instruction to load a 64-bit double-precision val­
ue into register RB5. Note that the 32 MSBs of the value are loaded into a1 and
then the 32 LSBs are loaded into AO. Assume that the LOAD bit of the configu­
ration register is set to 0, indicating transfers of MSBs before LSBs .

00000000 • ieeefl
00000000 0540 setf 32,0,0
00000010 05aO move @dval,aO,O
00000020 00000000"
00000040 05a1 move @dval+32,a1,0
00000050 00000020"
00000070 0641 movd a1,aO,rb5
00000080 5f80
00000090 1£95
00000000 .data
00000000 8a6a51ad dval: .double 347.6942238
00000020 4075bb1b

14-45

~E.!'P _.¥ove, Doub/~recision, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

14-46

MOVD *Rs+, CRd, Rd

If TMS34082 LOAD bit = 0
and Rd = 0

Repeat 16 times
*Rs - CRd (32 MSBs)
Rs + 32 - Rs

*Rs - CRd (32 LSBs)
Rs + 32 - Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
and Rd = 0

Repeat 16 times
*Rs - CRd (32 LSBs)
Rs + 32 - Rs

*Rs - CRd (32 MSBs)
Rs + 32 - Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
and Rd = 1 - 31

Repeat Rd/2 times
*Rs - CRd (32 MSBs)
Rs + 32 - Rs

*Rs - CRd (32 LSBs)
Rs + 32 - Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
and Rd = 1 - 31

Repeat Rd/2 times
*Rs - CRd (32 LSBs)
Rs + 32 - Rs

*Rs - CRd (32 MSBs)
Rs + 32 - Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o .1 0 .1 0 0 0 1 1 0 1 1 1 R 1 Rd

1 1 0 1 0 0 1 1 0 1 1 0 0 R 1 Rs

Default 10 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bits of the first double-precision value to move
to the coprocessor

CRd Coprocessor destination register to hold the first 64-bit double-preci­
sion floating-point value

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31.

Q IfRd= 0,

Q If Rd = 1 - 31

then 32 32-bit transfers are made

then Rd 32-bit transfers are made

Note that because 64-bit doubles require two 32-bit moves, an odd
number in Rd will give unpredictable results.

MOVD moves 64-bit double-precision values from memory beginning at the
address in Rs into coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented; after every two 32-bit transfers, the copro­
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 32-bit transfers made is determined by the con­
tents of Rd. The results will be unpredictable if Rd is an odd number.

TMS34082 Pseudo-ops

Machine States

Instruction Type

Example

Move, Double Precision, Indirect to Coprocessor (Postincrement), Register Count MOVD

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

If Rd = 0 and
If Rd = 0 and
If Rd = 1 - 31 and
If Rd = 1 - 31 and

Rs is aligned
Rs is nonaligned
Rs is aligned
Rs is nonaligned

CMOVMC, postincrement, register count

MOVD *A5+, RB7, B7

35
37
5 + (Rd -1)
5 + (Rd -1)

This example moves 54-bit double-precision values from the TMS34020
memory location pOinted to by A5 to coprocessor registers beginning with RB7.
After each 32-bit transfer, register A5 is incremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. B7 holds the number of 32-bit transfers to
be made.

14-47

MOVD Move, Double PreCision, Indirect to Coprocessor (Postincrement), Constant Count
'H«W':W"',>!'i:w.,'~il".>.>~_m»~:::n~='W?':~AA-'l0::w.Q~~sm.:~<':i:~~~=~~~~=m~=~~=~,*",:~:~:':;;::;:~:~;:':~~~~..w::m~=!:i:::;~m:m:::;::$::(~,:'mw.~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

14-48

MOVD *Rs+, CRd, [, count]

If TMS34082 LOAD bit = 0
Repeat count times

*Rs -'>0 CRd (32 MSBs)
Rs + 32 -'>0 Rs

*Rs -'>0 CRd (32 LSBs)
Rs + 32 -'>0 Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
Repeat count times

Repeat count times
*Rs -'>0 CRd (32 LSBs)
Rs + 32 -'>0 Rs

*Rs -'>0 CRd (32 MSBs)
Rs + 32 -'>0 Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 I 0 0 1 1 0 1 1 0 0 R I Rs

Default 10 {} 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bits of the first double-precision value to move
to the coprocessor

CRd Coprocessor destination register that holds the first 64-bit double-pre­
cision floating-point value

count Contains the number of 64-bit transfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 -'>0 15, then transfers = 2 x count

MOVD moves 64-bit double-precision values from memory beginning at the
address in Rs into coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented; after every two 32-bit transfers, the copro­
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 64-bit transfers made is determined by the con­
tents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

Rs Aligned
Rs Nonaligned

5 + ((countx 2) - 1)
6 + ((count x 2) - 1)

TMS34082 Pseudo-ops

Move, Double Precision, Indirect to Coprocessor (Postincrement), Constant Count MOVe
_~l'l'?,lIWll _~~l':I':lI_~m:;:o:::.un__ tmerl' r"l 'I" ';Itt::tT tt'S; ..

Instruction Type

Example

CMOVMC, postincrement, constant count

MOVD *A5+, RB7, 4

This example moves four 64-bit double-precision values from the TMS34020
memory location pOinted to by AS to coprocessor registers beginning with RB7.
After each 32-bit transfer, register AS is incremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. Count specifies that four 64-bit transfers
are made (eight 32-bit transfers).

14-49

MOVD !!ove, Doub/~ Precision, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

14-50

MOVD -*Rs, CRd [, count]

If TMS34082 LOAD bit = 0
Repeat count times

Rs-32 - Rs
*Rs - CRd (32 MSBs)
Rs-32 - Rs

*Rs - CRd (32 LSBs)
advance to next coprocessor

register

If TMS34082 LOAD bit = 1
Repeat count times

Rs-32 - Rs
*Rs - CRd (32 LSBs)
Rs-32 - Rs

*Rs - CRd (32 MSBs)
advance to next coprocessor

register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 I 0 0 1 1 0 1 1 0 0 R I Rs

Default 10 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect predecrement) containing the
address of the bit immediately following the 64-bits used to store the
first 64-bit double-precision floating-point value that is transferred

CRd Coprocessor destination register that holds the first 64-bit double­
precision floating-point value

count Contains the number of 64-bit transfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 - 15, then transfers = 2 x count

MOVD moves 64-bit double-precision values from memory beginning at the
address (Rs -32) into coprocessor registers beginning at CRd. Before each
32-bit transfer, the contents of Rs are decremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. The number of 64-bit transfers made is
determined by the contents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

RsAligned
Rs Nonaligned

5 + ((count x 2) -1)
6 + ((count x 2) -1)

TMS34082 Pseudo-ops

Instruction Type

Example

Move, Double Precision, Indirect to Coprocessor (Predecrement), Constant Count MOVD

CMOVMC, predecrement, constant count

MOVD -*AS, RB7, 4

This example moves four 64-bit double-precision values from the TMS34020
memory location pOinted to by (AS - 32) to coprocessor registers beginning
with RB7. Before each 32-bit transfer, register AS is decremented; after every
two 32-bit transfers, the coprocessor destination is advanced to the next regis­
ter in the coprocessor register sequence list. Count specifies that four 64-bit
transfers are made (eight 32-bit transfers).

14-51

MOVD Move, Double Precision, Coprocessor to Indirect (Postincrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

14-52

MOVD CRd, *Rd+ [, count]

If TMS34082 LOAD bit = 0
Repeat count times

CRd (32 MSBs) -+*Rd
Rd + 32 -+ Rd
CRd (32 LSBs) -+ *Rd
Rd + 32 -+ Rd
advance to next coprocessor

register

If TMS34082 LOAD bit = 1
Repeat count times

CRd (32 LSBs) -+ *Rd
Rd + 32 -+ Rd
CRd (32 MSBs) -+ *Rd
Rd + 32 -+ Rd
advance to next coprocessor

register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 1 R I Rd

1 I 0 Jo 0 1 1 1 1 1 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 64-bit double-precision
floating-point value to the TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address of
the first double-precision value transferred

count Contains the number of 64-bittransfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 -+ 15, then transfers = 2 x count

MOVD moves the 64-bit double-precision values from coprocessor registers
beginning at CRd to memory beginning at the address in Rd. After each 32-bit
transfer, Rd is incremented, and after every two transfers, the coprocessor reg­
ister is advanced to the next register in the coprocessor register sequence. The
number of 64-bit transfers made is determined by the contents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

Rd aligned
Rd nonaligned

5 + (count*2 - 1)
6 + (count*2 - 1)

CMOVCM, postincrement, constant count

TMS34082 Pseudo-ops

Example

Move, Double Precision, Coprocessor to Indirect (Postincrement), Constant Count MOVD

MOVD RB7, *A5+, 2

This example moves four 64-bit double-precision values from coprocessor
registers beginning at RB7 to TMS34020 memory pointed to by A5. After each
32-bit transfer, register A5 is incremented, and after every two transfers, the
coprocessor destination is advanced to the next register in the coprocessor
register sequence list. Count specifies that two 64-bit transfers are made (four
32-bit transfers).

14-53

~OVD M~ouble Precision, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

14-54

MOVD CRd, -*Rd [, count]

If TMS34082 LOAD bit = 0
Repeat count times

Rd-32 ~ Rd
CRd (32 MSBs) ~*Rd
Rd-32 ~ Rd
CRd (32 LSBs) ~ *Rd
advance to next coprocessor

register

If TMS34082 LOAD bit = 1
Repeatcount times

Rd-32 -+ Rd
CRd (32 LSBs) ~ *Rd
Rd-32 ~ Rd
CRd (32 MSBs) ~ *Rd
advance to next coprocessor

register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 0 1 1 0 1 1 0 R I Rd

1 I 0 I 0 0 1 1 1 1 1 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first double-precision value to
TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 64-bits used to store the first 64-bit
double-precision floating-point value that is transferred

count Contains the number of 64-bit transfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 ~ 15, then transfers = 2 x count

MOVD moves the 64-bit double-precision values from coprocessor registers
beginning at CRd to memory beginning at the address (Rd - 32). Before each
32-bit transfer, Rd is decremented; after every two 32-bit transfers, the copro­
cessor register is advanced to the next register in the coprocessor register
sequence. The number of 64-bit transfers made is determined by the contents
of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

Rd aligned
Rd nonaligned

5 + (count*2 - 1)
6 + (count*2 -1)

CMOVCM, predecrement, constant count

TMS34082 Pseudo-ops

Move, Double Precision, Coprocessor to Indirect (Predecrement), Constant Count MOVO
;"'U::I:~~'m:o:mRl'lt 'IImm:r YM«"" 'w 111

Example MOVD C RB7, -*A5, 2

This example moves two 64-bit double-precision values from coprocessor reg­
isters beginning at RB7 to TMS34020 memory painted to by (AS - 32). Before
each 32-bit transfer, register AS is decremented; after every two 32-bit trans­
fers, the coprocessor destination is advanced to the next register in the copro­
cessor register sequence list. Count specifies that two 64-bit transfers are
made (four 32-bit transfers).

14-55

MOVD Move, Double Precision, Coprocessor to Coprocessor

Syntax MOVD CRSt, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-56

CRS1- CRd

CRS1 Coprocessor source register A that holds the 64-bit double-precision
floating-point value

CRd Coprocessor destination register

MOVD moves a 64-bit double-precision value from CRs1 (register A) to CRd.

2

CEXEC, short

MOVD RA7, RB4

This example moves the 64-bit double-precision value from coprocessor regis­
ter RA7 to coprocessor register RB4.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Double Precision, Coprocessor to Coprocessor MOVD

MOVD CRS2, CRd

CRs2- CRd

r r~~#IM>I~~n:r ,

CRS2 Coprocessor source register B that holds the 64-bit double-precision
floating-point value

CRd Coprocessor destination register

MOVD moves a 64-bit double-precision floating-point value from CRs2 (regis­
ter B) to CRd.

2

CEXEC, short

MOVD RB3, RB4

This example moves the 640bit double-precision value from coprocessor regis­
ter RB3 to coprocessor register RB4.

14-57

MOVE_.,,~ove, Integer, One Register to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-58

MOVE Rs, CRd

Rs-CRd

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 0 0 1 R I Rs

o I 1 I 0 0 1 1 0 0 0 0 0 010 I 0 I 0 I 0

Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register for 32-bit integer value to coprocessor

CRd Coprocessor destination register to hold the 32-bit integer

MOVE moves the contents (integer) of Rs into CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

MOVE AS, RA7

This example moves the contents of TMS34020 register AS into coprocessor
register RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Two Registers to Coprocessor MOVE

RS1 -00 CRd
RS2 -00 CRd+1

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 0 1 0 R I RS1

o I 1 I 0 0 1 1 0 0 0 0 0 R I RS2

Default ID 0 0 0 0 0 0 0 0 CRd

o

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRd Coprocessor destination register that holds the first 32-bit integer val­
ue. The second integer will be placed in the next register in the copro­
cessor register sequence list.

MOVE moves the contents (integer) of RS1 and RS2 into CRd and CRd + 1.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MOVE AS, A6, RA7

This instruction moves the contents ofTMS34020 registers A5 and A6 into co­
processor register RA7 and RA8, respectively.

14-59

• .JIOVE Move, Integer, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-60

MOVE *Rs +, CRd, Rd

If RD = 0
Repeat 32 times

*Rs -+ CRd
Rs + 32 -+ Rs

advance to next coprocessor
register

If Rd = 1 -+ 31
Repeat Rd times

*Rs -+ CRd
Rs +32 -+ Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 1 R I Rd

1 I 0 I 0 0 1 1 0 0 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dress of the first 32-bit integer to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31

Q If Rd = 0, then 32 32-bit transfers are made

Q If Rd = 1 -+ 31, then Rd 32-bit transfers are made

MOVE moves integer values from memory beginning at the address in Rs into
coprocessor registers beginning at CRd. After each transfer, Rs is increm­
ented, and CRd is advanced to the next register in the coprocessor register se­
quence list. The number of 32-bit transfers made is determined by the contents
of Rd.

If Rd = 0 and
If Rd = 0 and
If Rd = 1 -+ 31 and
If Rd = 1 -+ 31 and

Rs is aligned
Rs is nonaligned
Rs is aligned
Rs is nonaligned

CMOVMC, postincrement, register count

MOVE *A5+, RA7, B7

36
37
5 + (Rd -1)
6 + (Rd -1)

This instruction moves integer values from TMS34020 memory location
pointed to by A5 to coprocessor registers beginning at RA7. After each 32-bit
transfer, register A5 is incremented, and the coprocessor destination is ad­
vanced to the next register in the coprocessor register sequence list. B7 holds
the number of 32-bit transfers to be made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Indirect to Coprocessor (Postincrement), Register Count MOVE

MOVE *Rs+, CRd, [, count]

Repeat count times
*Rs ->0 CRd
Rs + 32 ->0 Rs

advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 I 0 0 1 1 0 0 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dress of the first 32-bit integer to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

count Contains the number of 32-bit transfers to make. This value must be
in the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 ->0 31, then transfers = count

MOVE moves 32-bit integer values from memory beginning at the address in
Rs into coprocessor registers beginning at CRd. After each transfer, Rs is in­
cremented, and the coprocessor destination is advanced to the next register
in the coprocessor register sequence list. The number of 32-bit transfers made
is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count-1)
6 + (count -1)

CMOVMC, postincrement, constant count

MOVE *A5+, RB7, 4

This example moves four 32-bit integer values from TMS34020 memory loca­
tion pOinted to by A5 to coprocessor registers beginning at RB7. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. Count
specifies that four 32-bit transfers are made.

14-61

~9.,Y.'~M-11~ye, Int::.ger~!ndirect to Copro.,cessor (Predec:!!ment), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-62

MOVE -*Rs, CRd [, count]

Repeat count times
Rs-32 --+ Rs

*Rs --+ CRd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 I 0 0 1 1 0 0 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dress of the bit immediately after first 32-bit integer to move to the co­
processor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

count Contains the number of 32-bittransfers to make.This value must in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

Q If count = 32, then transfers = 0

Q If count = 1 - 31, then transfers = count

MOVE moves 32-bit integer values from memory beginning at the address in
(Rs - 32) into coprocessor registers beginning at CRd. Before each transfer,
the contents of Rs are decremented; after each transfer, the coprocessor desti­
nation is advanced to the next register in the coprocessor register sequence
list. The number of 32-bit transfers made is determined by the contents of
count.

Rs Aligned
Rs Nonaligned

S + (count-1)
6 + (count-1)

CMOVMC, predecrement, constant count

MOVE -*A5, RB7, 4

This example moves four 32-bit integer values from TMS34020 memory loca­
tion pointed to by (AS - 32) to coprocessor registers beginning at RB7. Before
each 32-bittransfer, register AS is decremented; after each transfer, coproces­
sor destination is advanced to the next register in the coprocessor register se­
quence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Coprocessor to Indirect (Postincrement), Constant Count MOVE

MOVE CRd, *Rd+ [, count]

Repeat count times
CRs ->- *Rd
Rd + 32 ->- Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 B 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 1 R I Rd

1 I 0 I 0 0 1 1 1 0 0 0 0 transfers

Default 10 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit integer value to
TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address
for the first integer transferred

count Contains the number of 32-bit transfers to make. This value must in
the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 ->- 31, then transfers = count

MOVE moves the 32-bit integer values from coprocessor registers beginning
at CRd to memory beginning at the address in Rd. After each 32-bit transfer,
Rd is incremented, and the coprocessor register is advanced to the next regis­
ter in the coprocessor register sequence. The number of 32-bittransfers made
is determined by the contents of count.

RsAligned
Rs Nonaligned

5 + (count - 1)
6 + (count - 1)

CMOVCM, postincrement, constant count

MOVE RB7, *A5+, 4

This example moves four 32-bit integer values from coprocessor registers be­
ginning at RB7 to TMS34020 memory pOinted to by A5. After each 32-bit trans­
fer, register A5 is incremented, and the coprocessor destination is advanced
to the next register in the coprocessor register sequence list. Count specifies
that four 32-bit transfers are made.

14-63

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-64

MOVE CRd, -*Rd [, count]

Repeat count times
Rd-32 -+ Rd
CRd -+ *Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o I 0 J 0 0 0 1 1 0 1 1 1 RJ Rd

1 I 0 I 0 0 1 1 1 0 0 0 0 transfers

Default 10 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit integer value to
TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 32-bits used to store the first 32-bit
integer value transferred

count Contains the number of 32-bit transfers to make. This value must in
the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 -+ 31, then transfers = count

MOVE moves the 32-bit integer values from coprocessor registers beginning
at CRd to memory beginning atthe address (Rd -32). Before each 32-bit trans­
fer, Rd is decremented; after each32-bit transfer, the coprocessor register is
advanced to the next register in the coprocessor register sequence. The num­
ber of 32-bit transfers made is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count - 1)
6 + (count - 1)

CMOVCM, predecrement, constant count

MOVE RB7, -*A5, 4

This example moves four 32-bit integer values from coprocessor registers be­
ginning at RB7 to TMS34020 memory pointed to by (A5 - 32). Before each
32-bit transfer, register A5 is decremented; after each 32-bit transfer, the co­
processor destination is advanced to the next register in the coprocessor regis­
ter sequence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Coprocessor to One Register MOVE
............... ~ W' n".... 'I'r=~ m;~ ::ft'ml~r4f~:<l'~~

MOVE CRd, Rd

CRd ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 0 1 1 R I
o

Rd

o I 1 I 0 0 1 1 1 0 0 0 0 010 I 0 I 0 I 0

Default ID 0 0 0 0 0 0 0 0 CRd

CRd Coprocessor source register holding the 32-bit integer value

Rd TMS34020 destination register

MOVE moves 32-bit integer from coprocessor register CRd to TMS34020 reg­
ister Rd.

S if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVCG, one register

MOVE RA7, AS

This example moves the contents of coprocessor register RA7 to TMS34020
register AS.

14-65

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-66

MOVE CRSt, CRd

CRS1 CRd

CRS1 Coprocessor source register A that holds the 32-bit integer value

CRd Coprocessor destination register

MOVE moves 32-bit integer value from CRS1 (register A) to CRd.

2

CEXEC, short

MOVE RA7, RB4

This example moves the 32-bit integer value from coprocessor register RA7
to coprocessor register RB4.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Coprocessor to Coprocessor MOVE
'AA' m~m~~m'Ai:il~ W';;<-~

MOVE CRs2, CRd

CRS2 - CRd

CRS2 Coprocessor source register B that holds the 32-bit integer value

CRd Coprocessor destination register

MOVE moves a 32-bit integer value from CRs2 (register B) to CRd.

2

CEXEC, short

MOVE RB3, RB4

This example moves the 32-bit integer value from coprocessor register RB3
to coprocessor register RB4.

14-67

MOVF Move, Single Precision, One Register to Coprocessor .
Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-68

MOVF Rs, CRd

Rs-CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 101 0 0 0 1 1 0 0 0 1 R I Rs

o I 1 I 0 0 1 1 0 1 0 0 0 010 I 0 I 0 I 0
Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRd Coprocessor destination register to hold the 32-bit single-precision
floating-point value

MOVF moves the contents (single-precision value) of Rs into CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

MOVF AS, RA7

This example moves the contents of TMS34020 register A5 into coprocessor
register RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Double Precision, Two Registers to Coprocessor MOVF

MOVF RS1, RS2, CRd

RS1 -)0 CRd
RS2 -)0 CRd+1

'M'R"_'fm"Wr~~ ::sEm:m;:'~I':iIJI'~IIiJP<I'~:II'~~l r t

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o J 0 I 0 0 0 1 1 0 0 1 0 R I RS1

o J 1 I 0 0 1 1 0 1 0 0 0 R I RS2

Default ID 0 0 0 0 0 0 0 0 CRd

o

RS1 TMS34020 source register for the first 32-bit single-precision float­
ing-point value to coprocessor

RS2 TMS34020 source registerforthe second 32-bitsingle-precision float­
ing-point value to coprocessor

CRd Coprocessor destination register to hold the first single~precision val­
ue. The second single-precision value will be placed in the next regis­
ter in the coprocessor register sequence list.

MOVF moves the contents (single-precision value) of RS1 and RS2 into CRd
and CRd+1.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MOVD AS, A6, RB7

This example moves the contents of TMS34020 registers AS and A6 into co­
processor registers RB? and RBS.

14-69

MOVF Move, Single Precision, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-70

MOVF *Rs+, CRd, Rd

If Rd = 0
Repeat 32 times

*Rs - CRd
Rs + 32 - Rs

advance to next coprocessor
register

If Rd = 1 - 31
Repeat Rd times

*Rs-CRd
Rs +32- Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 1 R I Rd

1 I 0 I 0 0 1 1 0 1 0 0 0 R I Rs

Default 10 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dr~ss of the first 32-bit single-precision floating-point value to move to
the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci­
sion floating-point value

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31

a If Rd = 0, then 32 32-bit transfers are made

a If Rd = 1 - 31, then Rd 32-bit transfers are made

MOVF moves 32-bit single-precision values from memory beginning at the ad­
dress in Rs into coprocessor registers beginning at CRd. After each transfer,
Rs is incremented, and CRd is advanced to the next register in the coprocessor
register sequence list. The number of 32-bit transfers made is determined by
the contents of Rd.

If Rd = 0 and
If Rd = o and
If Rd = 1 - 31 and
If Rd = 1 - 31 and

Rs is aligned
Rs is nonaligned
Rs is aligned
Rs is nonaligned

CMOVMC, postincrement, register count

MOVF *A5+, RB7, B7

36
37
S + (Rd-1)
6 + (Rd-1)

This instruction moves 32-bit single-precision values from TMS34020 memory
location pOinted to by AS to coprocessor registers beginning at RA7. After each
32-bit transfer, register AS is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. 87
holds the number of 32-bit transfers to be made.

TMS34082 Pseudo-ops

Move, Single Precision, Indirect to Coprocessor (Postincrement), Constant Count MOVF
~«=;~~'i<=~~~ ~Jrl'll~_mm IZr~I'I'!l"::m= I I'II:'I'$(~'«W_

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF *Rs+, CRd [, count]

Repeat count times
*Rs -00 CRd
Rs + 32 -00 Rs

advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 I 0 0 1 1 0 1 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bit single-precision floating-point value to move
to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci­
sion floating-point value

count Contains the number of 32-bit transfers to make.This value must in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

Q .If count = 32, then transfers = 0

Q If count = 1 -00 31, then transfers = count

MOVF moves 32-bit single-precision values from memory beginning at the
address in Rs into coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. The
number of 32-bit transfers made is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count - 1)
6 + (count-1)

CMOVMC, postincrement, constant count

MOVF *A5+, RB7, 4

This example moves four 32-bit single-precision values from TMS34020
memory location pointed to by A5 to coprocessor registers beginning at RB7.
After each 32-bittransfer, register A5 is incremented, and the coprocessor des­
tination is advanced to the next register in the coprocessor register sequence
list. Count specifies that four 32-bit transfers are made.

14-71

MOVF Move, Sing!!E.recision, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-72

MOVF -*Rs, CRd [, count]

Repeat count times
Rs-32 - Rs
*Rs - CRd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 I 0 0 1 1 0 1 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the bit immediately after first 32-bit single-precision float­
ing-point value to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci­
sion floating-point value

count Contains the number of 32-bit transfers to make. This value must be
in the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 - 31, then transfers = count

MOVF moves 32-bit single-precision values from memory beginning at the
address (Rs - 32) into coprocessor registers beginning at CRd. Before each
transfer, the contents of Rs are decremented; after each transfer, the copro­
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 32-bit transfers made is determined by the con­
tents of count.

Rs Aligned
Rs Nonaligned

5 + (count-1)
6 + (count-1)

CMOVMC, predecrement, constant count

MOVF -*A5, RB7, 4

This example moves four 32-bit single-precision values from TMS34020
memory location pOinted to by (A5 - 32) to coprocessor registers beginning at
RB7. Before each 32-bit transfer, register A5 is decremented; after each trans­
fer, the coprocessor destination is advanced to the next register in the copro­
cessorregister sequence list. Count specifies that four 32-bit transfers are
made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Single Precision, Coprocessor to Indirect (Postincrement), Constant Count MOVF

MOVF CRd, *Rd+ [, count]

Repeat count times
CRd -*Rd
Rd + 32 - Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o J 0 .1 0 0 0 1 1 0 1 0 1 R 1 Rd

1 1 0 1 0 0 1 1 1 1 0 0 0 transfers

Default 10 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit single-precision float­
ing-point value to TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address
for the first 32-bit single-precision floating-point value transferred

count Contains the number of 32-bit transfers to make. This value must be
in the range 1 to 32; the default value is 1. Count determines the value
of transfers:

[J If count = 32, then transfers = 0

[J If count = 1 - 31, then transfers = count

MOVF moves the 32-bit single-precision values from coprocessor registers
beginning at CRd to memory beginning atthe address in Rd. After each 32-bit
transfers, Rd is incremented, and the coprocessor register is advanced to the
next register in the coprocessor register sequence. The number of32-bit trans­
fers made is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count-1)
6 + (count-1)

CMOVCM, postincrement, constant count

MOVF RB7, *A5+, 4

This example moves four 32-bit Single-precision values from coprocessor reg­
isters beginning at RB7 to TMS34020 memory pointed to by A5. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. Count
specifies that four 32-bit transfers are made.

14-73

MOVF Move, Single Precision, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-74

MOVF CRd, -*Rd [, count]

Repeat count times
Rd-32 - Rd
CRd -*Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 0 R I Rd

1 I 0 I 0 0 1 1 1 1 0 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit single-precision float­
ing-point value to TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 32-bits used to store the first 32-bit
single-precision floating-point value transferred

count Contains the number of 32-bit transfers to make.This value must in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

!J If count = 32, then transfers = 0

!J If count = 1 - 31, then transfers = count

MOVF moves the 32-bit single-precision values from coprocessor registers
beginning at CRd to memory beginning at the address (Rd - 32). Before each
32-bit transfer, Rd is decremented; after each transfer, the coprocessor regis­
ter is advanced to the next register in the coprocessor register sequence. The
number of 32-bit transfers made is determined by the contents of count.

RsAligned
Rs Nonaligned

5 + (count-1)
6 + (count-1)

CMOVCM, predecrement, constant count

MOVF RB7, -*A5, 4

This example moves four 32-bit single-precision values from coprocessor reg­
isters beginning at RB7 to TMS34020 memory pointed to by (A5-32). Before
each 32-bit transfer, register A5 is decremented; after each 32-bit transfer, the
coprocessor destination is advanced to the next register in the coprocessor
register sequence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Single Precision, Coprocessor to One Register MOVF

MOVF CRd, Rd

CRd- Rd

15 14 13 12 11 10 9 a 7 6 5 4 3 2 .

0101 0 0 0 1 1 0 0 1 1 R 1 Rd

o

o 1 1 1 0 0 1 1 1 1 0 0 0 o 1 0 1 0 1 0 10

Default 10 0 0 0 0 0 0 0 0 CRd

CRd Coprocessor source register for the 32-bit single-precision float-
ing-point value

Rd TMS34020 destination register

MOVF moves the contents (single-precision value) of CRd to Rd.

5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVGC, one register

MOVF RA7, AS

This example moves the 32-bit single-precision value from coprocessor regis­
ter RA7 to TMS34020 register A5.

14-75

MOVF Move, Single Precision, Coprocessor to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-76

MOVF CRS1, CRd

CRS1- CRd

CRS1 Coprocessor source register A that holds the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MOVF moves the contents (single-precision value) of CRS1 (register A) to
CRd.

2

CEXEC, short

MOVF RA7, RB4

This example moves the 32-bit single-precision value from coprocessor regis­
ter RA7 to coprocessor register RB4.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF CRS2, CRd

CRs2- CRd

Move, Single Precision, Coprocessor to Coprocessor MOVF

CRS2 Coprocessor source register B that holds the 32-bit single-precision
floating-point value

CRd Coprocessor destination register

MOVF moves 32-bit single-precision value from CRs2 (register B) to CRd.

2

CEXEC, short

MOVF RB3, RB4

This example moves the 32-bit single-precision value from coprocessor regis­
ter RB3 to coprocessor register RB4.

14-77

MPYD Multiply, Dou,ble Precision

Syntax

Execution

Instruction Words

Operands

Description

Mac/.Jine States

Instruction Type

Example

14-78

MPYD CRSt, CRs2, CRd

CRs1 x CRS2 - CRd

CRS1 Coprocessor register containing the first 64-bit double-precision floa­
ting-point operand

CRs2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

M PYS multiplies the contents (double-precision value) of CRS1 by the contents
of CRS2 and stores the result in CRd.

2

CEXEC, short

MPYD RA5, RB6, RA7

This example multiplies the contents of RA5 by RB6 and stores the result in
RA7. .

TMS34082 Pseu(io-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Multiply, Single Precision MPYF

MPYF CRSt, CRS2, CRd

CRS1 Coprocessor register containing the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MPYF multiplies the contents (single-precision value) of CRs1 by the contents
of CRs2 and stores the result in CRd.

2

CEXEC, short

MPYF RA5, RB6, RA7

This example multiplies the contents of RA5 by RB6 and stores the result in
RA7.

14-79

MPYF Load and Multiply, Single Precision
*~~~:"'>m:>~=:>:'>:::«_""''W''''=s::;::<m;~~~~~-=~> __ ~;g.,<;I>_~ __ ffi>},:,:~~~~~ __ ''''~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

. 14-80

RS1 - CRs1
RS2 - CRs2
CRs1 x CRs2 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

01 1 I 0 1 I 0 I 0 I 0 1 I 0 I 0 I 0 R I RS2

Default 10 CRs1 CRs2 CRd

TMS34020 source register for the first 32-bit single-precision float­
ing-point value to coprocessor

TMS34020 source registerforthe second 32-bitsingle-precision float­
ing-point value to coprocessor

CRs1 Coprocessor register to contain the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MPYS loads the contents (single-precision value) of RS1 and RS2 into CRs1
and CRs2 respectively, multiplies CRs1 x CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MPYF A5, A6, RA5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, multiplies the contents of RA5 by RB6, and stores
the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MPYS CRs1, CRs2, CRd

CRs1 x CRs2 ---;> CRd

Multiply, Integer MPYS

CRS1 Coprocessor register containing the first 32-bit integer operand

CRs2 Coprocessor register containing the second 32-bit integer operand

CRd Coprocessor destination register

MPYS multiplies the contents (integer) of CRs1 by the contents of CRs2 and
stores the result in CRd.

2

CEXEC, short

MPYS RA5, RB6, RB7

This example multiplies the contents of RA5 by RB6 and stores the result in
RB7.

14-81

MPYS Load and Multiply, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-82

RS1 -+ CRS1
RS2 -+ CRs2
CRs1 x CRS2 -+ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o L 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 1 I 0 I 0 I 0 010 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRS1 Coprocessor register to contain the first 32-bit integer operand

CRs2 Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

MPYS loads the contents (integer) of RS1 and RS2 into CRS1 and CRS2 respec­
tively, multiplies CRs1 x CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MPYS A5, A6, RA5, RB6, RB7

This example loads TMS34020 registers AS and A6 into coprocessor registers
RAS and RB6, multiplies the contents of RAS by RB6, and stores the result in
RB7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Negate, Integer, 25 Complement NEG

NEG CRs, CRd

-CRs- CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

NEG takes the 2s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NEG RAS, RB7

This example takes the 2s complement of the contents of RA5 and stores the
result in RS?

14-83

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-84

NEG Rs, CRs, CRd

Rs --+ CRs
-CRs --+ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 o I 0 J 0 101 0

Default 10 CRs 0 0 1 1 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

NEG loads the contents (integer) of Rs into CRs, takes the 2s complement of
the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, one register

NEG AS, RAS, RB7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the 2s complement of the contents of RA5, and stores the result in RB7:

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

NEGD CRs, CRd

-CRs- CRd

Negate, Double Precision NEGD

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

NEGD negates the contents (double-precision value) of register CRs and
stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NEGD RAS, RB7

This example negates the contents of RA5 and stores the result in RB7.

14-85

NEGF Negate, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-86

NEGF CRs, CRd

-CRs-CRd

CRs Coprocessor register containing the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

NEGF negates the contents (single-precision value) of CRs and stores the re­
sult in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NEGF RAS, RA 7

This example negates the contents of RA5 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Negate, Single Precision NEGF

NEGF Rs, CRs, CRd

Rs -00 CRs
-CRs -00 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0

Default ID CRs 0 0 1 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

NEGF loads the contents (single-precision value) of Rs into CRs, negates the
contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

NEGF AS, RAS, RB7

This example loads TMS34020 register AS into coprocessor register RAS ne-
gates the contents of RAS, and stores the result in RB7. '

14-87

NOT Not, Integer, 15 Complement

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-88

NOT CRs, CRd

NOTCRs-CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

NOT takes the 1 s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NOT RAS, RA7

This example takes the 1 s complement of the contents of RA5 and stores the
result in RA7.

TMS34082 P5eudo-op5

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Not, Integer, 1s Complement NOT

NOT Rs, CRs, CRd

Rs - CRs
NOTCRs - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 010 I 1 I 1 0 0 0 1 R I Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 1 0 1
Default ID CRs 0 0 0 1 CRd

o

01 0

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

NOT loads the contents (integer) of Rs into the CRs, takes the 1 s complement
of the contents of register CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

NOT AS, RAS, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the 1 s complement of the contents of RA5, and stores the result in RA7:

14-89

SQR Square, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-90

SQR CRs, CRd

CRs x CRs -+ CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

SQR squares the contents (integer) of CRs and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQR RAS, RA7

This example squares the contents of RA5 and stores the result in register
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Square, Integer SQR

SQR Rs, CRs, CRd

Rs- CRs
CRs xCRs - CRd

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 I 0 I 0 I 0

Default 10 CRs 1 0 0 0 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

SQR loads the contents (integer) of RS into CRs, squares the contents of CRs,
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQR AS, RAS, RB7

This example loads TMS34020 register A5 into coprocessor register RA5
squares the contents of RA5, and stores the result in RB7. '

14-91

SQRD Square, Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-92

SQRD CRs, CRd

CRs x CRs - CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

SQRD squares the contents (double-precision value) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRD RA5, RA7

This example squares the contents of RA5 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Square, Single Precision SQRF

SQRF CRs, CRd

CRs x CRs -')0 CRd

CRs Coprocessor source register containing the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRF squares the contents (single-precision value) of CRs and stores the re­
sult in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRF RA5, RB7

This example squares the contents of RA5 and stores the result in RB7.

14-93

SQRF Load and Square, Single Pr~~~n

Syntax SQRF Rs, CRs, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-94

Rs ->0 CRs
CRs x CRs ->0 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 0 0 0 1 R I Rs

01 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0

Default ID CRs 1 0 0 0 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision float­
ing-point operand

CRd Coprocessor destination register

SQRF loads the contents of Rs into CRs, squares the contents
(single-precision value) of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRF A5, RA5, RB7

This example loads TMS34020 register A5 into coprocessor register RA5
squares the contents of RA5, and stores the result in RS7. '

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Square Root, Integer SQRT
~r ~='lI:;~~

SQRT CRs, CRd

ICRs -+ CRd

CRs Coprocessor register containing the 32-bit integer operand

CRd Coprocessor destination register

SORT takes the square root of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRT RAS, RB7

This example takes the square root of the contents of RA5 and stores the result
in RB?

14-95

SORT Load and Square Root, Integer
~==~~=~~~M:::::::~;:"~~~~~>m:o:~~~~~~~~~~=~~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-96

SQRT Rs, CRs, CRd

Rs ~ CRs

/CRs ~ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 I 0 I 0 I 0

Default ID CRs 1 0 0 1 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

SQRT loads the contents (integer) of Rs into CRs, takes the square root of the
contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRT AS, RAS, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the square root of the contents of RA5, and stores the result in RA7. '

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Square Root, Double Precision SQRTO

SQRTO CRs, CRd

./CRs - CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

SQRTO takes the square root of the contents (double-precision value) of CRs
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRTD RAS, RA7

This example takes the square root ofthe contents of RA5 and stores the result
in RA7.

14-97

SQRTF Square Root, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-98

SQRTF CRs, CRd

JCRs- CRd

CRs Coprocessor register containing the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRTF takes the square root of the contents (single-precision value) of CRs
and stores the result in CRd.

The source register, eRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRTF RAS, RA 7

This example takes the square root of the contents of RA5 and stores the result
in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SQRTF Rs, CRs, CRd

Rs -00 CRs

JCRs -00 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0

Default ID CRs 1 0 0 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRTF loads the contents (single-precision value) of Rs into CRs, takes the
square root of the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRTF AS, RAS, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the square root of the contents of RA5, and stores the result in RA7. '

14-99

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-100

SUB CRS1, CRS2, CRd

CRs1 - CRS2 ->0 CRd

CRs1 Coprocessor A register containing the 32-bit minuend integer operand

CRs2 Coprocessor B register containing the 32-bit subtrahend integer oper-
and

CRd Coprocessor destination register

SUB subtracts the contents (integer) of CRS2 from CRs1 and stores the result
in CRd.

2

CEXEC, short

SUB RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Subtract, Integer, (A Register - B Register) SU B

RS1 ->0 CRs1
RS2 ->0 CRs2
CRs1 - CRS2 ->0 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 o I 0 I 0 I 1 o I 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

TMS34020 source register for the first (minuend) 32-bit integer value
to coprocessor

RS2 TMS34020 source register for the second (subtrahend) 32-bit integer
value to coprocessor

CRs1 Coprocessor A register to contain the 32-bit minuend integer operand

CRS2 Coprocessor B register to contain the 32-bit subtrahend integer
operand

CRd Coprocessor destination register

SUB loads the contents (integer) of RS1 and RS2 into CRs1 and CRs2 respec­
tively, subtracts the contents of CRS2 from CRs1, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUB AO, B6, RA5, RB3, RA7

This example loads TMS34020 registers AO and B6 into coprocessor registers
RA5 and RB3, subtracts the contents of RB3 from RA5, and stores the result
in RA7.

14-101

SUB Subtract, Integer, (8 Register-A Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-102

SUB CRs2, CRs1, CRd

CRS2 - CRS1 - CRd

CRS1 Coprocessor A register containing the 32-bit subtrahend integer oper-
and

CRs2 Coprocessor B register containing the 32-bit minuend integer operand

CRd Coprocessor destination register

SUB subtracts the contents (integer) of CRS1 from CRS2 and stores the result
inCRd.

2

CEXEC, short

SUB RB5, RA3, RA7

This example subtracts the contents of RA3 from RBS and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Subtract, Integer, (8 Register -A Register) SUB

RS1 - CRs1
RS2 - CRS2
CRs2 - CRs1 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 o I 0 I 1 I 1 01 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

TMS34020 source register for the first (subtrahend) 32-bit integer val­
ue to coprocessor

RS2 TMS34020 source register for the second (minuend) 32-bit integer
value to coprocessor

CRS1 Coprocessor A register to contain the 32-bit subtrahend integer
operand

CRS2 Coprocessor B register to contain the 32-bit minuend integer operand

CRd Coprocessor destination register

SUB loads the contents (integer) of RS1 and RS2 into CRs1 and CRs2 respec­
tively, subtracts the contents of CRs1 from CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUB B6, AO, RB5, RA3, RA7

This example loads TMS34020 registers B6 and AO into coprocessor registers
RB5 and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

14-103

~ ~ B ~'" ~ub!!:.~ct, Double Precision, (A Register - B Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-104

SUBD CRSt, CRs2, CRd

CRS1 Coprocessor A register containing the minuend 64-bit double-preci­
sion floating-point operand

CRs2 Coprocessor B register containing the subtrahend 64-bit double-
precision floating-point operand

CRd Coprocessor destination register

SUBD subtracts the contents (double-precision value) of CRS2 from CRs1 and
stores the result in CRd.

2

CEXEC, short

SUBD RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Subtract, Double Precision, (8 Register-A Register) SUBD

SUBD CRS2, CRSt, CRd

CRs2 - CRs1 --;> CRd

CRS1 Coprocessor A register containing the subtrahend 54-bit double-pre­
cision floating-point operand

CRs2 Coprocessor B register containing the minuend 54-bit double-preci-
sion floating-point operand

CRd Coprocessor destination register

SUBD subtracts the contents (double-precision value) of CRs1 from CRS2 and
stores the result in CRd.

2

CEXEC, short

SUBD RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the result in
RA7.

14-105

~UBF Subtract, Single Precision, (A Register - B Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-106

SUBF CRSt, CRS2, CRd

CRs1 - CRs2 -+ CRd

CRS1 Coprocessor A register containing the minuend 32-bitsingle-precision
floating-point operand

CRs2 Coprocessor B register containing the subtrahend 32-bit single-preci-
sion floating-point operand

CRd Coprocessor destination register

SUBF subtracts the contents (single-precision value) of CRs2 from CRs1 and
stores the result in CRd.

2

CEXEC, short

SUBF RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Load and Subtract, Single Precision, (A Register - B Register) SUBF
~~=~~~~_=m_=-= __ "=*~~~~w __ =m~~~=--= __ -= ____ ~ ________ . ____________ ~ ____ ___

Execution RS1 - CRs1
RS2 - CRs2

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CRS1 - CRS2 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o J o[0 o 1 0 1 1 1 1 o 1 0 1 1 1 0 R 1 RS1

o I 1 1 0 0[OJ O I1 1 I 0 1 0 1 0 R 1 RS2

Default ID CRs1 CRs2 CRd

TMS34020 source register for the first (minuend) 32-bit single-preci­
sion floating-point value to coprocessor

TMS34020 source register for the second (subtrahend) 32-bit
single-precision floating-point value to coprocessor

CRs1 Coprocessor A register to contain the minuend 32-bit single-precision
floating-point operand

CRS2 Coprocessor 8 register to contain the subtrahend 32-bit single-preci-
sion floating-point operand

CRd Coprocessor destination register

SU8F loads the contents (single-precision value) of RS1 and RS2 into CRs1
and CRs2 respectively, subtracts the contents of CRS2 from CRS1, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUBF AO, B6, RA5, RB3, RA7

This example loads TMS34020 registers AO and 86 into coprocessor registers
RA5 and R83, subtracts the contents of R83 from RA5, and stores the result
in RA7.

14-107

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-108

SUBF CRS2, CRSt, CRd

CRS2 - CRs1 - CRd

CRS1 Coprocessor A register containing the subtrahend 32-bit single-preci­
sion floating-point operand

CRs2 Coprocessor B register containing the minuend 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SUBF subtracts the contents (single-precision value) of CRs1 from CRs2 and
stores the result in CRd.

2

CEXEC, short

SUBF RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Subtract, Single Precision, (B Register-A Register) SUBF

RS1 -+ CRs1
RS2 -+ CRS2
CRS2 - CRS1 -+ CRd

<:;'"l'I' ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o 1 1 1 0 010J 1 1 1 1 I 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

RS1 TMS34020 source register for the first (subtrahend) 32-bit single-pre­
cision floating-point value to coprocessor

RS2 TMS34020 source register forthe second (minuend) 32-bit single-pre­
cision floating-point value to coprocessor

CRs1 Coprocessor A register to contain the subtrahend 32-bit single-preci­
sion floating-point operand

CRs2 Coprocessor B register to contain the minuend 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SUBF loads the contents (single-precision value) of RS1 and RS2 into CRS1
and CRS2 respectively, subtracts the contents of CRs1 from CRS2, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUBF B6, AO, RB5, RA3, RA7

This example loads TMS34020 registers B6 and AO into coprocessor registers
RB5 and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

14-109

14-110 TMS34082 Pseudo-ops

Chapter 15

Instruction Timin

This chapter summarizes the timings of the TMS34020 assembly-language
instruction set. It contains two sections:

Section Page

These sections are divided 15.1 Timing for All Instructions
between MOVE and MOVB Except MOVEs and MOVBs 15-2

instructions and the remainder of 15.2 Timing for MOVE and
the instructions. MOVB Instructions 15-10

Please note these characteristics about the timings listed in this book:

o Numbers identify TMS34020 machine states.

o All timings assume that the cache is enabled and that the instruction is in
the cache.

o Numbers in parentheses identify hidden cycles.

The TMS34020 may execute some instructions in parallel, "hiding" some
instruction states. Hidden cycles are memory-write cycles that occur at the
end of an instruction. The machine states consumed by the instruction that
the CPU is executing hide the machine states consumed by the write
cycles. These hidden cycles are not counted against he instruction that in­
curs them, but are counted against subsequent instructions. If an instruc­
tion uses the local bus before all of the hidden cycles have been over­
lapped by subsequent instructions, that instruction must wait for the hid­
den cycles to complete.

o These timings assume that

• All memory requests are granted when requested; no higher priority
memory requests are pending.

• When the CPU requests page-mode access, the memory grants it.

• No wait states occur.

• No retries occur.

15-1

Timing for AI/Instructions Except MOVEs and MOVBs
1~ :::;!1'<':"W <:" m ll'SllC M!m

15.1 Timing for All Instructions Except MOVEs and MOVBs

This section lists the instructions for all instructions except the MOVE and
MOVB instructions. Please note that

Q If the timing for an instruction states that this is a complex instruction,
than no simple formula is available for providing the timing for the instruc­
tion. The number of machine states consumed by this instruction's execu­
tion will vary depending on the circumstances of its execution.

Q Instruction timing for graphics instructions varies, depending on the pixel­
processing option you've selected. The timing formulas for graphics in­
structions (such as DRAV and LINE) ask you to add the values shown in
Table 15-1 into your timing calculations.

Table 15-1. Effects of Pixel-Processing Options on Graphics Instructions

Instruction

ASS

ADD

ADDC

ADDI (short)

ADDI (long)

ADDK

ADDXY

ADDXYI

AND

15-2

Number of Cycles Required for the Following
Pixel Sizes

Pixel-Processing Option 1

Replace 0(2)

ADD -

ADDS -
SUB -

SUBS -
MAX -
MIN -

PPCODE 2 (2)

Number of machine cycles
consumed by instruction execution

1

1

2

2 if the immediate data is long-word aligned
3 if the immediate data is not long~word aligned

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

20r4

0(2)

2 (2)

3 (2)

2 (2)

3 (2)

3 (2)

3 (2)

2 (2)

8,16,or32

0(1)

2 (1)

3 (1)

2 (1)

3 (1)

3 (1)

3 (1)

2 (1)

Instruction Timing

Instruction

ANDI

ANON

ANDNI

BLMOVE

BT8T (constant)

BT8T (register)

CALL

CALLA

CALLR

CEXEC (long)

CEXEC (short)

CLIP

CLR

CLRC

CMOVCG

CMOVCM (count*+)

CMOVCM (count-*)

CMOVCS

CMOVGC (one register)

CMOVGC (two registers)

for AI/Instructions

Number of machine cycles
consumed by instruction execution

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

complex instruction

3 + (1) if the 8P is aligned
3 + (4) if the 8P is not aligned

MOVEs and MOVBs

3 if immediate data is long-word aligned, 4 if 8P is also long-word aligned
3+(3) if immediate data is not long-word aligned, 4+(3) if SP is also not long­

word aligned

3 + (1) if the SP is long-word aligned
3 + (4) if the 8P is long-word not aligned

2 (1) if the immediate data is long-word aligned
3 (1) if the immediate data is not long-word aligned

2 (1)

complex instruction

Single: 4 if the immediate data is long-word aligned
5 if the immediate data is not long-word aligned

Double: 5 if the immediate data is long-word aligned
6 if the immediate data is not long-word aligned

5 + [count-1] if the immediate data is long-word aligned
6 + [count-1] if it is not
(count is the number of 32-bit transfers)

5 + [count-1] if the immediate data is long-word aligned
6 + [count-1] if it is not
(count is the number of 32-bit transfers)

4 if the immediate data is long-word aligned
5 if it is not

2 (1) if the immediate data is long-word aligned
3 (1) if it is not

3 (1) if the immediate data is long-word aligned
4 (1) if it is not

15-3

Timing for AI/Instructions Except MOVEs and MOVBs
W"':<,:':";;VM:::'».,<;<~~,'~~r<~~:::;,:::~~==<~=~~<:':::;:::'::::m.<._:~_:.:::~-...~"""~--=:*:l':~"",~~~~'&'~~~=~"""-==~_M<~=~~~"''''''''''''~=~:;:=_=1mm'

instruction

CMOVMC (constant*+)

CMOVMC (constant*-)

CMOVMC (register*+)

CMP

CMPI (long)

CMPI (short)

CMPK

CMPXY

CPW

CVDXYL

CVMXYL

CVSXYL

CVXYL

DEC

DINT

DIVS

DIVU

15-4

Number of machine cycles
consumed by instruction execution

5 + [constant-1] if the immediate data is long-word aligned
6 + [constant-1] if it is not
(constant is the number of 32-bit transfers)

5 + [constant-1] if the immediate data is long-word aligned
6 + [constant-1] if it is not
(constant is the number of 32-bit transfers)

5 + [register value-1] if the immediate data is long-word aligned
6 + [register value-1] if it is not
(the register value is the number of 32-bit transfers)

2 if the immediate data is long-word aligned
3 if it is not

2

pitch is a power of 2: 2
2 powers of 2: 3
arbitrary: 14

pitch is a power of 2: 2
2 powers of 2: 3
arbitrary: 14

pitch is a power of2: 2
2 powers of 2: 3
arbitrary: 14

pitch is a power of2: 3
2 powers of 2: 4
arbitrary: 15

3

Rd Odd: 39 (normal case)
41 (if result = 80000000h)
7 (if Rs = 0)

Rd Even: 40 (normal case)
41 (if result = 80000000h)

7 (if Rs = 0 or Rs s Rd)

Rd Odd: 37 (normal case)
7 (if Rs = 0)

Rd Even: 37 (normal case)

5 (if Rs = 0 or Rs s Rd)

Instruction Timing

Instruction

DRAV

Key: P
CD

DSJ

DSJEQ

DSJNE

DSJS

EINT

EMU

EXGF

EXGPC

EXGPS

FILLL

FILLXY

FLiNE

FPIXEQ

FPIXNE

GETPC

GETPS

GETST

IDLE

INC

Timing for AI/Instructions Except MOVEs and MOVBs

Number of machine cycles
consumed by instruction execution

Window option
inside

outside

o 1
4+P+CD 5
4+P+CD 3

Selected pixel-processing option; see Table 15-1.

..

2 3
4+P+CD 4+P+CD
5 3

Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con­
tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.

2 if no jump
~

3 if jump

2 if no jump
3 if jump

2 if no jump
3 if jump

2 if no jump
3 if jump

3

8 (more if the TMS34020 enters emulation mode)

1 if Fa
2 if F1

2

2 (1)

complex Instruction

complex instruction

12 + 3CD + [2 + P]E + 3

Key: P Selected pixel-processing option; see Table 15-1. If the number of
hidden cycles is greater than 1, then P = P + (hidden cycles -1).

E Total number of pixels drawn.
CD Complexity of destination pitch. CD = a ifCONVDP contains a pow­

er of 2; CD = 1 if CONVDP contains a sum of powers of 2; CD =
12 if CONVDP contains an arbitrary pitch.

complex instruction

complex instruction

2

1

minimum execution time of 1 cycle before taking interrupt
EMU: 5 cycles min before responds to halt
NMI mode1: 8
NMI modea, HINT, DPYINT, WINT, INT1, or INT2: 11 if SP aligned, else 13

15-5

Timing for AI/Instructions Except MOVEs and MOVBs

instruction

JAcc

JRcc (short)

JRcc (long)

JUMP

LINE

Key: P
WV
Q
E
CD

LlNIT

LMO

MMFM

MMTM

MODS

MODU

Number of machine cycles
consumed by instruction execution

3 if no jump, else 4

1 if no jump, else 2

2 if no jump, else 3

2

Window option 0:

Window option 1:

13 + 3CD + [3 +P]E + 2

13 + 3CD + [3 +P]Q + 2

Window option 2: 13 + 3CD + [3 +P]E + WV + 2

Window option 3: 13 + 3CD + [3 +P]E + 3Q + 2

Selected pixel-processing option; see Table 15-1, but ignore the hidden cycles.
=3 if there is a window violation, = a otherwise.
Total number of pixels calculated but not drawn.
Total number of pixels drawn.
Complexity of destination pitch. CD = a ifCONVDP contains a powerof2; CD = 1 ifCONVDP con­
tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.

9

registers moved 1 2 3 4 n
cycles 6 7 8 9 n+5

registers moved 1 2 3 4 n
long-word aligned 4(1) 6(1) 7(1) 8(1) [4+n](1)

byte aligned 4(1) 8(1) 9(1) 10(1) [6+n](1)
bit aligned 4(2) 9(2) 10(2) 11 (2) [7 + n](1)

Note: Add 1 to all timings if the MMTM instruction is not long-word aligned.

40
41 if result = 8000 aOaOh
3 if Rs = a
35
3 if Rs = a

MOVERs, Rd

MOVI (long)

MOVI (short)

MOVK

MOVX

MOVY

MPYS

MPYU

15-6

2 if immediate data is long-word aligned
3 if it isn't

2

Rs negative: 5 + (field size 1)/2
Rs positive: 6 + (field size 1)/2

5 + (field size 1)/2

Instruction Timing

Timing for All Instructions Except MOVEs and MOVBs,_'_"WI_~l"l'_"'''''' .. ______ I~m_~_.~;~ ""''$l'~_g_J:'~ __ =:rr~_Wl~,.._t u_c._m'''''''_:::l'IJ:_ •• =mm:' ____ fZ_Wl}'I_1I' m::w J:' A'I-'"

Instruction

MWAIT

NEG

NEGB

NOP

NOT

OR

ORI

PFILL

PIXBLT B, L

PIXBLT B, XV

PIXBLT L, L

PIXBLT L, M, L

PIXBLT L, XV

PIXBLTXV, L

PIXBLT XV, XV

PIXT Rs, *Rd

PIXT Rs, *Rd.xV

PIXT*Rs, Rd

PIXT *Rs, *Rd

PIXT *Rs.XV, Rd

PIXT *Rs.XV, *Rd.XY

Number of machine cycles
consumed by instruction execution

minimum of2

2 if immediate data is long-word aligned
3 if it isn't

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

2+P

Window option

3

inside
outside

4+P

6+CS

o
4+CD+P
4+CD+P

1
5
3

Window option o 1 2

2 3
4+CD+P 3+CD+P
5+CD 3+CD

3
inside

outside
7+CS+CD+P 5
7+CS+CD+P 3

7+CS+CD+P 7+CS+CD+P
5+CD 3+CD

Key: P Selected pixel-processing option; see Table 15-1 (page 15-2).
CD Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con­

tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.
CS

POPST

PUSHST

PUTST

Complexity of source pitch. CS = 0 if CONVSP contains a power of 2; CS = 1 if CONVSP contains
a sum of powers of 2; CS = 12 if CONVSP contains an arbitrary pitch.

6 if the SP is aligned
7 if it isn't

2 (1) if the SP is aligned
2 (2) if it isn't

3

15-7

Timing for All Instructions Except MOVEs and MOVBs

Instruction

RETI

RETM

RETS

REV

RL (constant)

RL (register)

RMO

RPIX

SETC

SETCDP

SETCMP

SETCSP

SETF

SEXT

SLA (constant)

SLA (register)

SLL (constant)

SLL (register)

SRA (constant)

SRA (register)

SRL (constant)

SRL (register)

15-8

':N':~':t::~~ __ .."..,= ,....._,...."."""""..,.",_",","", __

Number of machine cycles
consumed by instruction execution

52 if SF status bit = 1
38 if IX status bit = 1
else 7

52 if SF status bit = 1
38 if IX status bit = 1
else 10

5
6 if the stack isn't aligned

2 if PSIZE = 32
4 if PSIZE = 16
5 if PSIZE = 8
6 if PSIZE = 4
7 if PSIZE = 2
8 if PSIZE = 1

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3 (1)

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3(1)

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3(1)

2

3

3

Instruction Timing

Instruction

SUB

SUBB

SUBI (long)

SUBI (short)

SUBK

SUBXY

SWAPF

TFILL

TRAP

TRAPL

VBLT

VFILL

VLCOL

XOR

XORI

ZEXT

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles
consumed by instruction execution

2 if the immediate data is long-word aligned
3 if it isn't

2

5

complex instruction

7 if TRAP 0, else 10 if ST aligned
else 12

10 if ST aligned
else 12

complex instruction

complex instruction

2 (1)

2 if the immediate data is long-word aligned
3 if it isn't

15-9

Timing for MOVE and MOVB Instructions
W« ~l ~~'?"'WiI'''W':'AA''P'l'lWl'

15.2 Timing for MOVE and MOVe Instructions

This section contains the timing for MOVE and MOVB instructions. These
timings are divided into three categories:

Q Timings for memory-to-register moves (reads)
Q Timings for register-memory moves (writes)
Q Timings for memory-to-memory moves

General assumptions ------------------------

The timing of the move instructions depends on how the accessed field is
aligned in memory. The following cases of field alignment characterize the
move instruction timing.

1) The field is aligned on the boundaries of a long word or on any byte bound­
aries.

2) At least one end of the field is not aligned to a byte boundary.

3) The field crosses a long-word boundary, but both ends are aligned on byte
boundaries.

4) The field crosses a long-word boundary, and only one end is aligned on
a byte boundary.

5) The field crosses a long-word boundary, and neither end is aligned on a
byte boundary.

Table 15-2. Cases Table for MOVE and MOVB Timings

Number of Read Cycles Number of Write Cycles
Case Number Required Required

2 2

2 2 3

3 3 3

4 3 4

5 3 5

The timing tables refer to these cases.

15-10 Instruction Timing

Timing for MOVE and MOVB Instructions
_>@'m=:..I:'~l*':':lm, _:t':w:~w.=m:l:' It=::l'1_~~_~~ '11:: ~lY

Memory-to-register moves

Case

Instruction 1 2 3 4 5

MOVS*Rs, Rd 4 4 5

MOVS *Rs(SOffset), Rd 6 6 7

MOVS @SAddress, Rd 5/6 5/6 6/7

MOVE*Rs, Rd 3 3 4 4 4
sign extended: 4 4 5 5 5

MOVE *Rs+, Rd 3 3 4 4 4
sign extended: 4 4 5 5 5

MOVE -*Rs, Rd 4 4 5 5 5
sign extended: 5 5 6 6 6

MOVE *Rs(SOffset), Rd 4 4 5 5 5
sign extended: 6 6 7 7 7

MOVE@Rs, Rd 4/5 4/5 5/6 5/6 5/6
sign extended: 5/6 5/6 6/7 6/7 6/7

Register-to-memory moves

Case

Instruction 1 2 3 4 5

MOVS Rs, *Rd 1 (1) 1 (2) 1 (4)
big endian 2 2(1) 2(3)

MOVSRs, *Rd 3(1) 3(2) 3(4)

MOVSRs,@Rd 2(1)/3(1) 2(2)/3(2) 2(4)/3(4)
big end ian 3(1)/3(1) 3(2)/3(2) 3(4)/3(4)

MOVERs, *Rd 1 (1) 1 (2) 1 (2) 1 (3) 1 (4)
big endian 2(1) 2(2) 2(2) 2(3) 2(4)

MOVE Rs, *Rd+ 1 (1) 1 (2) 1 (2) 1 (3) 1 (4)
2(1) 2(2) 2(2) 2(3) 2(4)

MOVE Rs, -*Rd 2(1) 2(2) 2(2) 2(3) 2(4)

MOVE Rs, -*Rd 3(1) 3(2) 3(2) 3(3) . 3(4)

MOVERs,@Rd 2(1)/3(1) 2(2)/3(2) 2(2)/3(2) 2(3)/3(3) 2(4)/3(4)
big endian 3(1)/3(1) 3(2)/3(2) 3(2)/3(2) 3(3)/3(3) 3(4)/3(4)

15-11

Timing for MOVE and MOVB Instructions

Memory-to-memory moves ---------------------­

First, look in Table 1S-2 (page 15-10) to find the source alignment (case 1-S)
and the destination alignment (case1-S). Then, useTable 15-3 to find which
column to use in the timing table below.

Table 15-3. Source/Destination Alignment for MOVE and MOVB Timings

Destination

Source 1 2 3 4 5

1 A C C H E

2 A C C H E

3 S D D G F

4 S D D G F

5 S D D G F

R/W Cycles 2/2 3/2 2/3 3/3 2/5 3/5 3/4 2/4

A B C D E F G H

MOVS *Rs, *Rd 3(1) 4(1) 3(2) 4(2) 3(4) 4(4)

MOVS *Rs(SOffset), *Rd(DOffset) 5(1) 6(1) 5(2) 6(2) 5(2) 6(4)

MOVS @SAddress,@DAddress
even 5(1) 6(1) 5(2) 6(2) 5(4) 6(4)
odd 7(1) 8(1) 7(2) 8(2) 7(4) 8(4)

MOVE *Rs, *Rd 3(1) 4(1) 3(2) 4(2) 3(4) 4(4) 4(3) 3(3)

MOVE *Rs+, *Rd+ 3(1) 4(1) 3(2) 4(2) 3(4) 4(4) 4(3) 3(3)

MOVE -*Rs, -*Rd 4(1) 5(1) 4(2) 5(2) 4(4) 5(4) 5(3) 4(3)

MOVE *Rs(SOffsetJ. *Rd+ 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)

MOVE *Rs(SOffset). *Rd(DOffset) 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)

MOVE @Rs. *Rd+
even 4(1) 5(1) 4(2) 5(2) 4(4) 5(4) 5(3) 4(3)
odd 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)

MOVE @Rs, @Rd
even 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)
odd 7(1) 8(1) 7(2) 8(2) 7(4) 8(4) 8(3) 7(3)

15-12 Instruction Timing

Appendix A

Test and Emulation Considerations

This appendix provides information that you'll need if you're building a
TMS34020 target system and you plan to use the TMS34020 Emulator. The
TMS34020 Emulator supports realtime in-circuit emulation; key features
include

Q Serial scan-path technology. The emulator uses TI's revolutionary serial
scan-path technology, eliminating the need for the typical emulator target
cable, which uses a full device pinout. Instead, the target system needs
only a 12-pin header to connect between the TMS34020 and the
TMS34020 emulator board through the emulation target cable.

Q PC-compatible emulator board. The emulator board is a PC/XT-com­
patible emulator board. It provides a high-speed communication path be­
tween a PC and the TMS34020.

Q SymboliC debugger with windowed interface. The emulator's symbolic
debugger provides the following features through its windowed interface:

• Ability to upload/download application code and emulation setup
• Software breakpoints on selected instructions
• Single-step execution
• Access to registers and memory
• TMS34020 patch assembler/disassembler
!:! Benchmark timing

Section Page

The remainder of this appendix A.1 Overview of an Emulation System A-2
contains information about setting A.2 Emulation Connector (12-Pin Header) A-3

up your target system. A.3 Signal Buffering A-4

A.4 Buffer Delays A-5

A.5 Design Considerations A-7
A.6 Mechanical Dimensions A-9

A-1

Overview of an Emulation System _____ '''''~:st_. _'"""'_~~_"""",,,",,,,""' ___ M;:;_::;::;===_~::r_~;s.'_~~f_~~~~~~s:;:;:-;"""""' ... ~~~::r...,..~~~~~:;:;:::;~

A.1 Overview of an Emulation System

Figure A-1 shows a typical setup using the emulator, target cable, and your tar­
get system.

Figure A-t. Typical Setup Using the TMS34020 Emulator and Your Target System

target system

12-pin connector

active buffer pod

target cable

TMS34020

Figure A-2 shows how you connect the emulator and target cable to your tar­
get system.

Figure A-2. Connecting the TMS34020 Emulator to Your Target System

TMS34020 Emulator board

active buffer pod
12-pin header

TMS34020

A-2 Test and Emulation Considerations

Emulation Connecter

A.2 Emulation Connector (12-Pin Header)

To use the target cable, your target system must have a 12-pin header (2 rows
of 6 pins) with the connections that are shown in Figure A-3. The header pins
connect directly to the TMS34020 except when the header is farther than 2
inches from the TMS34020 (see Section A.3 on page A-4).

Figure A-3. 12-Pin Header Signals

Header Dimensions:
Pin-to-pin spacing: 0.100 inches (X, Y)
Pin width: 0.025 inches

Pin length:

Signal

EMUO

EMU1

EMU2

EMU3

LCLK1

square post
0.235 inches
nominal

Description

Emulation pin 0

Emulation pin 1

Emulation pin 2

Emulation pin 3

TMS34020 local clock 1

EMU1

EMUO

EMU2

PO (+5V)

EMU3

LCLK1

2 GNO

3 4 GNO

5 6 GNO

7 no pin
(key)

9 10 GNO

11 12 GNO

TMS34020
Pin Number

J1

J3

K1

H2

H1

PO Presence detect. Indicates that the cable is connected and target sys­
tem is powered up. Tie PO to +5 volts in the target system.

Although you can use other headers, recommended parts include

straight header, unshrouded

right-angle header, unshrouded

right-angle header, 4-wall shrouded

DuPont Connector Systems
part number 67996-112

DuPont Connector Systems
part· nu mbe r 68405-112

AMP, Incorporated
part number 103167-3

A-3

A.3 Signal Buffering

A-4

It is extrem~ly important to provide high-quality signals between the emulator
and the TMS34020 on the target system. In many cases, the signal must be
buffered to produce a high-quality signal. The need for signal buffering and
placement of the emulation header can be divided into 3 categories:

o No signal buffering. In this situation, the distance between the header
and the TMS34020 should be no more than 2 inches.

I---a to 2 inches--l
3

EMUO, EMU1, EMU2

LCLK1, EMU3

o Buffered transmission signals. In this situation, the distance between
the emulation header and the TMS34020 is greater than 2 inches but less
than 6 inches. The transmission signals-LCLK1 and EMU3-are buff­
ered through the same package.

I--- 2 to 6 inches ·1
3 EMU1 EMU2

LCLK1, EMU3

o All signals buffered. The distance between the emulation header and the
TMS34020 is greater than 6 inches but less than 12 inches. All TMS34020
emulation signals-EMUO, EMU1, EMU2, and EMU3-are buffered
through the same package.

~-----66 to 12 inches-------..·I

LCLK1, EMU3

Test and Emulation Considerations

A.4 Buffer Delays

Buffer

The absolute maximum propagation delay for both -32 and -40 TMS34020
devices is 10 ns. The buffer is noninverting, and all emulation signals that are
buffered should be buffered through the same package.

The distance between the TMS34020 and the buffers depends on the PWB
layout and loading on LCLK1. However, Texas Instruments suggests that the
distance be as short as possible and less than 4 inches.

When you buffer LCLK1, don't place another device between the buffer output
and header. Connecting another device to this signal could cause false trigger­
ing of the device due to cable reflections (see Figure A-4).

Figure A-4. LCLK1 Buffer Restrictions

LCLK1

Don't connect any devices be­
tween the buffered LCLK1
output and the header!

Figure A-5 shows a portion of logic in the emulator pod. Note that 33-0. resis­
tors are added to EMUO, EMU1, and EMU2; this minimizes cable reflections.

A-5

Buffer Delays ___ == ____ ::s::s_"""""=Wtt=*'"""" ~~~~~

Figure A-5. Emulator Pod Interface

EMU3 (pin 9)

LCLK1 (pin 11)

PD (+ 5 V, pin 7)

GND (pins 2,4,6,10,12)

no pin (key, pin 8)

A-6

EMU1 (pin 1)

EMUO (pin 3)

EMU2 (pin 5)

Test and Emulation Considerations

Design Considerations

A.5 Design Considerations

When designing a TMS34020 target system, please observe these hardware
and software emulation constraints. Portions of these design considerations
are advanced information and may not apply to all Texas Instruments emula­
tors.

a Reset and interrupts. When an emulator is active, the TMS34020 will ser­
vice reset and interrupts only if the emulator is in an execution mode. The
target system must provide a reset to the TMS34020 before the emulator
is activated.

a Host/emulation coordination. If the emulator has stopped execution of
the TMS34020 (program execution is halted), the TMS34020 will continue
to respond to host port accesses. If TMS34020 program execution is re­
quired to provide a response to a host access, the host could hang or time­
out. Also, functions such as reset, interrupts, NMI, and HLT will not take
effect until the emulator is placed back in an execution mode; this could
also hang the host application if a response is required. Emulators and
host applications typically use timeouts to keep from hanging if a
TMS34020 function is not performed properly. If both the emulator and
host are accessing the TMS34020 memory space at the same time, false
timeouts could occur in both the emulator and the host.

Note:

Both the host and emulator can access the same memory space at effectively
the same time. Thus, the emulator'S memory display could be inaccurate if
the host is modifying a memory location within the display range.

To minimize these conflicts, the host can use 3 bits within HSTCTLL to
grant access of the TMS34020 to the emulator. These bits are:

• EMR (emulator request),
• EMG (emulator grant), and
• EMIEN (emulator interrupt enable).

The emulator sets EMR when the emulator requires access to the device.
If EMIEN is set, a host interrupt is generated via the HINT pin. When the
host sets EMG, the interrupt is cleared and the emulator performs its pend­
ing function.

TMS34020 execution will be stopped immediately if an emulation halt con­
dition (such as a breakpoint) is encountered, although emulation access of
the TMS34020 will not start until EMG is set. The host processor can use
either the host interrupt or the EMR bit to indicate that an emulator halted
the TMS34020.

A-7

Design Considerations .

A-8

When the emulator no longer requires access to the device, the emulator
clears EMR. Once again, this causes a host interrupt if EMIEN is set. The
host interrupt is deactivated when the host clears EMG.

Using this handshake protocol is optional and should be used in applica­
tions that are sensitive to emulation access of the TMS34020. Before at­
tempting to integrate this protocol into your system, consult the TMS34020
XDS Emulator User's Guide for additional information.

Test and Emulation Considerations

Mechanical Dimensions

A.6 Mechanical Dimensions

Figure A-6 shows the TMS34020 emulator target cable, which consists of

Q an emulator connector,
Q a 3-foot section of jacketed cable,
Q an active cable pod,
Q a short section of jacketed cable that connects to the target system, and
Q a 12-pin connector that connects to the target system's 12-pin header.

Figure A-6. Target Cable

3-foot jacketed cable \

active cable pod

emulator connector

short jacketed cable,
connects to target system

\

The overall cable length is approximately 3'10". Figure A-7 shows the
mechanical dimensions for the target cable pod. The cable pod box is noncon­
ductive plastic with 4 recessed metal screws.

Figure A-7. Pod Dimensions

Note: All dimensions are in inches and are nominal dimensions unless otherwise spe­
cified.

A-9

Mechanical Dimensions

Figure A-B. 12-Pin Connector Dimensions

A-10

(a) Side view

(b) Top view

0.100

I--- 0.20

I
0.38

~
-1r- key, pin 8

---,.,L---..,.--

DO
DO D.
DO
DO
DO

0.70

pins 1,3,5,7,9,1 ~ L pins 2,4,6,8,10,"

Notes: 1) All dimensions are in inches and are nominal dimensions unless otherwise
specified.

2) Pin-to-pin spacing on the connector is 0.100 inches in both the X and Y
planes.

Test and Emulation Considerations

8-2

bit plane: Hardware used as a storage medium for a bitmap.

black level: Amplitude of the composite signal at which the beam of the pic­
ture tube is extinguished (becomes black) to blank retrace of the beam.
This level is established at 75% of the signal amplitude.

blanking signals: Pulses that extinguish the scanning beam during horizon­
tal or vertical retrace periods.

breakpoint: Point within a routine at which the routine may be interrupted
by external intervention.

BSFLTD: Bus-fault data registers (32-bit I/O register, address CODa 0320h).
The TMS34020's memory controller saves the LAD data into BSFLTD
when a bus fault occurs on a CPU-initiated memory access.

BSFLTDL: 16 LSBs of BSFLTD, accessed at address CODa 320h.

BSFLTDH: 16 MSBs of BSFLTD, accessed at address CODa 330h.

BSFLTST: Bus-fault status register (16-bit 110 register, address
CODa 02DOh). The TMS34020's memory controller saves its state in
BSFLTST before it signals that a bus fault occurred.

BUSFLT: Bus fault signal. External logic asserts BUSFLT to indicate that a
fault occurred on the current bus cycle.

cache memory: A fast, on-chip memory.

cache hit: The cache contains the requested instruction word.

cache miss: The cache does not contain the requested instruction word.

CAD: Computer-aided design.

CAMD: Column-address mode. Shifts the column address on the RCA bus
to allow mixing of DRAM and VRAM address matrices.

CAS: Column-address strobes (CASO-CAS3). Drive the CAS inputs of
DRAMs and VRAMs.

CBP: Configuration byte protect (bit 4 of CON FIG register). CBP=O is the
default; CBP= 1 write-protects the LSbyte of CON FIG until a reset occurs.

CD: Cache disable (bit 15 of CONTROL register). CD=O (default) enables
cache operation; CD=1 forces the TMS34020 to ignore the contents of
the cache and to fetch instructions from memory.

CF: Cache flush (bit 14 of HSTCTLH register). Setting CF to 1 flushes and
disables the cache. Normal cache operation resumes when CF is cleared
to O.

Appendix B

clipping: Removing parts of display elements that lie outside a defined
boundary (the boundary is usually a window or a viewport).

COLORO: Background color register (BS). Identifies the replacement color
for a-value pixels in a source array.

COLOR1: Foreground color register (B9). Identifies the replacement color
for pixels that will be altered in the destination array.

column-address time: See data subcyc/e.

composite video: Color-picture signal plus all blanking and sync signals.
The signals include luminance and chrominance signals, vertical- and
horizontal-sync pulses, vertical- and horizontal-blanking pulses, and the
color-burst signal.

CONFIG: Configuration register (16-bit I/O register, address COOO 01 AOh).
Contains fields that selectively enable/disable various aspects of system
configuration.

CONTROL: Memory control register (16-bit I/O register, addresses
COOO OOBOh and COOO 0190h). Controls various aspects of CPU activity.

CONVOP: Destination pitch conversion factor register (16-bit 110 register,
address COCO 0140h). Contains a control parameter used for converting
an XY destination address to a linear address.

CONVMP: Mask pitch conversion factor register (16-bit I/O register, address
COCO 01S0h). Contains a control parameter used for converting an XY
mask address to a linear address.

CONVSP: Source pitch conversion factor register (16-bit I/O register,
address COOO 0130h). Contains a control parameter used for converting
an XY source address to a linear address.

coprocessor: An additional processor in a system; extends the functionality
of the main processor. For example, the TMS340S2 is a coprocessor for
the TMS34020; in a TMS34020 system, the TMS340S2 adds floating­
point capabilities to the TMS34020's functions.

CSO: Composite-sync direction (bit 2 of DPYCTL register). When the
CSYNC/HBLNK pin is configured as CSYNC (CVD=O), CSD determines
if CSYNC is configured as in input (CSD=O) or an output (CSD=1).

CST: CPU shift-register transfer enable (bit 11 of DPYCTL register). When
CST =1, the TMS34020 converts pixel accesses into VRAM shift-register
transfer cycles.

CVO: Composite video disable (bit 3 of DPYCTL register). Controls the func­
tions of the CSYNC/HBLNK and CBLNKlVBLNK pins. CVD=O selects
CSYNC and CBLNK; CVD=1 selects HBLNK and VBLNK.

8-3

II

8-4

DAC: Digital-to-analog converter.

DADDR: Destination address register (B2). Contains the destination array
address for graphics instructions.

data subcycle: Second part of a local-memory cycle, sometimes referred
to as column-address time.

ODIN: Data bus direction input-enable signal. Drives the active-high input
enables on bidirectional transceivers.

DDOUT: Data bus direction output-enable signal. Drives the active-low out­
put enables on bidirectional transceivers.

DGIS: Direct graphics interface standard.

DIE: Display interrupt enable (bit 10 of INTENB register). Setting DIE to 1
enables the display interrupt.

DIP: Display interrupt pending (bit 10 of INTPEND register). DIP is set to 1
when a display interrupt is requested.

DINC: Display increment registers (32-bit I/O register, address
CODa 0240h). Contains the increment value for the DPYNX register.

DINCL: 16 LSBs of DINC, accessed at address COOO 0240h.

DINCH: 16 MSBs of DINC, accessed at address COOO 0250h.

display area: Rectangular portion of the physical display screen in which in­
formation is visibly displayed; does not include the border area.

display element: Basic graphic element that can be used to construct a dis­
play image.

display memory: Area of memory used to hold the graphics image output
to the video monitor.

display pitch: Difference in memory addresses between two vertically adja­
cent positions on the screen.

dotclock: Clock that cycles the rate at which video data is output to a CRT.

DPTCH: Destination pitch register (B3). Defines the linear difference
between starting addresses of adjacent rows in a destination array.

DPYADR: Display address register. Provides compatibility with the
TMS34010.

DPYCTL: Display control register (16-bit 110 register, address COOO 0080h).
Controls video timing and VRAM serial-register transfers.

Appendix B

Glossary
:::w..::m:;:;:::;~,.:;:::;;;::m~m:;mm:;:·~:::;~~~m:::::::::::,m~~m~s::::::~~~:::;m::::::::::::::::::-,..:;w..,;;;:;m:;:;%mwwww~~x~~:::;~sx:;-~~~::::~~Wfi~~::::mx::x::::::~:::::;m::::m~/.,:;~::::w;sx::::~~~s~:::~*,~w~~;:::;w.x~~~

DPYINT: Display interrupt register (16-bit I/O register, address
COOO OOAOh). Identifies the next scan line (in some circumstances, the
next half scan line) at which a display interrupt can be requested.

DPYNX: Display next address registers (32-bit I/O register, address
COOO 0220h). Contains a 32-bit address that is output during a screen-re­
fresh cycle.

DPYNXL: 16 LSBs of DPYNX, accessed at address COOO 0220h.

DPYNXH: 16 MSBs of DPYNX, accessed at address COOO 0230h.

DPYMSK: Display mask register (16-bit I/O register, address COOO 02EOh).
When midline reload screen refreshes are enabled, DPYMSK deter­
mines which bits of DPYNX & DPYST correspond to the tap-point portion
of the address output during screen-refresh cycles.

DPYST: Display start address registers (32-bit I/O register, address
COOO 0200h). Contains a 32-bit address that points to the pixel at the left
of the 1 st line displayed on the screen.

DPYSTL: 16 LSBs of DPYST, accessed at address COOO 0200h.

DPYSTH: 16 MSBs of DPYST, accessed at address COOO 021 Oh.

DPYSTRT: Display start address register. Provides compatibility with the
TMS34010.

DPYTAP: Display tap-point address register. Provides compatibility with the
TMS34010.

DQ: Data in/data out pin for a VRAM.

DRAM: Dynamic RAM.

DRAM refresh: Maintenance of data stored in dynamic RAMs. Data are
stored in DRAMs as electrical charges across a grid of capacitive cells.
The charge stored in a cell will leak off over time unless the data is
refreshed.

DYDX: Delta Y/delta X register (B7). Defines the X and Y dimensions of a
rectangular destination array.

EMIEN: Emulator host-interrupt enable (bit 12 of HSTCTLL register). The
value of EMIEN determines if EMG XOR EMR asserts HINT active low
(EMIEN=1) or not (EMIEN=O).

EMG: Emulator handshake (bit 11 of HSTCTLL register). In an emulation
system, the host sets EMG to 1 to gran the emulator access to TMS34020
memory.

B-5

Glossary
S~~S~" r-nrm~'"W">WC ;~m~:::::::m~~=m::::""""" ___ :::,:::, ___ ~~m*,~ :::'~·;"""" :xm.,;$;:: ;::::::s:'~ ~m ... "",_;;_;; =-____ ::r;""~;;w::::: ___ :~

II

m
8-6

EMR: Emulator handshake (bit 10 of HSTCTLL register). In an emulation
system, the emulator sets EMR to 1 to request access to TMS34020
memory.

ENV: Enable video (bit 15 of DPYCTL register). ENV enables (ENV=1) or
disables (ENV=O) the video screen.

field: 1. Group of contiguous bits in a register or memory location, dedicated
to a particular function or representing a single entity. 2. Software-confi­
gurable data type supported by the TMS3401 0 and TMS34020; the field
length can be programmed to be any value in the range of 1 to 32 bits.

fill: Solid coloring or shading of a display surface, often achieved as a pattern
of horizontal segments.

frame: 1. Time required to refresh an entire screen. 2. Screen image output
during a single vertical sweep.

frame buffer: Portion of memory used to buffer raster data to be output to
a CRT. Frame buffer contents are often referred to as the bitmap of the
display and contain the logical pixels corresponding to the points on the
monitor screen.

front porch: Portion of a vertical- or horizontal-blanking pulse that precedes
the leading edge of the vertical- or horizontal-sync pulse.

GI: Bus grant input. External bus arbitration logic pulls Gllow to enable the
TMS34020 to gain access to the local-memory bus.

GKS: Graphics kernel system. Application programmer's standard interface
to a graphics display.

gray scale: Scale of light intensities from black to white.

GSP: Graphics system processor. A single-chip device embodying all the
processing power and control capabilities necessary to manage a high­
performance bitmapped graphics system. The TMS34010 and
TMS34020 are GSPs.

HA: Host address input bus (HA5-HA31). A host processor requests an
address over these lines.

Appendix B

Glossary
::m;uw:::; ~:::;:':::;:::;~~:::;:l:'~~~~'X!~~:::;:'.~ww'·rm:= :::::::::::w mxrr:x'''::mw...m::'~::::':::::~::.:;x-;:,«"«~::x''*"X*"*''/*,-' " .. «@"~~;::: .•. *'-' .. ""' -'-'-'-'-'-'::::,x:;:::wx:'.m~'*~£«~

HACK: Halt acknowledge (bit 4 of HSTCTLH register). Setting the HLT bit
halts TMS34020 execution at the next interruptible instruction boundary;
the TMS34020 sets HACK when the halt actually takes place.

HBFI: Host-bus-fault interrupt (bit 14 of HSTCTLL register). The TMS34020
sets HBFI to 1 if a bus fault occurs on a host access.

HBREN: Host-bus-faultlretry-interrupt (bit 15 of HSTCTLL register). If
HBREN=1, the TMS34020 interrupts the host when a retry or bus fault
occurs.

HBS: Host byte select-bus (HBSO-HBS3). Identify the bytes to be selected
within a specific word.

HCOUNT: Horizontal count register (16-bit I/O register, address
COOO 01 DOh). HCOUNT counts the number of VCLK periods per
horizontal scan line.

HCS: Host chip-select signal. A host drives HCS low to latch the current
address and byte-select requests.

HOST: Host data strobe signal.

HEBLNK: Horizontal end blank register (16-bit I/O register, address COOO
0030h). HEBLNK identifies the endpoint for the horizontal blanking inter­
val.

HESERR: Horizontal end serration register (16-bit I/O register, address
COOO 0270h). HESERR determines the endpointforthe composite-sync
pulse during the serration region of vertical blanking.

HESVNC: Horizontal end sync register (16-bit I/O register, address
COOO 0010h). HESYNC identifies the endpoint for horizontal sync.

HIE: Host interrupt enable (bit 9 of INTENB register). Setting HIE to 1
enables the host interrupt.

high impedance: The third state of a three-state output driver, in which the
output is driven neither high or low but behaves as an open connection.

HIP: Host interrupt pending (bit 9 of INTPEND register). HIP is set to 1 when
a host interrupt is requested.

HINC: Host increment (bit 12 of HSTCTLH register). Setting HINC to 1
enables the TMS34020 to compare the fetched address to the address
requested by a host processor, to increment the current address, and to
prefetch the contents of the next address.

HINT: Host interrupt signal.

HLBO, HLB1: Host last byte (bits 5&6 of HSTCTLH register). The HLB code
tells the TMS34020 which byte of a 32-bit word that a host processor will
access last. The TMS34020 uses this information to determine the cor­
rect time to prefetch the next word.

8-7

8-8

HLT: Halt TMS34020 program execution (bit 15 of HSTCTLH register). Set­
ting HLT to 1 suspends TMS34020 instruction processing at the next
instruction boundary.

HOE: Host output-enable signal.

hold signal: Signal capable of controlling a processor bus; sentto a bus arbi­
ter to request bus control. Typically, the arbiter grants the request by
sending a hold-acknowledge signal to the requestor.

horizontal back porch: Portion of horizontal blanking that follows the trail­
ing edge of the horizontal-sync pulse.

horizontal-blanking interval: Time during which the display is blanked to
cover the horizontal retracing of the electron beam on a screen.

horizontal front porch: Portion of a horizontal-blanking pulse that precedes
the leading edge of the horizontal-sync pulse.

horizontal sync: Synchronization signal that enables horizontal retrace of
the electron beam on a screen.

host address bus: Lines used by a host processor to identify the address
of a TMS34020 local-memory location.

host processor: Main processor in a system.

HPFW: Host prefetch-after-write enable (bit 10 of HSTCTLH register). When
host prefetches are enabled (HINC=1), the value of HPFW determines
if the TMS34020 performs prefetches after reads (HPFW=O) or after
writes (HPFW=1).

HRDY: Host ready signal. Driven high when the TMS34020 is ready to com­
plete a host-initiated access.

HREAD: Host read strobe. Driven low during a host's read request.

HRYI: Host-retry interrupt (bit 13 of HSTCTLL register). The TMS34020 sets
HRYI to 1 if it retries a host access.

HSBLNK: Horizontal start blank register (16-bit I/O register, address
COOO 0050h). HSBLNK identifies the startpoint for the horizontal blank­
ing interval.

HSD: Horizontal-sync direction (bit 0 of DPYCTL register). Determines if
HSYNC is configured as an input (HSD=O) or an output (HSD=1).

HSTADRL: Host address register. Provides compatibility with the
TMS34010.

HSTADRH: Host address register. Provides compatibility with the
TMS34010.

HSTCTLH: Host control 1/0 register, high word (16-bit I/O register, address
COOO 01 OOh). Controls aspects of host-interface communications.

Appendix B

D

II

HSTCTLL: Host control I/O register, low word (16-bit I/O register, address
COOO OOFOh). Controls aspects of host-interface communications.

HSTDATA: Host data I/O register. Provides compatibility with the
TMS34010.

HTOTAL: Horizontal total register (16-bit 110 register, address COOO 0070h).
Number of VCLK periods per horizontal scan line; defines the startpoint
for the horizontal sync pulse .

.,-;-;-;;== HWRITE: Host write strobe. Driven low during a host's write request.

interlaced video: Video system in which odd-numbered scan lines (odd
field) are interlaced with even-numbered scan lines (even field). The odd
and even fields constitute one frame. In effect, the number of transmitted
pictures is doubled; this reduces flicker.

IHOST: Internal host interface address registers (4 32-bit registers: IHOST1,
address COOO 0308h; IHOST2, address COOO 03AOh; IHOST3, address
COOO 03COh; IHOST4, address COOO 03EOh). The TMS34020 uses
these registers for storing information provided by the host.

implied operand: A register value that must be supplied for an instruction
to execute properly. The 8-file registers and several of the I/O registers
serve as implied operands for the TMS34020's graphics instructions.

INTENB: Interrupt enable register (16-bit I/O register, address COO a 011 Oh).
Selective enables /disables external interrupts 1 and 2, the host interrupt,
the display interrupt, and the window violation interrupt.

INTPEND: Interrupt pending register (16-bit I/O register, address
COOO 0120h). Identifies the pending/not pending status of external inter­
rupts 1 and 2, the host interrupt, the display interrupt, and the window vio­
lation interrupt.

INTIN: Interrupt-in (bit 3 of HSTCTLL register).

INTOUT: Interrupt-out (bit 7 of HSTCTLL register).

K: 1) 1024. 2) Approximately 1000. 3) A 5-bit constant for a TMS34020
instruction.

Kbyte: Approximately 1000 bytes.

LAD bus: 32-bit local address/data multiplexed bus (LADO-LAD31).

8-9

II

m

8-10

little-endian: An addressing mode in which the "little" or least significant end
of an address (bit 0) points to the least significant end (bit 0) of a word
of data.

long word: 32-bit word.

look-up table: Table used during scan conversion of a digital image that
converts color-map addresses into the actual color values displayed.

LRDY: Local ready signal. External circuitry drives LRDY low to stop the
TMS34020 from completing a local-memory cycle.

LRU: Least recently used (cache-replacement algorithm). When a cache
miss occurs, this algorithm selects the cache segment that will be over­
written, based on the likelihood that the data in the discarded segment
will not be needed again for some time. The LRU algorithm selects the
segment that was used least recently.

LSB: Least significant bit.

LSbyte: Least significant byte.

LSW: Least significant word.

mask: Pattern used to control retention or elimination of portions of another
pattern.

Mbyte: Megabyte.

memory map: Map of memory space, partitioned into functional blocks.

MPTCH: Mask pitch register (811). Defines the linear difference between
starting addresses of adjacent rows in a mask array.

MSB: Most significant bit.

MSbyte: Most significant byte.

MSGIN: Message-in (bits 0-2 of HSTCTLL register).

MSGOUT: Message-out (bits 4-6 of HSTCTLL register).

MSW: Most significant word.

NIL: Noninterlaced video enable (bit 14 of DPYCTL register). The value of
NIL selects interlaced video timing (NIL=O) or noninterlaced video timing
(NIL=1).

AppendixB

Glossary
~rs:::'~ ~r-~mm:'~r~~rf~~::::x::::::::::~~~r~ ~@:x:::::,s;:m$*~"(rr$$ffrrm:-~:~::::.-:::S'mrrr~r~.::::::::::::::x::~::x::::::rf~::::~~:ff:::::~r::::::.::~~""

m

NMI: Nonmaskable interrupt (bit 8 of HSTCTLH register). A host processor
sets NMI to send a nonmaskable interrupt to the TMS34020.

NMIM: Nonmaskable interrupt mode (bit 9 of HSTCTLH register). If
NMIM=O, the TMS34020 saves the PC and ST contents on the stack
before executing a nonmaskable interrupt routine. If NMIM=1, the
TMS34020 discards the PC and ST contents before executing the NMI
routine.

nonmaskable interrupt: Interrupt request that cannot be disabled.

NTSC: National television system committee. Group representing a wide
range of interests in the television broadcasting and video industry;
NTSC is instrumental in developing graphics and video standards.

OFFSET: XV-address offset register (B4). OFFSET contains the linear ad­
dress of the 1st pixel in the XV-coordinate address space.

operand: Anyone of the quantities entering into or arising out of an opera­
tion.

origin: Zero intersection of X and Y axes from which all points are calculated.

palette: Digital look-up table used in a graphics display for translating data
from the bitmap into the pixel values to be shown on the screen.

pan: Apparent horizontal or vertical movement of a graphics screen or
window over an image contained in a frame buffer that is too large to be
completely displayed in a single static picture.

PATTERN: Fill-pattern register (B13).

PBH: PIXBLT horizontal direction (bit 8 of CONTROL register). PBH=O
(default) selects left-to-right pixel processing; PBH=1 selects right-to-Ieft
processing.

PBV: PIXBLT vertical direction (bit 9 of CONTROL register). PBV=O (default)
selects top-to-bottom pixel processing; PBV=1 selects bottom-to-top
processing.

pending: Requested but not yet performed. For example, a pending inter­
rupt is an interruptthat has been requested but has not yet been seNiced.

PGA: Pin grid array (type of chip package).

PGMD: Page-mode signal. Memory decode logic asserts PGMD low if the
currently addressed memory supports page-mode accesses.

8-11

8-12

phase: The time interval for each clock period in a system is divided into
phases; one phase corresponds to the time when the clock signal is high,
the other to the time that the signal is low.

PHIGS: Programmer's hierarchical interactive graphics standard.

pipelining: Design technique for reducing the effective propagation delay
per operation by partitioning the operation into a series of stages, each
of which performs a portion of the operation. A series of data is typically
clocked through the pipeline in sequential fashion, advancing one stage
per clock period.

pitch: Difference in starting addresses of two adjacent rows of pixels in a
2-dimensional pixel array.

pixel: Picture element. 1. Smallest controllable point of light on a display
screen. 2. In a bitmapped display, the logical data structure that contains
the attributes to be shown at the corresponding physical pixel position on
a display screen.

pixel-processing option: Boolean or arithmetic operation for combining
two pixel values (source and destination); defined by PPOP[CON­
TROL].

PIXBLT: Pixel-block transfer. Pixel-array operation in which each pixel is rep­
resented by one or more bits. PIXBLTs are a superset of bitblts and
include commonly-used Boolean functions as well as integer arithmetic
and multi-bit operations.

plane: (also bit plane or color plane) Bitmap layer in a multiple-bit-per-pixel
display device. If the pixel size is n bits and the bits in each pixel are num­
bered 0 to n-1, plane 0 is made up of O-numbered bits in all the pixels,
and plane n-1 is made up of n-1-numbered bits in all the pixels. A layered
graphics display allows planes or groups of planes to be manipulated
independently of the other planes.

PMASK: Plane mask registers (32-bit 110 register, address COOO 0160h).
PMASK contains a mask of Os and 1 s; the 1 s represent protected desti­
nation bits, and the Os represent modifiable destination bits.

PMASKL: 16 LSBs of PMASK, accessed at address COOO 0160h.

PMASKH: 16 MSBs of PMASK, accessed at address COOO 0170h.

PPOP: Pixel-processing operation (bits 10-14 of CONTROL register).
Selects a method for combining source and destination pixels. You can
choose from 16 Boolean and 6 arithmetic operations; the default opera­
tion is S~D (source pixels replace destination pixels).

propagation delay: Time required for a change in logic level at an input to
a circuit to be translated into a resulting change at an output.

Appendix B

E1

iii

protocol: Set of rules, formats, and procedures governing the exchange of
information.

pseudo-op: (pseudo-operation) An operation which is not part of the com­
puter's operation repertoire as realized by hardware; hence, an exten­
sion of the set of machine operations.

PSIZE: Pixel size register (16-bit I/O register, address COOO 0150h). Defines
the current pixel size as 1 , 2, 4, 8, 16, or 32 bits.

pulse width: Time interval between specified reference points on the lead­
ing and trailing edges of a pulse waveform.

QFP: Quad flat package (type of chip package).

quarter phase: One-fourth of a local-memory cycle.

FlO, Fl1: Bus request and control signals. These signals identify the type of
request for use of the bus in a multiprocessor system.

RAM: Random access memory. A memory from which all information can be
obtained with approximately the same time delay by choosing an address
randomly and without first searching through a vast amount of irrelevant
data.

RAS: Row-address strobe. Drives the RAS inputs of DRAMs and VRAMs.

raster: Rectangular grid of picture elements whose intensity levels are
manipulated to represent images. In a bitmapped display, the bits within
the frame buffer are mapped to the raster pattern of a display screen.

raster graphics: Computed graphics in which a display image is composed
of a pixel array arranged in rows and columns.

raster-op: Arithmetic or logical combination that takes place during the
transfer of a pixel array from one location to another.

raster scan: Grid pattern traced by the electron beam on a display screen.

RCA: Multiplexed row-/column-address bus (RCAO-RCA 12). Atthe begin­
ning of a memory-access cycle, identifies the row address for DRAMs;
later in the cycle, the bus identifies the column address.

RCMO, RCM1: RCAO-RCA 12 row address configuration (bits 1 &2 of
CONFIG register). Determines which bits of the logical address are
output on RCAO-RCA 12 at row-address time.

8-13

Glossary

8-14

ready signal: Signal from a memory or memory-mapped peripheral that
informs the processor when a memory cycle is about to complete. Slower
memories and peripherals must extend the length of the memory cycle
by negating the ready signal (in other words, by sending the processor
a "not ready" signal) until the cycle can be completed.

REFADR: Refresh pseudo-address register (16-bit I/O register, address
COOO 01 FOh). Contains the address output during DRAM-refresh cycles.

refresh: Method of restoring the charge capacitance to a memory device
(such as a DRAM or VRAM) or of restoring memory contents.

request strobe: Any control signal that begins or ends a read request or a
write request.

reset: Restore to normal action and initial conditions.

resolution: Number of visible, distinguishable units in the device coordinate
space.

retrace: Line traced by the scanning beam(s} of a display screen as it travels
from the end of one horizontal (or vertical) line or field to the beginning
of the next horizontal (or vertical) line or field.

RGB monitor: Red-green-blue monitor. Type of monitor capable of display­
ing colors; has separate inputs for the three signals that drive the red,
green, and blue guns of a display.

relative coordinates: Location of a point relative to the location of another
point.

ROM: Read-only memory.

rotate: Transform an item or display by revolving it around an axis or center
point.

row-address time: See address/status subcycle.

RRO-RR2: Refresh rate (bits 10-12 of CON FIG register). Determines the
frequency of DRAM refreshes.

RST: Reset (bit 7 of HSTCTLH register). Setting this bit has the same effect
as asserting RESET low; however, only the TMS34020 is reset (other
devices in the system are not affected).

SADDR: Source address register (80). Contains the source array address
for graphics instructions.

SAM: Serial access memory or serial data register.

Appendix B

scale: Size change made by multiplying or dividing coordinate dimensions
by a scale factor (a constant value).

scan line: Horizontal line traced across a display screen by the electron
beam in a monitor or similar raster-scan device.

SCOUNT: Shift clock counter register (16-bit I/O register, address
COOO 02COh). During horizontal blanking, SCOUNT is loaded with the
right-justified tap-point value and is then incremented once on the rising
edge of each SCLK pulse.

screen refresh: Operation of dumping the contents of the frame buffer to a
CRT monitor in synchronization with the movement of the electron beam.

scrolling: Moving a display vertically or horizontally.

serial register transfer: Transfer between the RAM storage and internal
serial register in a VRAM.

SETHCNT: Set horizontal count register (16-bit I/O register, address
COOO 031 Oh). During external horizontal or composite video, SETHCNT
is loaded into HCOUNT when HSYNC or CSYNC is pulsed.

setup time: Minimum amount of time that valid data must be present at an
input before the device is clocked; ensures proper data acceptance.

SETVCNT: Set vertical count register (16-bit I/O register, address
COOO 0300h). During external horizontal or composite video, SETVCNT
is loaded into VCOUNT when VSYNC or CSYNC is pulsed.

SF: Special-function signal that drives a VRAM's DSF pin.

SIZE16: Bus size signal. Memory decode logic may pull SIZE16 low if the
currently addressed memory or port supports only 16-bit transfers.

SPTCH: Source pitch register (B1). Defines the linear difference between
starting addresses of adjacent rows in a source array.

SRAM: Static RAM.

SRE: Screen-refresh enable (bit 12 of DPYCTL register). Setting SRE to 1
when video is enabled (ENV) enables screen-refresh cycles.

SRINC: Screen-refresh address increment value (bits 5-31 of DINC regis­
ters). Defines the amount by which the address in SRNX is incremented
after a screen-refresh cycle.

SRNX: Next screen-refresh address (bits 5-31 of DPYNX registers). Rep­
resents the long-word address that is output during a screen-refresh
cycle.

SRST: Screen-refresh start address (bits 5-31 of DPYST registers). Con­
tains the address of the pixel at the left of the 1 st line displayed on the
screen.

8-15

II

8-16

SSA: Cache segment start address register.

SSV: Split-shift-register midline-reload enable (bit 6 of DPYCTL register).
Determines whether split-shift-register midline reload is disabled
(SSV=O) or enabled (SSV=1 and SRE=1).

stairstepping: Visual effect in bitmapped display devices; produces images
by brightening or dimming individual pixels in a pixel array. Also called
aliasing.

strobe: Any control signal that begins or ends a memory access.

subsegment: Block of 410ng words in a cache segment. Each of the 4 cache
segments contains 8 subsegments, for a total of 32 long words per seg­
ment.

T: Pixel transparency (bit 5 of CONTROL register). T =1 enables transparen­
cy; T =0 (default) disables transparency.

tap point: Column address provided to a VRAM during a memory-to-serial­
register cycle. The column address specifies the point at which the shift
register is to be tapped; in other words, which cell of the serial register
is to be connected to the VRAM's serial output.

TM: Transparency mode (bits 0-2 of CONTROL register). Selects the
transparency mode for pixel operations.

trace: Line of the graphics display.

transformation: Geometric alteration of a graphics display, such as scaling,
translation, or rotation.

transparency: Pixel attribute that renders a source pixel invisible so that
portions of the destination array show through portions of the source
array.

TR/QE: Transfer/output enable signal. Drives the TR/QE input of VRAMs.

VCE: Video capture enable (bit 7 of DPYCTL register). Selects memory-to­
register screen-refresh cycles (VCE=O) or register-to memory screen-re­
fresh cycles (VCE=1).

VCOUNT: Vertical count register (16-bit I/O register, address COOO 01 COh).
VCOUNT counts the horizontal scan lines in the video display.

VEBLNK: Vertical end blanking register (16-bit 110 register, address
COOO 0020h). VEBLNK defines the endpoint for the vertical blanking
interval.

Appendix B

II

VEN: VRAM internal register load enable (bit 8 of CONFIG register). VEN=1
enables the TMS34020 to use VRAMs with internal write-mask and color
registers; VEN=O (default) prohibits this.

vertical back porch: Portion of vertical blanking that follows the trailing
edge of the vertical-sync pulse.

vertical-blanking interval: Time during which the display is blanked to cov­
er the vertical retracing of an electron beam.

vertical-blanking pulse: Positive or negative pulse developed during verti­
cal retrace, appearing atthe end of each field. Used to blank out scanning
lines during the vertical-retrace interval.

vertical front porch: Portion of a vertical-blanking pulse that precedes the
leading edge of the vertical-sync pulse.

vertical sync: Synchronization signal that enables vertical retrace of the
electron beam of a display screen.

VESYNC: Vertical end sync register (16-bit I/O register, address
COOO OOOOh). VESYNC defines the endpoint of the vertical-sync pulse;
in interlaced video, it also defines the endpoint of the 2nd equalization
region.

VRAM: Video RAM. A dual-ported memory device for computer graphics
applications, containing two interfaces: one that allows a processor to
read/write data from an internal memory array, a second that provides a
serial stream of screen-refresh data to a display screen.

VSBLNK: Vertical start blank register (16-bit I/O register, address
COOO 0040h). VSBLNK defines the startpoint for the vertical blanking
interval.

VSD: Vertical sync direction (bit 1 of DPYCTL register). Determines if
VSYNC is configured as in input (VSD=O) or an output (VSD=1).

VTOTAl: Vertical total register (16-bit I/O register, address COOO 0060h).
Number of horizontal scan lines in the display; defines the startpoint for
the vertical-sync pulse.

W: Window checking (bits 6&7 of CONTROL register). Selects the action
that the TMS34020 takes when a pixel operation would write a pixel
inside or outside defined window limits.

wait state: Clock period inserted into a memory cycle in order to permit
accesses of slower memories and slower memory-mapped devices.

WE: Write enable signal. Drives the WE inputs of DRAMs and VRAMs.

8-17

Glossary

13

II

8-18

WEND: Window ending address register (B6). WEND contains the XV
address of the most significant pixel of the clipping window.

WSTART: Window starting address register (B5). WSTART contains the XV
address of the least significant pixel of the clipping window.

window: Defined rectangular area of a virtual space on a display screen.

window checking: Checking a pixel's address to see if it lies inside or out­
side the boundaries of a defined window.

WVE: Window-violation interrupt enable (bit 11 of INTENB register). Setting
WVE to 1 enables the window-violation interrupt.

WVP: Window-violation interrupt pending (bit 11 of INTPEND register). WVP
is set to 1 when a window-violation interrupt is requested.

X1 E: External interrupt 1 enable (bit 1 of INTENB register). Setting X1 E to
1 enables external interrupt 1.

X2E: External interrupt 2 enable (bit 2 of INTENB register). Setting X2E to
1 enables external interrupt 2.

X1 P: . External interrupt 1 pending (bit 1 of INTPEND register). X1 P is set to
1 wRen an external interrupt 1 is requested.

X2P: External interrupt 2 pending (bit 2 of INTPEND register). X2P is set to
1 when an external interrupt 2 is requested.

VZCNT: Y -zoom count (bits 0-4 of DPVNX registers). Determines when the
address in SRNX can be incremented.

VZINC: V-zoom increment value (bits Q-4 of DINC registers). This value
provides the increment value for the Y -zoom feature; valid values include
0, 2, 4, 8, 16, and 32.

V·zoom: TMS34020'feature that aids in display magnification.

zoom: Scaling a display (or display item) so it is magnified or reduced on the
screen.

Appendix B

TEXAS~
INSTRUMENTS

TMS34020
Reference Card

Phone Numbers -------------­

TI Customer Response
Center (CRe) Hotline: (800) 232--3200

Graphics Hotline: (713) 274-2340

General·Purpose Register Files --------­
Register File A Register File B

bit 31 bit 0 bit 31 bit 0
MSB LSB MSB LSB

AO BOSADDR ...•.•.......•.

A1 B1SPTCfi i

A2 B2bAbbR/ ••..••

A3 B3tiPTCH

A4 B40FFSET>'

A5 B5 ,WSTARi'
A6 B6":W~ND"

A7 B7/0vbx'
A8 B8 ·\CdCORO.<

A9 B9C,OLC>Rt .

A10 B10iMp.DI?R"·
A11 B11 :MPTCH> ...

A12 B12 '<TEJvlPJ/"

A13 B13 PAITERNt

A14 ~....:...;.......:...;.......:...;.......:...;......,+""""".,.,.".,""""""""",.B""14 TEMPt <

··~t~ckpoint~F'y' SP

t The line instructions use these registers for a different purpose.
Some graphics instructions use these registers as temporary
registers.

Initial State Following Reset ---------­

Immediately following reset,

\I All I/O registers are cleared to OOOOh. (Possible excep·
tions are HLT[HSTCTLH], REFADR, and SCOUNT).

\I General-purpos9' register files A and Bare uninitialized.

\I The ST is set to 0000 0010h.

\I The PC is uninitialized.

\I The cache SSA registers are uninitialized.

\I The cache LRU stack is set to the sequence 0, 1, 2, 3.

\I All cache P flags are cleared.

\I The DRAM refresh-pending counter is set to 9.

110 Registers -------------

Register Offset HESYNC 0010h

BSFLTDH 0330h HSTADRH OOEOh

BSFLTDL 0320h HSTADRL OOOOh

BSFLTST 0200h HSTCTLH 0100h

CONFIG 01AOh HSTCTLL OOFOh

CONTROL
OOBOh or HSTDATA OOCOh

0190h

CONVDP 0140h
HSBLNK OOSOh

CONVMP 0180h
HTOTAL 0070h

CONVSP 0130h IHOST
0380hto

03FOh
DINCH 0250h

INTENB 0110h
DINCL 0240h

INTPEND 0120h
DPYADR 01EOh

PMASKH 0170h
DPYCTL 0080h

PMASKL 0160h
DPYINT OOAOh

DPYNXH 0230h
PSIZE 0150h

DPYNXL 0220h
REFADR 01FOh

DPYMSK 02EOh
SCOUNT 02COh

DPYSTH 0210h SETHCNT 0310h

DPYSTL 0200h SETVCNT 0300h

DPYSTRT 0090h VCOUNT 01COh

DPYTAP 01BOh VEBLNK 0020h

HCOUNT 0100h VESYNC OOOOh

HEBLNK 0030h VSBLNK 0040h

HESERR 0270h VTOTAL 0060h

Note: Register address = COOO OOOh + offset.

CONTROL Register (COOO OOBOh) -------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 CD 1 PPOP 1 PBH 1 PBvl WiT 1:>'::><:>'::>1 ™ 1

TM 000 transparency on PBV o PIXBLT processes
result=O top to bottom

001 transparency on 1 PIXBLT processes
source=COLORO bottom to top

1 00 transparency on PBH o PIXBLT processes
result=O left to right

101 transparency on 1 PIXBLT processes
des1.=COLORO right to left

T o disables trans. ppop pixel-processing option
1 enables trans. CD o enables cache

W 00 no windowing 1 disables cache
01 window hit
10 window miss
11 window clip

2

CONFIG Register (COOO 01AOh) --------

BEN o selects little-end ian CBP 1 write-protects CON-
addressing (default) FIG's LSbyte

1 selects big-end ian o no write protection
addressing VEN o system has special-

RCM determines which log- feature VRAMs
ical address bits are 1 system has no spe-
output at row-address cial-feature VRAMs
time RR DRAM refresh rate

/.;

HSD o HSYNC is an input VCE screen-refresh mode
1 HSYNC is an output 1 mem-to-reg cycles

VSD o VSYNC is an input o reg-to-mem cycles

1 VSYNC is an output CST o normal pixel-access
cycles

CSD WhenCVD=O, 1 pixel-access cycles o CSYNC is an input become serial-reg is-
1 CSYNC is an output ter-transfer cycles

CVD selects CYSNC/ SRE o disables automatic
HBLNK screen refresh
o selects CSYNC 1 enables screen re-
1 selects HBLNK fresh when ENV=1

SSV o disables midline NIL o interlaced video
reload 1 noninterlaced video
enables midline ENV o blanks screen
reload when SRE=1 1 enables display

INTENB Register (COOO 0110h) --------
15 14 13 12 11 10 9 8 7 6 5 4 3

IE status bit must be enabled before these interrupts are enabled
X1 E 1 enables int. 1 DIE 1 enables display int.
X2E 1 enables int. 2 WVE 1 enables window-vio-
HIE enables host int. lation int.

X1P
X2P
HIP

int. 1 pending
int. 2 pending
host int. pending

3

6 5 4 3

DIP display int. pending

WVP 1 window-violation int.
pending

HSTSTLH Register (COOO 0100h) -------

HA o '34020 is running HP o prefetch after any
CK 1 '34020 is halted FW access

HLB identifies last byte that 1 prefetch after writes

host will access HI o disables prefetch &

o normal operation
NC autoincrement

RST 1 enables prefetch &
1 reset '34020 autoincrement

NMI o no NMI request CF o no effect
1 host requests NMI 1 flush cache

NM o save context when HLT o allow '34020 to run
1M there's an NMI 1 halt '34020 instruc-

1 discard context lion execution

HSTSTLL Register (COOO OOFOh)

MSG message from host to
IN '34020

INT 0 no interrupt to
IN '34020

1 host interrupt re-
quest to '34020

MSG message from '34020
OUT to host

INT 0 no interrupt to host
OUT 1 '34020 interrupt re-

quest to host
EMGI 00 no request, no in-
EMR terrupt

01 host request from
EMU, interrupt (if
enabled)

EMI 0 no interrupt to host
EN 1 interrupt to host
HRY! 0 host access not re-

tried
1 host access retried

HBFI 0 host access not
faulted

1 host access faulted
HB If HRYI or HBFI is set,
REN 0 no interrupt to host

1 interrupt to host
10 host released by

EMU, interrupt (if
enabled)

11 host grant to EMU, '
no interrupt

LAD Bus Status Codes -----------

Code Bus Status Type

0000 Coprocessor cycle misc.
0001 Emulator operation (OOxx)
0010 Host cycle
0011 DRAM refresh

0100 Video-generated VRAM serial-register trans. VRAM
0101 CPU-generated VRAM serial-register trans. (01 xx)
0110 Write-mask load
0111 Color-register load

1000 Data access CPU
1001 Cache fill (1 xxx)
1010 Instruction fetch
1011 Interrupt-vector fetch
1100 Bus-locked operation
1101 Pixel operation
1110 Block write
1111 Reserved

4

MemoryMap -------------- TMS34020 Assembly Language Instruction Set

Address Range Size Use ABSRd CMPllL,Rd

FFFF FFEOh
34 words

Interrupt & trap
FFFFFBCOh vectors

ADD RS,Rd CMPK

ADDCRs,Rd CMPXYRs,Rd

FFFF FBAOh
Reserved for

FFFF EOOOh
222 words interrupt & extended

trap vectors

ADDI/W,Rd CPWRs,Rd

ADDlII.,Rd CVDXYLRd

FFFF DFEOh
32,512 words

General use &
FFFO OOOOh extended trap vectors

FFEFFFEOh 225-33,024 words
General use

COOO 2000h (35,521,408 words)

ADDKK,Rd CVMXYLRd

ADDXYRs,Rd CVSXYL RS,Rd

ADDXYIIL,Rd CVXYLRs,Rd

COOO 1FEOh 224 words
Reserved for 1/0

COOO 0400h registers

AND RS,Rd DEC Rd

ANDIIL,Rd DINT

COOO03EOh
32 words 1/0 registers

COOO OOOOh

BFFF FFEOh 3x225-32K words
General use

00100000h (100,630,528 words)

ANDNRs,Rd DIVSRs,Rd

ANDNIIL,Rd DIVURs,Rd

BLMOVES,D DRAVRs,Rd

OOOF FFEOh
32,768 words

General use &
OOOOOOOOh extended trap vectors

BTSTK,Rd DSJ Rd,Address

BTSTRs,Rd DSJEQ Rd,Address

CALLRs
DSJNE Rd,Address

Interrupt Priorities -------------
CALLA Addr

DSJS Rd,Address

Interrupt Priority Source Description CALLR Addr
EINT

RESET 1 externall Device reset
internal

BF 2 external Bus fault interrupt

NMI 3 internal Nonmaskable interrupt

HI 4 internal Host interrupt.

CEXEC size,instruction[.IDJ
EMU

CEXEC size,instruction[.IDJ
EXGF Rd,F

CLIP
EXGPC Rd

CLRRd
EXGPS Rd

FILLL
01 5 internal Display interrupt CLRC

FILLXY
WV 6 internal Window violation interrupt

INT1 7 external External interrupt 1

INT2 8 external External interrupt 2

CMOVCG Rdj [.Rd2 [sizeJJ,
command[.IDJ FLiNE {O 11}

CMOVCM *Rd+, transfers, FPIXEQ
size,command[. IDJ

FPIXNE
SS 9 internal Single-step interrupt

ILLOP 10 internal lIIegal-opcode interrupt
CMOVCM *Rd,transfers,size,

GETPCRd
command[.IDJ

CMOVCS command[.IDJ
GETPSRd

Vector Address Map

Trap# Address Oesc. Trap# Address Oesc.

-32768 OOOFFFEOh Appllca- 12 FFFFFE60h Re-
ta to tion to to served
-1 OOOOOOOOh specific 15 FFFFFOEOh

CMOVGC RS,command[.IDJ
GETSTRd

CMOVGC RSj,R~,size,com-
IDLE

mand[.IDJ INC

CMOVMC *Rs+,transfers, JAcc Address
size,command[.IDJ JRcc Address

0 FFFFFFEOh RESET 16 FFFF FOEOh Appllca-
to to tlon CMOVMC -*Rs,transfers,size, JRcc Address

1 FFFFFFCOh INn 29 FFFFFC40h specHic command[.IDJ
JUMPRs

2 FFFFFFAOh INT2 30 FFFFFC20h ILLOP CMOVMC *Rs+,Rd,size,com-

3 FFFFFF80h Re-
Appllca-

to to served
31 FFFFFCOOh tlon

7 FFFFFEOOh specific

mand[.IDJ LINE {O 11}

CMPRs,Rd LlNIT

8 FFFFFEEOh NMI 32 FFFFFBEOh SS CMPIIW,Rd LMORs,Rd

9 FFFFFECOh HI 33 FFFFFBCOh BF

10 FFFFFEAOh 01 34 FFFFFBAOh Appllca-
to to tlon

11 FFFFFE80h VW 32767 FFFOOOOOh specific

5 6

TMS34020 Assembly Language Instruction Set ---­
(continued)

MMFM RS,[.Listj NEGBRd

MMTM RS,[.Listj NOP

MODS RS,Rd NOTRd

MODURs,Rd OR RS,Rd

MOVBRs,*Rd ORIIL,Rd

MOVB*Rs,Rd PFILLXV

MOVB *Rs(Offsef),Rd PIXBLTB,L

MOVB *Rs(SOffsef), PIXBLTB,XV
*Rd(DOffset)

MOVB Rs,@DAddress

MOVB @SAddress,Rd

PIXBLTL,L

PIXBLT L,M,L

MOVB @SAddress,
PIXBLTL,XV

@DAddress PIXBLTXV,L

MOVE RS,Rd PIXBLT XV,XV

MOVE Rs, *Rd[.F] PIXTRs,*Rd

MOVE Rs,-*Rd[.F] PIXT Rs, *Rd .XV

MOVE Rs, *Rd+[.F] PIXT*Rs,Rd

MOVE *Rs,Rd[.F] PIXT *Rs, *Rd

MOVE -*Rs,Rd[.F] PIXT *Rs.XV,Rd

MOVE *Rs+,Rd[.F] PIXT *Rs.XV, *Rd.XV

MOVE *Rs,*Rd[.F] POPST

MOVE -*Rs,-*Rd[.F] PUSHST

MOVE *Rs+,*Rd+ PUTSTRs

MOVE Rs,*Rd(Offset)[.F] RETI

MOVE *Rs(Offsef),Rd[.F] RETM

MOVE *Rs(Offsef), *Rd+[.F] RETS [NJ

MOVE *Rs(SOffset), REVRd
*Rd(DOffset)[.F]

RLK,Rd
MOVE RS,@DAddress[.F]

RLRs,Rd
MOVE @SAddress,Rd[.F]

RMO
MOVE @SAddress,*Rd+[.F]

RPIXRd
MOVE @SAddress,

@DAddress[.F] SETC

MOVI/W,Rd SETCDP

MOVIIL,Rd SETCMP

MOVKK,Rd SETCSP

MOVXRs,Rd SETF FS,FE,F

MOVYRs,Rd SEXT Rd,F

MPVSRs,Rd SLAK,Rd

MPVURs,Rd SLARs,Rd

MWAIT SLLK,Rd

NEGRd SLLRs,Rd

7

TMS34020 Assembly Language Instruction Set
(continued)

SRAK,Rd SWAPF RS,Rd,O

SRARs,Rd TFILLXY

SRLK,Rd TRAPN

SRLRs,Rd TRAPL

SUB RS,Rd VBLT

SUBBRs,Rd VFILL

SUBI/W,Rd VLCOL

SUBIIL,Rd XORRs,Rd

SUBKK,Rd XORIIL,Rd

SUBXVRs,Rd ZEXTRd,F

Boolean Pixel-Processing Options

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

Source -+ Destination

Source AND Destination -+ Destination

Source AND -Destination -+ Destination

Os -+ Destination

Source OR -Destination -+ Destination

Source XNOR Destination -+ Destination

-Destination -0> Destination

Source NOR Destination -+ Destination

Source OR Destination -+ Destination

Destination -+ Destination

Source XOR Destination -+ Destination

-Source AND Destination -+ Destination

15 -+ Destination

-Source OR Destination -+ Destination

Source NAND Destination -+ Destination

-Source -+ Destination

Arithmetic Pixel-Processing Options

10000 Source + Destination -+ Destination

10001 ADDS(Source, Destination) -+ Destination

10010 Destination - Source -+ Destination

10011 SUBS(Source, Destination) -+ Destination

10010 MAX (Source, Destination) -+ Destination

10101 MIN (Source, Destination) -+ Destination
10110--11111 Reserved

Status Register -------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Note: Shaded portions are reserved.

8

m:: oil!: :::n:;::::i : s:: ::::::::::::w: ::::::: '$$$:: :m:m

12-pin connector, mechanical dimensions, A-10

12-pin header, A-3

3-wire interface, 11-1

A-file registers (AO-A14), 4-6
initial state following reset, 6-23

ABS instruction, 13-32

ABS (,34082 pseudo-op), 14-9, 14-1 0

ABSD (,34082 pseudo-op), 14-11

ABSF (,34082 pseudo-op), 14-12, 14-13

absolute addresses, 13-3

ADD instruction, 13-33

ADD (,34082 pseudo-op), 14-14, 14-15

ADDC instruction, 13-34

ADDD (,34082 pseudo-op), 14-16

ADDF (,34082 pseudo-op), 14-17, 14-18

ADDI
16-bit (short) version, 13-35
32-bit (Iong)version, 13-36

ADDK instruction, 13-37

address/status portion (local-memory cycle), 8-8,
8-12

addressing
address latch, 2-11
autoincrementing (for host accesses), 4-59, 4-60,

7-12-7-15
big-endian, 3-20-3-25, 4-21, 7-44
comparison feature (for host accesses), 4-60,

7-12
display screen, 4-32, 4-40, 4-46
implicit addressing, 7-12
instruction words, in cache, 5-3, 5-5

Index

linear addressing, 3-3, 3-15
litlle-endian, 3-20-3-25, 4-21, 7-44
local memory, 3-3

multiplexed addressing, 8-51-8-53
nonmultiplexed addressing, 8-50

modes, 13-2-13-9
absolute addresses, 13-3
constants, 13-2
immediate values, 13-2
register-direct, 13-4
register-indirect, 13-5

in XV mode, 13-9
with offset, 13-6
with postincrement, 13-7
with predecrement, 13-8

multiplexing, 4-22
pixel arrays, 4-30, 4-79
prefetching (for host accesses), 4-60, 7-10-7-12
range, 3-3
RCA values at row-address time, 4-21
screen-refresh address, 4-41, 4-42, 4~ 78
segments within the cache, 5-2, 5-3
subsegments within a cache segment, 5-2, 5-3
tap point, 4-44, 4-45
two 16-bit registers as a 32-bit register, 4-15,

4-32,4-46,4-75
window

end address, 4-90
start address, 4-91

XV addressing, 3-14, 4-25, 4-28, 4-34, 4-50,
4-73,4-90,4-91

XV-to-linear conversion, 3-15-3-17, 4-28, 4-34,
4-72,4-83

ADDXV instruction, 13-38

ADDXYI instruction, 13-39

Index-1

Index

algorithms
cache

control, 5-3
replacement, 5-4

display pitch, 3-13
least-recently-used (cache replacement), 5-4
XY-to-linear conversion, 3-15

ALTCH signal, 2-9, 2-11, 8-2, 10-2

American video standards
NTSC, 9-27
RS-170, 9-27

AND instruction, 13-40

ANDI instruction, 13-41

ANDN instruction, 13-42

ANDNI instruction, 13-43

ANSI C, 1-11

applications of the TMS34020, 1-3

arbitration logic
examples, 11-15-11-18
multiprocessor systems, 11-13-11-15

archiver, 1-11

arithmetic instructions, 13-24
ABS, 13-32
ADD,13-33
AD DC, 13-34
ADDI (16 bits), 13-35
ADDI (32 bits), 13-36
ADDK,13-37
ADDXY, 13-38
ADDXYI, 13-39
DEC, 13-94
DIVS, 13-96-13-97
DIVU, 13-98-13-99
INC, 13-134
MODS, 13-152
MODU, 13-153-13-157
MPYS, 13-172-13-174
MPYU, 13-175-13-176
SUB,13-241
SUBB, 13-242
SUBI, 13-243, 13-244
SUBK, 13-245
SUBXY, 13-246

arithmetic pixel-processing options, 4-26
array sizes for DRAMs, 8-52

arrays. See pixel arrays
assembler, 1-11

assembly-language, tools, 1-10-1-13,3-24

Index-2

autoincrementing, 7-12-7-15
disabled,7-14
legal HBS combinations, 7-13
reads and writes, 7-14
writes only, 7-14

auxilary graphics instructions
CLIP, 13-55
FPIXEQ,13-126-13-127
FPIXNE,13-128-13-129
PFILL,13-184-13-189
RPIX, 13-225
TFI LL, 13-249-13-252
VBLT, 13-259-13-261
VFI LL, 13-262-13-263
VLCOL, 13-264-13-265

B-file registers (BO-B14), 4-6, 4-7, 4-8
COLORO, 4-18, 4-74
COLOR1, 4-19, 4-74
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
initial state following reset, 6-23
MADDR,4-71
MPTCH,4-72
OFFSET,4-73
PATTERN,4-74
SADDR,4-79
SPTCH,4-83
WEND,4-90
WSTART, 4-91

background color, 4-18, 4-74
bandwidth, host interface, 7-34-7-36
bank selects, 8-57
BEN bit, 3-20, 4-21, 8-4

write protecting the bit, 4-22
BF (bus fault) status bit, 4-3, 6-3, 6-19
big-end ian addressing, 3-20-3-25

assembling code for, 3-24-3-25
default at reset, 3-20, 4-21
effect of BEN bit, 3-20, 4-21
host interface, 7-44
instruction timing, 3-25-3-26
processors that use it, 3-20
selecting, 3-20, 4-21

binary PIXBLTs
use of COLORO, 4-18
use of COLOR1 , 4-19

blanking
composite blanking, CBLNK, 2-15
horizontal blanking, 9-9

ending (HEBLNK), 4-53
HBLNK,2-15
starting (HSBLNK), 4-66

vertical blanking, 9-9
ending (VEBLNK), 4-86
starting (VSBLNK), 4-88
VBLNK,2-15

BLMOVE instruction, 13-44-13-45
implied operands

DADDR,4-30
SADDR,4-79

block of pixels. See arrays

block accesses
reads

of TMS34020 memory (by host), 4-59, 4-60
writes, 4-22

to TMS34020 memory (by host), 4-59, 4-60
with mask, 4-22

block diagram, TMS34020, 1-5
block-write cycles

data expansion, 8-42
data mapping, 8-41
status code on local-memory cycle, 8-11

Boolean pixel-processing options, 4-26

branch instructions, effects on PC, 4-4
breakpoints, 6-28

British video standards
PAL,9-27

BSFLTD registers, 4-15-4-17, 6-19

BSFLTDH, 4-15-4-17, 6-19

BSFLTDL, 4-15-4-17, 6-19

BSFLTST register, 4-17, 6-19

BTST
constant version, 13-46
register version, 13-47

buffer delays for emulator connections, A-5

bulk initialization, 9-47

bus error/bus fault, 2-11, 7-9
bus-fault interrupt, 6-19-6-20, 7-9

service routine, 6-20
coprocessor cycles, 10-9
CPU-initiated access, 8-14
host-initiated access, 8-14
local-memory cycles, 8-14
on a host-initiated access, 4-64

Index

screen-refresh cycle, 8-14
use of BSFLST to save memory controller state,

4-17
use of BSFLTD to store LAD data, 4-15-4-17

bus-fault interrupt, priority, 6-7

bus-locked operation
and dynamic bus sizing, 8-29
status code on local-memory cycle, 8-11

bus-request codes
access termination, 11-5-11-12
high-priority request, 11-5-11-12
low-priority request, 11-5-11-12
no request, 11-5-11-12

bus-requests priorities, 2-13, 8-6

bus size signal (SIZE16), 2-11
BUSFLT signal, 2-9,2-11,6-2,6-19,7-9,8-2,8-12,

8-18,10-2
bus cycle completion codes, 2-12

byte-select strobes, 4-57, 7-2
big-endian addressing, 7-44
little-endian addressing, 7-44

bytes, 3-1

C (carry) status bit, 4-3
C compiler, 1-11, 1-13

cache, 5-1-5-12
accessible words, 5-3
architecture, 5-2
bypassing the cache, 5-8
cache fill, status code on local-memory cycle,

8-11
cache hit, 5-5
cache miss, 5-5

segment miss, 5-6
subsegment miss, 5-5

CD (cache disable) bit, 5-8
CF (cache flush) bit, 5-8
control algorithm, 5-3
disabling the cache, 4-27, 5-8
downloading new code from a host, 5-8
fetching data after a cache miss, 5-6
flushing the cache (CF), 4-61, 5-8
initial state following reset, 6-23
internal parallelism, 5-10
least-recently-used algorithm, 5-4
operation, 5-5-5-8
organization, 5-2

Index-3

Index

P flags, 5-2, 5-4
performance when enabled vs. disabled, 5-9
reason it's provided, 5-1
replacement algorithm, 5-4
segments, 5-2 .
self-modifying code, 5-8
setting the CD bit, 5-8
setting the HLT bit, 5-8
size, 5-3
SSA registers, 5-2
subsegments, 5-2

CALL instruction, 13-48

CALLA instruction, 13-49

CALLR instruction, 13-50

CAMD signal, 2-9, 2-12, 8-2, 8-18

capturing a video image, 9-48

Cartesian coordinates, 3-14, 3-19

CASO-CAS3 signals, 2-9, 2-12, 8-2, 10-2

CBLNKlVBLNK signal, 2-10, 2-15, 9-2
selection, 4-38

CBP bit, 3-20, 4-22, 8-4

CD bit, 4-27, 5-8

CEXEC instruction, 13-51-13-93

CF bit, 4-57, 4-61, 5-8, 7-4

CHECK (,34082 pseudo-op), 14-19
CL30, 1-11

CLIP instruction, 13-55-13-56
implied operands, DADDR, 4-30

CLKIN signal, 2-10, 2-16, 8-2

clocks
CLKIN (clock in), 2-16
LCLK1, LCLK2 (local output clocks), 2-16
SCLK (serial data clock), 2-15
VCLK (video clock), 2-15

CLR instruction, 13-57

CLRC instruction, 13-58

CMOVCG instruction, 13-59-13-60

CMOVCM instruction, 13-61-13-62, 13-63-13-65

CMOVCS instruction, 13-66

CMOVGC instruction, 13-67-13-68, 13-69-13-70

CMOVMC instruction, 13-71-13-73, 13-74-13-77,
13-78-13-79

CMP instruction, 13-80

CMP (,34082 pseudo-op), 14-20, 14-21
CMPD (,34082 pseudo-op), 14-22
CMPF (,34082 pseudo-op), 14-23, 14-24

Index-4

CMPI instruction, 13-81, 13-82

CMPK instruction, 13-83

CMPXY instruction, 13-84

code
debugging, single-step mode, 6-28-6-32
downloading new code from a host, 5-8, 7-32
restrictions for compatibility between TMS34010

and TMS34020, 1-17
self-modifying, effects on instruction cache, 5-8

COFF,1-11

color-latch register loads, status code on local-
memory cycle, 8-11

COLORO register, 4-18, 4-74

COLOR1 register, 4-19, 4-74

column address
bus, 2-12
mode, 2-12
strobes, 2-12

column-address time, 4-21,8-9

compare instructions, 13-24
BTST (constant), 13-46-13-50
BTST (register), 13-47-13-50
CMP, 13-80
CMPI,13-81-13-93
CMPK,13-83-13-93
CMPXY, 13-84
CPW, 13-85-13-86

compatibility
with future GSPs

local-memory read & write cycles, 8-19
status register values, 4-3

with the TMS34010, 1-16-1-18
code restrictions, 1-17-1-18
CONTROL register, 4-24
DPYADR register, 4-35
DPYSTRT register, 4-48
DPYTAP register, 4-49
HSTADRH register, 4-56
HSTDATA register, 4-65
screen-refresh registers, 9-8

completing a successful local-memory cycle, 8-13

composite video, 9-15-9-17
display example, 9-40-9-42
enabling/disabling, 4-38
equalization pulses, 9-15-9-16
serration pulses, 9-15-9-16
sync direction, 4-37

condition codes for jump instructions, 13-26

CON FIG register, 4-20-4-24, 8-4
BEN bit, 3-20, 4-20, 4-21, 8-4
CBP bit, 3-20, 4-20, 4-22, 8-4
RCM bits, 4-20, 4-21, 8-4
RR bits, 4-20, 4-23, 8-4
VEN bit, 8-4
write protecting the register, 4-22

constants, 13-2

context-switching instructions, 13-25-13-27
CALL,13-48
CALLA, 13-49
CALLR, 13-50
RETI,13-217-13-218
RETS, 13-220
TRAP L, 13-256-13-258
TRAP N, 13-253-13-255

CONTROL register, 4-24-4-28
CD bit, 4-24,4-27,5-8
compatibility with TMS3401 0, 4-24
PBH bit, 4-24, 4-25
PBV bit, 4-24, 4-26
PPOP bits, 4-24, 4-26-4-27
T bit, 4-24, 4-25
TM bits, 4-24
VEN bit, 4-22
W bits, 4-24, 4-25, 6-17

CONVDP register, 4-28-4-30
SETCDP instruction, 4-28
XV-to-linear conversion, 3-15, 3-16

converting ...
an XV address to a linear address, 3-15-3-17
composite video signals to separate signals, 9-34
pixel access into register transfers, 9-47
separate video signals to a composite signal,

9-34

CONVMP register, 4-28-4-30
SETCMP instruction, 4-28
XV-to-linearconversion, 3-15, 3-16

CONVSP register, 4-28-4-30
SETCSP instruction, 4-28
XV-to-linear conversion, 3-15, 3-16

coprocessor interface, 10-1-10-18
aborts, 10-17
general coprocessor commands

command field, 10-6-10-7
format, 10-5-10-7
ID field, 10-5-10-7
parameter size, 10-6-10-7

general coprocessor instructions, 10-3-10-4

local-memory cycles, 10-4,10-8-10-16
bus faults, 10-9
ending, 10-9
inserting wait states, 10-9
retrying, 10-9

overview, 10-3
passing commands to a coprocessor, 10-8
signals, 10-2-10-18

ALTCH,10-2
BUSFL T, 10-2
CASO-CAS3, 10-2
LADO-LAD31, 10-2
LCLK1, LCLK2, 10-2
LlNTt, LlNT2, 10-2
LROY, 10-2
SF, 10-2
WE,10-2

status checks, 10-17
status code on local-memory cycle, 8-10
system configuration, 10-18
TMS34082, 14-1-14-7
TMS34082 pseudo-ops, 10-3
transferring data, 10-8

Index

coprocessor to local memory, 10-15
coprocessor to TMS34020 register, 10-12
local memory to coprocessor, 10-14
sequence, 10-9
TMS34020 register to coprocessor, 10-11

CPW instruction, 13-85-13-86
implied operands

WEND,4-90
WSTART, 4-91

CSD bit, 4-37, 9-6

CST bit, 4-39, 9-6
effect on local-memory cyles, 8-30, 8-33, 8-36

CSVNC signal
equalization pulses, 9-17
selecting as input or output, 4-37
serration pulses, 9-16

CSVNC/HBLNK signal, 2-10, 2-15, 9-2
selection, 4-38

CVD bit, 4-38, 9-6

CVDF (,34082 pseudo-op), 14-25

CVDI ('34082 pseudo-op), 14-26

CVDXVL instruction, 13-87-13-88
implied operands

CONVDp, 4-29
DPTCH,4-34
PSIZE,4-77

Index-5

Index

CVFD (,34082 pseudo-op), 14-27, 14-28

CVFI (,34082 pseudo-op), 14-29, 14-30

CVID (,34082 pseudo-op), 14-31

CVIF (,34082 pseudo-op), 14-32, 14-33, 14-34

CVMXYL instruction, 13-89-13-90
implied operands

CONVMp, 4-29
MPTCH,4-72
PSIZE,4-77

CVSXYL instruction, 13-91
implied operands

CONVSp, 4-29
PSIZE,4-77
SPTCH,4-83

CVXYL instruction, 3-16, 13-92-13-93
implied operands

CONVDp, 4-29
DPTCH,4-34
OFFSET, 4-73
PSIZE,4-77

m
DADDR register, 4-30

with DYDX for common rectangle function, 4-30

data
access, status code on local-memory cycle, 8-11
expansion, 8-37
mapping, during block-write cycles, 8-41
structures, 3-1-3-32

bytes, 3-1
fields, 3-1, 3-3, 3-5
pixel arrays, 3-1, 3-18-3-19
pixels, 3-1, 3-10-3-13
stacks, 3-26

subcycle (local-memory cycle), 8-12

data portion (local-memory cycle), 8-8, 8-9

DDIN signal, 2-9, 2-11,8-2
DDOUT signal, 2-9, 2-11, 8-2, 8-18

debugging, A-1

debugging code in single-step mode, 6-28-6-32

DEC instruction, 13-94
delays ...

buffer delays in emulation, A-5
recognizing interrupts, 6-11
to host accesses, 7-37-7-40
to video synchronization, 9-33

design considerations, for emulation, A-7

Index-6

destination pitch
CONVDP register, 4-28-4-30
conversion factor, 4-28-4-30
DPTCH register, 4-34-4-35

development tools overview, 1-10-1-13

DIE bit, 4-69, 6-3

DINC registers, 3-11, 4-32, 9-7
SRINC bits, 4-32, 4-33, 9-7
YZINC bits, 4-32, 4-33, 9-7

DINCH, DINCL. See DINC registers

DINT instruction, 13-95

DIP bit, 4-70, 6-4, 6-17

direct operands, 13-4

display
address output during a screen refresh, 4-42
blanking ration (DBR), 9-36
control, 4-36-4-41
increment value, 4-32
interrupt

DPYINT register, 4-41
enabling, 4-69
pending indication, 4-70

mask, 4-44-4-46
memory, 8-56

coordinates, 3-13
dimensions, 3-12
requirements for hardware, 8-56
requirements for multiplexed addressing, 8-54

panning, 9-57
pitch,3-13
screen origin

alternate, 3-12
default, 3-12

screen sizes, 9-36
start address, 4-46-4-48

display interrupt, 6-17, 9-37
disabling, 6-6
enabling, 6-6
priority, 6-7
trap number, 6-16
vector address, 6-8, 6-16

DIVD (,34082 pseudo-op), 14-35

DIVF (,34082 pseudo-op), 14-36, 14-37

DIVS instruction, 13-96-13-97

D IVS (,34082 pseudo-op), 14-38, 14-39

D IVU instruction, 13-98-13-99

dot clock, 9-36

downloading new code from a host, 5-8

DPTCH register, 4-34--4-35
XY -to-linear conversion, 3-15

DPYADR register, 4-35

DPYCTL register, 4-36-4-41,8-4,9-5
CSD bit, 4-36, 4-37, 9-6
CST bit, 4-36, 4-39, 9-6
CVD bit, 4-36, 4-38, 9-6
ENV bit, 4-36, 4-40, 9-6
HSD bit, 4-36, 9-5
NIL bit, 4-36, 4-40, 9-6
SRE bit, 4-36, 4-40, 9-6
SSV bit, 4-36, 4-38, 9-6
VCE bit, 4-36, 4-39, 9-6
VSD bit, 4-36, 4-37, 9-6

DPYINT register, 4-41-4-42, 6-17

DPYMSK register, 4-44--4-46, 8-58, 9-8
and SRST or SRNX, 9-55

DPYNX registers, 4-42-4-44,9-7
increment value, 4-32
SRNX bits, 4-42, 4-43, 9-7
YZCNT bits, 4-42, 9-7

DPYNXH, DPYNXL. See DPYNXL registers

DPYST registers, 4-46-4-48, 9-7
SRST bits, 4-46

DPYSTH, DPYSTL. See DPYST registers

D PYSTRT register, 3-11, 4-48

DPYTAP register, 4-49

DRAMNRAM interface, 8-1-8-60
block-mask local-memory cycles, 8-37-8-43
DRAM-refresh local-memory cycles, 8-44-8-45
serial-register transfers, 8-29-8-33
signals, 2-12, 8-2-8-3

CAMD,2-12,8-2
CASD-CAS3, 2-12, 8-2
PGMD,8-3
RAS, 2-12, 8-3
RCAD-RCA 12, 2-12, 8-3
SF, 2-12, 8-3
SIZE16,8-3
TR/QE, 2-12, 8-3
WE, 2-12,8-3

write-mask local-memory cycles, 8-34-8-36

DRAMs
array sizes, 8-52
CAS-before-RAS cycles, 4-78
refreshes, 4-78, 8-6, 8-44

status code on local-memory cycle, 8-10
selecting the refresh rate, 4-23

DRAV instruction, 13-100-13-102
implied operands

COLOR1,4-19
CONTROL, 4-27
CONVDp, 4-29
DPTCH,4-34
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
WEND,4-90
WSTART, 4-91

DSJ instruction, 13-103

DSJEQ instruction, 13-104-13-105

DSJNE instruction, 13-106-13-107

DSJS instruction, 13-108

DYDX register, 3-18, 4-50--4-52

Index

with DADDR for common rectangle function,
4-30,4-50

dynamic bus sizing
and bus-locked operation, 8-29
data transfers, 8-26
page mode, 8-28
SIZE16 signals, 2-11

EINT instruction, 13-109

EMG bit, 4-63,7-4, A-7

EM lEN bit, 4-64, 7-4, A-7

EMR bit, 4-63, 7-4, A-7

EMU instruction, 13-110

EMUQ-EMU3 signals, 2-10, A-3, A-4, A-6

emulation
buffer delays, A-5
design considerations, A-1-A-10, A-7
emulator connector, A-3
host communications, 4-63, A-7
inhibiting the host-interface port, 4-63
mechanical dimensions

12-pin connector, A-10
pod, A-9
target cable, A-9

overview of an emulation system, A-2
pod interface, A-6
preventing the host from accessing local memory,

4-63
requesting local memory, 8-7
reset and interrupts, A-7

Index-7

Index

signals
buffering, A-4
EMUD-EMU3, A-3, A-4, A-6

status code on local-memory cycle, 8-10

endian addressing modes. See big-endian address­
ing

ENV bit, 4-40, 9-6
equalization pulses, 9-15-9-16

on CSYNC, 9-17

European video standards
PAL (British), 9-27
SECAM (French), 9-27

even field (interlaced video), 9-21

EXGF instruction, 13-111

EXGPC instruction, 13-112

EXGPS instruction, 13-113

extending a local-memory cycle with wait states,
8-12

external interrupts, 6-15
disabling, 6-6
enabling, 4-69, 6-6
pending indications, 4-70
priority, 6-7
recognition delay, 6-11
source, 6-15
vector addresses, 6-8, 6-15

external synchronization, 9-29-9-35
composite sync, 9-30-9-35
conversion, 9-34
horizontal sync, 9-30-9-35
interlaced. video, 9-30-9-35

odd/even field alignment, 9-31-9-35
noninterlaced video, 9-30-9-35
vertical sync, 9-30-9-35

external syncrhonization
loading the video counters, 9-32
pulse widths, 9-35
syncing to VCLK, 9-32

II
fast fills, 8-37

FEO (field extension 0) status bit, 4-2
FE1 (field extension 1) status bit, 4·2

features, of the TMS34020, 1-2
fields, 3-1, 3-3, 3·5-3·9

alignment in memory, 3-7
aligned to 1-byte boundary, 3-7

Index-8

aligned to 2-byte boundaries, 3-6
straddling a word and aligned on 2 byte

boundaries, 3-7
straddling a word and aligned to 1 byte bound­

ary, 3-8
straddling a word and not byte aligned, 3-8

extraction, 3-6
field 0, 3·5

FEO (field extension) bit, 3-5, 4-2
field size decoding, 3-5
FSO (field size) bits, 3-5, 4-2
sign-extending, 4-2
zero-extending, 4-2

field 1,3·5
FE1 (field extension) bit, 3-5, 4-2
field size decoding, 3-5
FS1 (field size) bits, 3-5
sign-extending, 4-2
zero-extending, 4-2

field extension
sign-extending, 4-2
zero-extending, 4-2

in a general-purpose register, 3~5
insertion, 3-6, 3-8, 3-9
pixels, DPYSTRT register, 3-11
PSIZE register, XY-to-linear conversion, 3-15
reading, 3-5
size, 3-5
starting address, 3-5
storage in external memory, 3-6
writing, 3-5

FILL instructions
FILL L, 13-114-13-116

implied operands
COLOR1,4-19
CONTROL, 4-27
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
PMASK,4-76
PSIZE,4-77

FILL XV, 13-117-13-120
implied operands

COLOR1,4-19
CONTROL, 4-27
CONVDP, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
OFFSET,4-73
PMASK,4-76
PSIZE,4-77

WEND,4-90
WSTART, 4-91

source address, 4-30, 4-79

FLiNE instruction, 13-121-13-125
destination address, 4-30
implied operands

COL ORO, 4-18
COLOR1,4-19
CONTROL, 4-27
CONVDp, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
MPTCH,4-72
PATTERN, 4-74
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEND,4-90
WSTART, 4-91

source address, 4-79

flushing the cache, 4-61, 5-8

foreground color, 4-19, 4-74

FPIXEQ instruction, 13-126--13-127
implied operands

COL ORO, 4-18
MPTCH,4-72
PMASK, 4-76
PSIZE,4-77

FPIXNE instruction, 13-128-13-129
implied operands

COL ORO, 4-18
MPTCH,4-72
PMASK,4-76
PSIZE,4-77

French video standards
SECAM,9-27

general-purpose coprocessor instructions
CEXEC, 13-51-13-93
CMOVCG, 13-59-13-60
CMOVCM, 13-61-,-13-62, 13-63-13-65
CMOVCS, 13-66
CMOVGC, 13-67-13-68,13-69-13-70
CMOVMC, 13-71-13-73, 13-74-13-77,

13-78-13-79

general-purpose register files. See register files

GETCST (,34082 pseudo-op), 14-40

GETPC instruction, 13-130

GETPS instruction, 13-131

GETST instruction, 13-132

GI signal, 2-9, 2-13, 8-18,11-2

graphics instructions
CPW, 13-85-13-86
CVXYL, 13-92-13-93
destination address, 4-30
DRAV, 13-100-13-102
FILL L, 13-114-13-116
FILL XY, 13-117-13-120
FLlNE,13-121-13-125
interrupts, 6-13-6-14
LlNE,13-142-13-145
LlNIT,13-146
LMO, 13-147
PIXBLT instructions, 13-190-13-205
PIXT instructions, 13-206--13-213
source address, 4-79

graphics operations
interrupts, 6-13-6-14
PIXBLT direction, 4-25, 4-26
pixel size, 4-77
pixel-processing operations

arithmetic options, 4-26
Boolean options, 4-26
selecting, 4-26-4-27

plane masking, 4-75
transparency, 4-24, 4-25
window checking, 4-25, 4-90, 4-91

m
HA5-HA31 signals, 2-10, 2-14, 7-2, 7-7

HACK bit, 4-57, 4-57,7-3

halt latency, 7-39

halting TMS34020 execution, 7-32
acknowledging the halt state, 4-57
HLT bit, 4-61

HBFI bit, 4-64, 6-5,6-21, 7-5, 7-9

HBREN bit, 4-64, 6-5, 6-21, 7-5, 7-9

HBSO-HBS3 signals, 2-10, 2-14, 7-2, 7-7

HCOUNT register, 4-52-4-53, 9-4
external synchronization, 9-29
loading with the SETHCNT value, 4-81

HCS signal, 2-10, 2-14, 7-2, 7-7
HOST signal, 7-2

Index

Index-9

Index

HOST signal, 2-10, 2-14

HEBLNK register, 4-53-4-54, 9-4

HESERR register, 4-54-4-55, 9-4

HESYNC register, 4-55-4-57, 9-4

HIE bit, 4-69, 6-3

HINC bit, 4-57, 4-60, 7-4
effects on address comparison, 7-10
effects on autoincrementing, 7-13
effects on prefetching, 7-10
interaction with HPFW, 4-59, 7-10

HINT signal, 2-10, 2-14, 4-64, 6-2, 6-21, 7-2, 7-9

HIP bit, 4-70, 6-4, 6-17

HLB bits (HLBO-HLB1), 4-57, 4-57, 7-3
effects on prefetching, 7-11

HLT bit, 4-57, 4-61, 6-4, 6-22, 7-4
setting for downloading new code, 5-8
software reset, 7-32

HOE signal, 2-10, 2-14,7-2

horizontal
back porch; 9-10
blanking

minimum duration, screen refreshes, 9-51
screen refreshes, 9-42

front porch, 9-10
vide,? timing (internal), 9-11-9-12

horizontal blanking, 9-9
VRAM tap point, 4-80

horizontal sync, 9-9
direction, 4-36

horizontal timing
HCOUNT register, 4-5.2
HEBLNK register, 4-53
HESERR register, 4-54
HESYNC register, 4-55
HSBLNK register, 4-66
HTOTAL register, 4-67
SETHCNT register, 4-81
VEBLNK register, 4-86

host interface, 7-1-7-44
access delays, 7-37-7-40
address identification, 4-57, 7-7
autoincrementing, 7-12-7-15
bandwidth,7-34

optimizing, 7-35
basic communication, 7-7-7-9
big-end ian addressing, 7-44
block diagram, 7-6
buffering messages, 4-62

/lndex-10

bus fault indication, 4-64
byte-select strobes, 2-14, 4-57, 7-7

illustration, 7-8
chip-select, 2-14
completing a host access, 7-16-7-17
data latch

output enable, 2-14
strobe, 2-14

default cycle, 7-15, 8-7
downloading new code from host, 7-32
emulation considerations, A-7
emulator communications, 4-63
features that improve performance, 7-10

address comparison, 4-60-4-61, 7-12
autoincrementing, 4-60-4-61, 7-12
host-default cycle, 7-15
prefetching, 4-59-4-61, 7-10

halt latency, 7-39
implicit addressing, 7-12-7-15
interrupts, 4-58, 4-64, 6-16, 6-21, 7-9

enabling, 4-69
HINT, 2-14
message to host, 4-63
message to TMS34020, 4-62
pending indication, 4-70

little-end ian addressing, 7-44
messages, 4-62
multiple-TMS34020 system, 7-40-7-41
prefetching data, 7-10
read cycles, 7-8

back-to-back with autoincrementing, HREAD
as strobe, 7-23

back-to-back with prefetching, HCS as strobe,
7-22

single read from 110 register, HREAD as
strobe, 7-20

single read, 1 wait state, HCS as strobe, 7-21
single read, HCS as strobe, 7-19
successive reads to same location, HCS and

HREAD as strobes, 7-24
read strobe, 2-14
registers

CONFIG, 4-20
HSTCTLH, 4-57-4-62, 7-3
HSTCTLL, 4-62-4-65, 7-4

retry indication, 4-64, 7-9
signals, 2-13

BUSFLT, 7-9
HA5-HA31, 2-14, 7-2, 7-7
HBSO-HBS3, 2-14,7-2,7-7

HCS, 2-14,7-2
HOST, 7-2
HOST, 2-14 -
HINT, 2-14, 7-2, 7-9
HOE, 2-14, 7-2
HRDY, 2-14,7-2
HREAD, 2-14,7-2
HWRITE, 2-14,7-2
LRDY, 7-9

status code on local-memory cycle, 8-10
synchronizing host requests, 7-35
systems with 16-bit memory devices, 7-42-7-43
timing examples, 7-18-7-31
TMS34020 acknowledges halt, 4-57
use of page mode, 8-24
worst-case delay, 7-37

bus-master arbitration, 7-38
CPU cycles, 7-39
DRAM-refresh cycles, 7-38
host request syncronization, 7-38
previous host cycle, 7-38
screen-refresh cycles, 7-38

write cycles, 7-9
back-to-back writes with autoincrementing,

HWRITE as strobe, 7-29
back-to-back writes with prefetching & autoin­

crementing, HREAD and HWRITE as
strobe, 7-31

back-to-back writes with prefetching, HCS as
strobe, 7-30

back-to-back writes, HCS as strobe, 7-28
single write to 110 register, HWRITE as strobe,

7-26
single write, 1 wait state, HCS as strobe, 7-27
single write, HCS as strobe, 7-25

write strobe, 2-14

host interrupt
disabling, 6-6
enabling, 6-6

host-address bus, 2-14, 7-2, 7-7

host-byte selects, legal combinations for autoincre-
menting, 7-13

host-interface, bus fault indication, 7-9

host-present mode, 6-25

HPFW bit, 4-57, 4-59, 7-3
effects on autoincrementing, 7-13
effects on prefetching, 7-10

interaction with HINC, 4-59, 7-10

HRDY signal, 2-10,2-14,7-2
activating for ...

host reads, 7-16

Index

host reads and writes after prefetches, 7-17
host writes, 7-16

HREAD signal, 2-10, 2-14, 7-2, 7-7

HRYI bit, 4-64, 6-5, 7-5, 7-9

HSBlNK register, 4-66-4-67, 9-4

HSD bit, 4-36, 9-5

HSTADRH, HSTADRl, 4-56, 7-5

HSTCTlH register, 4-57-4-62
CF bit, 4-61,5-8, 7-4
HACK bit, 4-57, 7-3
HBFI bit, 7-9
HBREN bit, 7-9
HINC bit, 4-60, 7-4, 7-10, 7-13
HlB bit, 7-3, 7-11
HlB bits, 4-57
HlT bit, 4-61, 5-8, 6-4, 6-22, 7-4, 7-32
HPFW bit, 4-59, 7-3, 7-10, 7-13
HRYI bit, 7-9
NMI bit, 4-58, 6-4, 6-16,7-3
NMIM bit, 4-59, 6-4, 6-16,7-3
RST bit, 4-58, 6-4, 7-3

HSTCTll register, 4-62-4-65
EMG bit, 4-62, 4-63, 7-4, A-7
EMIEN bit, 4-62, 4-64, 7-4, A-7
EMR bit, 4-62, 4-63, 7-4, A-7
HBFI bit, 4-64, 6-5, 6-21, 7-5
HBREN bit, 4-62, 4-64, 6-5, 6-21, 7-5
HBYI bit, 4-62
HRYI bit, 4-62, 4-64, 6-5, 6-21, 7-5
INTIN bit, 4-62, 6-5, 6-16, 7-4
INTOUT, 4-63
INTOUT bit, 4-62, 6-5, 6-21,7-4
MSGIN, 4-62, 4-63
MSGIN bits, 4-62, 6-5, 6-16, 7-4
MSGOUT, 4-63
MSGOUT bits, 4-62, 6-5, 6-21, 7-4

HSTDATA register, 4-65, 7-5

HSYNC signal, 2-10, 2-15, 9-3
selecting as input or output, 4-36

HTOTAl register, 4-67-4-68, 9-4

HWRITE signal, 2-10, 2-14, 7-2, 7-7

Index-11

Index

D
I/O registers, 4-9-4-13

BSFLTD,4-15
BSFLTST,4-17
CON FIG, 4-20
CONTROL, 4-24
CONVDP, 4-28
CONVMP, 4-28
CONVSP, 4-28
DINC, 4-32
DPYCTL, 4-36
DPYINT,4-41
DPYMSK, 4-44
DPYNX, 4-42
DPYST,4-46
HCOUNT,4-52
HEBLNK,4-53
HESERR, 4-54
HESYNC, 4-55
host accesses, 8-24
HSBLNK, 4-66
HSTCTLH,4-57-4-62
HSTCTLL, 4-62
HTOTAL, 4-67
IHOST,4-68
in the memory map, 3-2, 3-3
initial state following reset, 6-23
INTENB,4-69
INTPEND,4-70
memory map, 4-9
PMASK,4-77
PMASK registers, 4-75
REFADR,4-78
SCOUNT, 4-80
SETHCNT,4-81-4-82
SETVCNT, 4-82-4-83
summary, 4-10
VCOUNT, 4-84
VEBLNK,4-86
VESYNC, 4-87
VSBLNK,4-88
VTOTAL, 4-89

10 assignments, for coprocessors, 10-6

IDLE instruction, 13-133

IE (global interrupt enable) status bit, 4-2, 6-3, 6-6

IHOST registers, 4-68

illegal opcode interrupt, priority, 6-7

immediate values, 13-2

Index-12

implicit addressing, 7-12-7-15
implied operands

B-file registers, 4-7
summary, 4-8

COLORO, 4-18, 4-74
COLOR1, 4-19, 4-74
CON FIG, 4-20
CONTROL, 4-24
CONVDP, 4-28
CONVMP, 4-28
CONVSP, 4-28
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
MADDR,4-71
MPTCH,4-72
OFFSET,4-73
PATTERN,4-74
PMASK,4-75
PSIZE,4-77
SADDR,4-79
SPTCH,4-83
WEND,4-90
WSTART, 4-91

in-circuit emulation, A-1
host communications, 4-64

INC instruction, 13-134
incrementing ...

automatically for host accesses, 4-60
display address, 4-32
DPYNX, 4-32
HCOUNT, 4-52
SCOUNT,4-80
VCOUNT, 4-84

incrementing ... , y-zoom value, 4-32, 4-33, 4-42
indirect operands, 13-5

in XY mode, 13-9
with an offset, 13-6
with postincrement, 13-7
with predecrement, 13-8

instruction cache, 5-1-5-12
accessible words, 5-3
architecture, 5-2
bypassing the cache, 5-8
cache hit, 5-5
cache miss, 5-5

segment miss, 5-6
subsegment miss, 5-5

CD (cache disable) bit, 5-8
CF (cache flush) bit, 5-8

Index
:::::xm~::.:~:;x::;~x~~x~~:::;~~:;:;x~m:;-;~~:::;~~::::::::w..::::::~::::~~~~~::::::::::::.::x::%m~~%:;xw.6:::;X::.x:;:;:::;~~~::::xx:;:::;:;:;:::;:~~;~:;:;:;::-.:::~::::::::::~~z.:;m:;x:;:;.;~~::;.~::;~~~::::~~~:::;~~::::~::~::~::::::::::~~::::::~~~::~X'.:::~::::;:::::::::::::::::~~~~:::::;~~~::::~~::::~~::::~~::~:::::::::;-;::~*:~~~~~~~::~~~~:::::;~::::~::::~~::::::::::::~~~::::::~:;~:::::::::;o;::::::::::::::::~::::::::::~::;:::::;

control algorithm, 5-3
disabling the cache, 5-8
downloading new code from a host, 5-8
fetching data after a cache miss, 5-6
flushing the cache, 4-61, 5-8
initial state following reset, 6-23
internal parallelism, 5-10
least-recently-used algorithm, 5-4
operation, 5-5-5-8
organization, 5-2
P flags, 5-2, 5-4
performance when enabled vs. disabled, 5-9
reason it's provided, 5-1
replacement algorithm, 5-4
segments, 5-2
self-modifying code, 5-8
setting the CD bit, 5-8
setting the HLT bit, 5-8
size, 5-3
SSA registers, 5-2
subsegments, 5-2

instruction set. See TMS34020 instruction set

instructions
fetches, status code on local-memory cycle, 8-11
interrupting execution, 6-13
timings, 15-1-15-12

INTENB register, 4-69-4-70, 6-6
DIE bit, 4-69-4-70, 6-3
HIE bit, 4-69-4-70, 6-3
WVE bit, 4-69-4-70, 6-3
X1 E bit, 4-69-4-70, 6-3
X2E bit, 4-69-4-70, 6-3

interlaced video, 9-21-9-28
composite sync

equalization region, 9-17
serration region, 9-17

display example, 9-40-9-42
electron beam pattern, 9-22
even field, 9-21
external synchronization, 9-31
odd field, 9-21
programming vertical registers, 9-24
selecting, 4-40
signal combinations, 9-22

interlist utility, 1-11

internal interrupts, 6-16-6-18
display interrupt, 6-17
host interrupt, 6-16
iIIegal-opcode interrupt, 6-18

NMI,6-16
single-step interrupt, 6-17
window-violation interrupt, 6-17

internal parallelism, 5-1 °
interrupt, saving information on the stack, 3-29

interrupts, 6-1-6-32
actions taken, 6-9, 6-10
bus-fault interrupt, 6-19-6-20
delays, 6-11

sources, 6-12
disabling, 6-6
display interrupt, 4-41, 4-69, 4-70, 6-17, 9-37
during instruction execution, 4-2, 6-3, 6-9
effects on

PC, 6-9
ST, 6-9

effects on ...
PC, 4-4
Sp, 4-5

emulation considerations, A-7
enabling, 4-2, 4-69, 6-6
external interrupts, 4-69, 4-70, 6-15
graphics instructions, 6-10, 6-13-6-14
host interrupt, 2-14, 4-64, 4-69, 4-70, 6-16, 6-21
host interrupts, 4-64
how many supported?, 6-1
iIIegal-opcode interrupt, 6-18
internal interrupts, 6-16
latency, 6-11
LlNT1, LlNT2 (local interrupts), 2-16
nonmaskable interrupt, 4-58, 6-16
pending interrupts, 4-70
priorities, 6-7
processing, 6-9
registers, 6-2

HSTCTLH, 4-57, 6-4
HSTCTLL, 4-62, 6-5
INTENB, 4-69-4-70, 6-3
INTPEND, 4-70-4-71, 6-4
ST, 4-2,6-3

reset, 6-22-6-27
host-present mode, 6-25
self-bootstrap mode, 6-25

RESET (system reset), 2-16
service routines, 6-1 °

returning, 6-10
single-stepping through, 6-31

signals, 6-2
BUSFLT, 6-2
HINT,6-2

Index-13

Index

LIIVT1, LIIVT2, 6-2
RESET, 6-2

single-step interrupt, 6-17, 6-28
interaction with other interrupts, 6-30

traps, 6-8, 6-21
numbers, 6-16

vector, fetches, status code on local-memory
cycle, 8-11

vector addresses, 6-8, 6-16
window violation, 4-69, 4-70, 6-17

INTIN bit, 4-62, 6-5, 6-16, 7-4

INTOUT bit, 4-62, 4-63,6-5,7-4

INTPEND register, 4-70-4-71
DIP bit, 4-70-4-71, 6-4, 6-17
HIP bit, 4-70-4-71, 6-4, 6-17
WVP bit, 4-70-4-71, 6-4, 6-17
X1 P bit, 4-70-4-71,6-4,6-15
X2P bit, 4-70-4-71, 6-4, 6-15

INVD (,34082 pseudo-op), 14-41

INVF (,34082 pseudo-op), 14-42, 14-43

IX (interruptible instruction executing) status bit, 4-2,
6-3

II
JAcc instruction, 13-135-13-136

JRcc (long) instruction, 13-139-13-140

JRcc (short) instruction, 13-137-13-138

JUMP instruction, 13-141

jump instructions, 13-25-13-31
condition codes, 13-26
DSJ,13-103
DSJEQ,13-104-13-105
DSJNE, 13-106-13-107
DSJS, 13-108
effects on PC, 4-4
JAcc, 13-135-13-136
JRcc (long), 13-139-13-140
JRcc (short), 13-137-13-138
JUMP, 13-141

JUMPC (,34082 pseudo-op), 14-44

Kernighan and Ritchie, 1-11

key features of the TMS34020, 1-2

Index-14

D
LADO-LAD31 signals, 2-9, 2-11, 8-2,10-2

connecting to VRAMs, 8-41,8-43
4-bit VRAMs

4 bits per pixel, 8-41
8 bits per pixel, 8-43

connections to 16-bit host bus, 7-42
data remapping, 8-42, 8-43
LAD4 used as 16-bit word select, 8-25
latching data on the LAD bus, 8-8
saving data during a bus fault, 4-15
status code on LADO-LAD3, 8-9, 8-10-8-11
values for nonmultiplexed addressing, 8-50
when data is valid, 8-13
which half used during 16-bit accesses, 8-26

latency
halt latency, 7-39
host requests, 7-37-7-40
of screen refreshes, 9-50
recognizing interrupts, 6-11

LCLK1, LCLK2 signals, 2-10, 2-16, 8-2, 8-18, 10-2
LCLK1

effect on external interrupts, 6-15
used in emulation, A-3, A-4, A-5, A-6

LCLK2, identifying valid data on LAD bus, 8-12,
8-18

least-recently-used (cache replacement) algorithm,
5-4

LINE instruction, 13-142-13-145
destination address, 4-30
implied operands

COL ORO, 4-18
COLOR1,4-19
COIVVDp, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
MPTCH,4-72
OFFSET, 4-73
PATTERIV, 4-74
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEIVD,4-90
WSTART, 4-91

source address, 4-79

linear addressing, 3-3-3-4, 3-15
advantages, 3-19
array addresses

destination address (DADDR), 4-30
source address (SADDR), 4-79

pixels, 3-11

UNIT instruction, 13-146

linker, 1-12

UNT1, UNT2 signals, 2-10,2-16, 6-2, 6-15, 8-2,
10-2
interrupt pending indication, 4-70
interrupt request, 4-69

little-end ian addressing, 3-20-3-25
assembling code for, 3-24-3-25
default at reset, 3-20, 4-21
effect of BEN bit, 3-20
effect of the BEN bit, 4-21
host interface, 7-44
processors that use it, 3-20
selecting, 3-20, 4-21

LMO instruction, 13-147

load-write-mask cycles, 8-34

local-memory interface, 8-1-8-60
addressing mechanisms, 8-50-8-56
cycles

address/status portion, 8-8-8-9
bus errors/bus faults, 8-14
completing a successful cycle, 8-13
data portion, 8-8-8-9
ending, 8-12-8-14
extending with wait states, 8-12
general form, 8-8-8-9
page mode, 8-15-8-17
read & write cycles, 8-18-8-24
retrying, 8-13
status codes, 8-10-8-11
with wait states, 8-46-8-48

display examples, 8-57-8-60
dynamic bus sizing, 8-25-8-29
host-default cycles, 7-15, 8-7, 8-49-8-50
LADO--LAD31 (LAD bus), 2-11
multiplexed addressing, 8-51-8-53
nonmultiplexed addressing, 8-50
page mode, 8-15-8-17
registers, 8-4-8-5

CONFIG, 4-20, 8-4
DPYCTL, 4-36
PMASK, 4-75, 8-5
PSIZE,4-77

REFADR, 4-78, 8-5
request priorities, 8-6-8-7
signals, 8-2-8-3

ALTCH, 2-11, 8-2, 10-2
BUSFLT, 2-11, 8-2, 8-12, 8-18, 10-2
CAMD,8-18
CASO-CAS3, 10-2
DDIN, 2-11, 8-2
DDOUT, 2-11, 8-2, 8-18
G/,8-18
LADO-LAD31, 2-11, 8-2, 10-2
LCLK1, LCLK2, 8-12, 8-18, 10-2
L1NTt, L1NT2, 10-2
LRDY, 2-11,8-2,8-12,8-18, 10-2
PGMD, 2-11, 8-3, 8-12, 8-18
RO, R1, 8-18
SF, 10-2
SIZE16, 2-11, 8-3, 8-12, 8-18
WE,10-2

logical instructions, 13-24
AND,13-40
ANDI,13-41
ANDN,13-42
ANDNI,13-43
LMO,13-147
NEG,13-178
NEGB,13-179
NOT,13-181
OR,13-182
ORI,13-183
RMO,13-224
XOR,13-266
XORI,13-267

loss of bus grant, 8-6

Index

LRDV signal, 2-9, 2-11, 7-9, 8-2, 8-12, 8-18, 10-2
bus cycle completion codes, 2-12

MADDR register, 4-71-4-72
SETCMP instruction, 4-71

major interfaces, 2-8

masks
display mask (DPVMSK), 4-44-4-46
mask array

address (MADDR), 4-71-4-72
pitch (MPTCH), 4-72
XY-to-Iinear conversion factor (CONVMP),

4-28

Index-15

Index

pitch
conversion factor, 4-28-4-30
CONVMP register, 4-28
MPTCH register, 4-72-4-73

plane mask (PMASK), 4-75
write-mask registers (for VRAMs), 4-20, 4-22

memory
address space, 3-3
display memory, 8-56

coordinates, 3-13
dimensions, 3-12

general use, 3-3
1/0 registers, 3-3
map of local memory, 3-2
organization, 3-1-3-32

addressing, 3-3-3-4
bank selection, 8-55-8-56
bytes, 3-1
fields, 3-1, 3-3, 3-5
memory map, 3-2
pixel arrays, 3-1, 3-18-3-19
pixels, 3-1, 3-10
stacks, 3-26

reserved, 3-3
system memory, 8-56
vectors, 3-3

memory-to-serial-registers cycles, 8-30

memory-to-split-serial-registers cycles, 8-31

micellaneous instructions, CVDXYL, 13-87-13-88

midline reload, 4-38, 8-58, 9-55-9-56
example display memory dimensions, 8-59

midlines reload, 9-43-9-46

miscellaneous instructions
CLR,13-57
CLRC, 13-58
CVMXYL, 13-89-13-90
CVSXYL, 13-91
REV, 13-221
SETCDP, 13-227
SETCMP, 13-228
SETCSP, 13-229

MMFM instruction, 3-27,13-148-13-149

MMTM instruction, 3-27, 13-150-13-151

MODS instruction, 13-152

MQDU instruction, 13-153-13-157

MOVB instructions, 13-154-13-157

MOVD pseudo-ops instructions, 14-45-14-57

Index-16

MOVE instructions, 13-158-13-166
move instructions

BLMOVE,13-44-13-45
byte, 13-20
field,13-20-13-31
MMFM,13-148-13-149
MMTM,13-150-13-151
MOVB instructions, 13-154-13-157
MOVE instructions, 13-158-13-166
MOVI (16 bits), 13-167
MOVI (32 bits), 13-168
MOVK,13-169
MOVX, 13-170
MOVY, 13-171
multiple register, 13-20
register-to-register, 13-19
summary, 13-19-13-23
value-to-register, 13-19
XY,13-19

MOVEpseudo-ops instructions, 14-58-14-67

MOVF pseudo-ops instruction, 14-68-14-110

MOVI instruction
16-bit (short) version, 13-167
32-bit (long) version, 13-168

MOVK instruction, 13-169

MOVX instruction, 13-170
MOVY instruction, 13-171

MPTCH register, 4-72-4-73
SETCMP instruction, 4-72
XY-to-linear conversion, 3-15

MPYD (,34082 pseudo-op), 14-78

MPYF (,34082 pseudo-op), 14-79, 14-80
M PYS (,34082 pseudo-op), 14-81, 14-82

MSGIN bits (MSGINO-MSGIN2), 4-62, 4-62, 4-63,
6-5,6-16,7-4

MSGOUTbits (MSGOUTO-MSGOUT2), 4-62,
4-63,6-5,6-21, 7-4

multiple-TMS34020 system, 7-40-7-41

multiplexed addressing, 8-51-8-53

multiprocessor interface, 11-1-11-20
3-wire interface, 11-1
arbitration logic, 11-13-11-15

2 TMS34020s, 11-15-11-17
examples, 11-15-11-18
with a hold device, 11-17-11-20

bus request codes, 11-5
bus requests, 11-5
initializing multiple TMS34020s, 11-19

local-memory bus
passing control, 11-6
releasing control, 11-5
requesting control, 11-5

overview, 11-2
protocols, 11-5
retries, 11-15
signals, 2-13, 11-2

GI, 2-13, 11-2
RD, R1, 2-13, 11-2

system configuration, 11-3-11-4
system with a host processor, 7-40-7-41
wait states, 11-15
with a host processor, 11-20

MWAIT instruction, 13-177

MVPS instruction, 13-172-13-174

MVPU instruction, 13-175-13-176

m
N (negative) status bit, 4-3

NEG instruction, 13-178

NEG (,34082 pseudo-op), 14-83, 14-84

NEGB instruction, 13-179

NEGD (,34082 pseudo-op), 14-85

NEGF (,34082 pseudo-op), 14-86, 14-87

NIL bit, 4-40, 9-6, 9-18, 9-21

NMI bit, 4-57, 4-58, 6-4, 6-16, 7-3

NMIM bit, 4-57, 4-59, 6-4, 6-16, 7-3

non interlaced video, 9-18-9-20
display example, 9-38-9-39
electron beam pattern, 9-18
programming vertical registers, 9-20
selecting, 4-40
signal combinations, 9-18

nonmaskable interrupt, 6-16
NMI bit, 4-58
NMIM bit, 4-59
priority, 6-7
saving the context, 4-59

nonmultiplexed addressing, 8-50

NOP instruction, 13-180

NOT instruction, 13-181

NOT (,34082 pseudo-op), 14-88, 14-89

object format, 1-11

object format converter, 1-12

odd field (interlaced video), 9-21

OFFSET register, 4-73--4-74
XV -to-linear conversion, 3-15, 3-16

on-chip registers
PC, 4-4
register files, 4-6
status register (ST), 4-2

opcodes, illegal opcodes
interrupt, 6-18
range, 6-18

operand formats, 13-2-13-9

optimization, 1-11

OR instruction, 13-182

ORI instruction, 13-183

P flags, 5-2, 5-4
initial state following reset, 6-23

page mode, 8-15-8-17, 8-18
dynamic bus sizing, 8-28
multiple local-memory cycles, 8-15
read cycle timing, 8-20
read/write cycle timing, 8-22
read-modify-write cycle timing, 8-22
selecting page mode, 8-15
signal,2-11
write cycle timing, 8-20

panning the display, 9-57

parameter size, for coprocessor data, 10-6

PATTERN register, 4-74

PBH bit, 4-25

PBV bit, 4-26

PC, 4-4
and the stack, 3-29
effects of instruction execution, 4-4
effects of interrupts, 6-9
illustration, 4-4
initial state following reset, 6-23

pending ...
interrupts, 4-70, 6-4
local-memory requests, 8-7
refresh cycles, 4-23, 8-7

Index

Index-17

Index

PFILL instruction, 13-184-13-189
implied operands

COL ORO, 4-18
COLOR1,4-19
DADDR,4-30
DPTCH,4-34
DYDX, 4-51
OFFSET, 4-73
PATTERN, 4-74

PGA package pinout, 2-2

PGMD signal, 2-9,2-11,8-3,8-12,8-18

pin descriptions, 2-1-2-16
by category, 2-9-2-16
D~AM!VRAM interface, 2-9, 2-12
emulation interface, 2-10
host interface, 2-9, 2-13
local-memory interface, 2-9, 2-11-2-16
major interfaces, 2-8
multiprocessor interface, 2-9, 2-13

G/,2-13
power, 2-16
summary, 2-9-2-16
system control, 2-10,2-16
video interface, 2-15

pinouts, TMS34020, 2-2-2-7
PGA package, 2-2-2-7
QFP package, 2-5-2-7

pitches (for pixel arrays)
destination array, 4-28-4-30, 4-34-4-35
legal pitch values, 4-29-4-30
mask array, 4-28-4-30, 4-72-4-73
source array, 4-28-4-30, 4-83-4-84
XY-to-linear conversion

destination pitch, 4-34-4-35
factor

CONVDP register, 4-28--4-30
CONVMP register, 4-28--4-30
CONVSP register, 4-28--4-30

mask pitch, 4-72-4-73
source pitch, 4-83-4-84

PIXBLT instructions, 13-190-13-205
alternate starting corners, 3-18
destination address, 4-30
display pitch, 3-13
horizontal direction, 4-25
PIXBLT B,L, implied operands

COL ORO, 4-18
COLOR1,4-19
CONTROL, 4-27

Index-18

DADDR,4-30
DPTCH,4-34
DYDX, 4-50
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT B,XY, implied operands
COL ORO, 4-18
COLOR1, 4-19
CONTROL, 4-27
CONVDp, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83
WEND,4-90
WSTART, 4-91

PIXBLT L,L, implied operands
CONTROL, 4-27
DADDR,4-31
DPTCH,4-34
DYDX, 4-50, 4-51
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT L,M,L, implied operands
DADDR,4-31
DPTCH,4-34
MADDR,4-71
MPTCH,4-72
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT L,XY, implied operands
CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DADDR,4-31
DPTCH,4-34
DYDX, 4-50, 4-51
OFFSET, 4-73
PMASK,4-76

PSIZE,4-77
SADDR,4-79
SPTCH,4-83
WEND, 4-90
WSTART, 4-91

PIXBLT XY,L, implied operands
CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DADDR,4-31
DPTCH,4-34
DYDX,4-50
OFFSET, 4-73
PMASK, 4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT XY,XY, implied operands
CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DADDR,4-31
DPTCH,4-34
DYDX,4-51
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEND, 4-90
WSTART, 4-91

pixel arrays, 3-18
source address, 4-79
vertical direction, 4-26

pixel
processing

arithmetic options, 4-26
Boolean options, 4-26
selecting, 4-26-4-27

size, 4-77

pixel access, conversion to a VRAM serial-register
transfer, 4-39

pixel arrays, 3-1,3-18-3-19
addresses

destination (DADDR), 4-30
source (SADDR), 4-79

binary arrays, 4-18, 4-19
dimensions, 4-50
height (DY), 3-18
illustration, 3-18
mask address, 4-71

operations, window checking, 4-90, 4-91
pitch,3-18

Index

destination pitch, 4-28-4-30, 4-34-4-35
legal values, 4-29
mask pitch, 4-28-4-30, 4-72-4-73
source pitch, 4-28-4-30, 4-83-4-84

size, 4-50
starting address, 3-18
width (OX), 3-18
window checking, 3-19, 4-50, 4-90, 4-91
XY origin, 3-18

pixel operations
color information, 4-18, 4-19
pattern information, 4-74
status code on local-memory cycle, 8-11

pixels, 3-1,3-10-3-13
DING register, 3-11
display pitch, 3-13
extraction, 3-11
in memory, 3-10
insertion, 3-11
linear addressing, 3-11
on the screen, 3-11

configurable screen origin, 3-12
PSIZE register, 3-10
starting address, 3-10
storage in memory, 3-10
valid sizes, 3-10
within a general-purpose register, 3-10
XY addressing, 3-11

PIXT instructions, 13-206-13-213
implied operands

CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DPTCH,4-34
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SPTCH,4-83
WEND, 4-90
WSTART, 4-91

plane masking, PMASK register, 4-75--4-77
PMASK registers, 4-75-4-77, 8-5

and VEN, 4-22
block-write cycle (with mask), 8-40
enabling load-write-mask cycles, 8-34
local-memory write cycle (with mask), 8-36
writing 1 s complement of PMASK to VRAM write-

mask registers, 8-34

Index-19

Index -
PMASKH, PMASKL. See PMASK registers

POPST instruction, 13-214

power and ground, pins, 2-16
Vee, 2-16
Vss, 2-16

PPOP bits (PPOPO-PPOP4), 4-26-4-27

prefetching, 7-10-7-12
accessing the correct address, 7-12
after reads, 7-10-7-12
after writes, 7-10-7-12
enabling, 7-10-7-12
size of host data bus, 7-11-7-12

priorities of ... , memory bus requests, 8-6

program counter. See PC

program-control instructions, 13-25-13-27
DINT,13-95
DSJ,13-103
DSJEQ,13-104-13-105
DSJNE,13-106-13-107
DSJS, 13-108
EINT,13-109
EMU, 13-110
EXGF,13-111
EXGPC, 13-112
EXGPS, 13-113
GETPC, 13-130
GETPS, 13-131
GETST,13-132
IDLE,13-133
MWAIT, 13-177
NOP, 13-180
PO PST, 13-214
PUSHST, 13-215
PUTST, 13-216
RETM, 13-219
SETC, 13-226
SETF,13-230-13-231
SEXT, 13-232
ZEXT, 13-268

program-control instuctions, SWAPF,
13-247-13-248

PSIZE register, 3-10, 4-77-4-78

PUSHST instruction, 13-215

PUTST instruction, 13-216
single-step interrupt, 6-17

Index-20

QFP package pinout, 2-5

iii
RO, R1 signals, 2-9, 2-13, 8-18,11-2
RAS signal, 2-9, 2-12, 8-3
RCAO-RCA12 signals, 2-9, 2-12, 8-3, 8-53

effect of RCM bits, 4-21
RCM bits (RCMO-RCM1), 4-21, 4-78, 8-4

effect on local-memory cyles, 8-51,8-52
write protecting the field, 4-22

read cycles
adding wait states, 8-46
general timing, 8-19-8-24
initiated by the host, 8-24
local memory, 8-18
timing with page mode, 8-20
VRAM read transfer, 8-30

read/write cycles, timing with page mode, 8-22
read-modify-write cycles

steps in operation, 8-22
timing with page mode, 8-22
with dynamic bus sizing, 8-26

REFADR register, 4-78-4-79, 8-5
address output to RCA and LAD buses, 8-44

refreshes
See also screen refreshes
address output, 4-42
automatic screen refreshes, 4-40
CAS-before-RAS, 8-44
DRAM refreshes, 4-78

selecting the refresh rate, 4-23
host-access delays, 7-38
pending counter, initial state following reset, 6-23
pseudo-address, 8-44
REFADR register, 4-78
refresh address, 4-78
VRAM screen refreshes, enabling for VRAMs

with split serial registers, 4-38
register files, 4-6-4-8

file A, 4-6-4-8
file B, 4-6-4-8
illustration, 4-6
register used as auxiliary stack pointer, 3-29
SP, 4-5, 4-6
storing registers on the stack, 3-27

register-direct operands, 13-4

register-indirect operands, 13-5
in XV mode, 13-9
with an offset, 13-6
with postincrement, 13-7
with predectement, 13-8

registers, 4-1-4-14, 4-62-4-92
cache registers

data, 5-2, 5-3
segment start address, 5-2, 5-3

general-purpose registers, 4-6-4-8
I/O registers, 4-9-4-13
program counter (PC), 4-4
SP,3-26
stack pointer (SP), 4-5
status register (ST), 4-2
STK,3-29

reserved ...
bits in the status register, 4-3
memory, 3-3

reset, 6-22-6-27
activity following reset, 6-24
configuring the TMS34020 at reset

selecting the endian addressing mode, 4-20,
4-21

selecting the row-I column-address mode,
4-20,4-21

effects on the cache, 5-4
emulation considerations, A-7
host-present mode, 6-25
how to reset the TMS34020, 6-22-6-27
initial state following reset

cache, 6-23
refresh-pending counter, 6-23
registers, 6-23
signals, 6-22

protecting the addressing-mode configuration,
4-22

RESET signal, 2-16
self-bootstrap mode, 6-25
software reset

using NMI, 4-58
using RST, 4-58

value of ST, 4-2

RESET signal, 2-10,6-2,6-22-6-27
effect on HLT bit, 4-61
priority, 6-7

RETI instruction, 6-10,13-217-13-218
how it differs from RETM, 6-32
single-step interrupt, 6-17

RETM instruction, 6-10,13-219
how it differs from RETI, 6-32
single-step interrupt, 6-17

retries
coprocessor cycles, 10-9
local-memory cycles, 8-13
on a host access, 4-64, 7-9

RETS instruction, 13-220
restrictions, 6-10

REV instruction, 13-221

RL instruction, 13-222, 13-223

RMO instruction, 13-224

rotate/shift instructions
RL, 13-222, 13-223
SLA, 13-233, 13-234
SLL, 13-235, 13-236
SRA, 13-237, 13-238
SRL, 13-239, 13-240

row address
bus, 2-12
configuration, 4-21
strobe, 2-12
time, 4-21, 8-8

RPIX instruction, 13-225

RR bits (RRQ-RR2), 4-23, 4-78, 8-4
effect on local-memory cyles, 8-44

RST bit, 4-57, 4-58, 6-4, 7-3

S (select) bit, 8-25

SADDR register, 4-79

scan line duration, 4-67

SCLK signal, 2-10, 2-15, 9-3

SCOUNT register, 4-80-4-81

screen origin
alternate, 3-12
default, 3-12

screen refreshes
address output during, 4-42
addressing sequence

interlaced video, 9-53
noninterlaced video, 9-53

automatic refreshes, 4-40
CAS-before-RAS, 8-44
disabling,9-49
during horizontal blanking, 9-42
effect of the display mask, 4-44

Index

Index-21

Index

generating addresses, 9-51
horizontal blanking

address generation, 9-52
minimum duration, 9-51

interlaced video, addressing sequence, 9-53
latency, 9-50
memory-to-register cycles, 4-39
midline reload, 9-43, 9-55
noninterlaced video, addressing sequence, 9-53
REFADR register, 4-78
refresh address, 4-78
register-to-memory cycles, 4-39
registers

DING,4-32
DPYMSK, 4-44
DPYNX, 4-42
DPYST, 4-46

scheduling, 9-50-9-51
split-serial-register midline reload, 4-38

screen sizes, 9-36

screens, configurable origin, 3-12

SDB,1-12

segment miss, 5-6

self-bootstrap mode, 6-25

self-modifying code, effects on instruction cache, 5-8

serial registers, 4-38
converting pixel access to serial-register transfer

accesses, 4-39
register-to-memory cycles, 8-32, 8-33
split serial registers, 4-38
transfers, 8-6

status-code on local-memory cycle, 8-11

serration, ending (HESERR), 4-54

serration pulses, 9-15-9-16
on CSYNC, 9-16

SETC instruction, 13-226

SETCDP instruction, 13-227
implied operands

GONVDp, 4-29
DPTGH,4-34

SETCMP instruction, 13-228
CONVMP register, 4-28
implied operands

GONVMP, 4-29
MADDR,4-71
MPTGH,4-72

Index-22

SETCSP instruction, 13-229
implied operands

GONVSP, 4-29
SPTGH,4-83

SETF instruction, 13-230-13-231
SETHCNT register, 4-81--4-82, 9-4

SETVCNT register, 4-82--4-83, 9-5

SEXT instruction, 13-232
SF signal, 2-9, 2-12, 8-3, 10-2

shift instructions, 13-28

shift/rotate instructions
RL, 13-222, 13-223
SLA, 13-233, 13-234
SLL, 13-235, 13-236
SRA, 13-237, 13-238
SRL, 13-239, 13-240

sign-extending
field 0, 4-2
field 1,4-2

signal buffering, for emulator connections, A-4

signal descriptions, 2-1-2-16
by category, 2-9-2-16
DRAMNRAM interface, 2-12
host interface, 2-13
local-memory interface, 2-11-2-16
major interfaces, 2-8
multiprocessor interface, 2-13
pinouts, 2-2-2-7

PGA package, 2-2-2.-7
QFP package, 2-5-2-7

power, 2-16
system control, 2-16
video interface, 2-15

single-step interrupt, 6-17, 6-28
disabling, 6-6
enabling, 6-6
interaction with other interrupts, 6-30
priority, 6-7

SIZE16 signal, 2-9, 2-11, 8-3, 8-12, 8-18
dynamic bus sizing, 8-25

SLA instruction, 13-233, 13-234

SLL instruction, 13-235, 13-236

software development board, 1-12

software libraries
8514 adaptor emulation, 1-12
CCITT data compression, 1-12
font, 1-12
math/graphics, 1-12

software reset, 7-32
using NMI, 4-58
using RST, 4-58

source pitch
conversion factor, 4-28-4-30
CONVSP register, 4-28
SPTCH register, 4-83-4-84

SP, 3-26, 4-5
effects of interrupts, 6-9
illustration, 4-5
position in the register files, 4-6

special-function pin, 2-12

SPTCH register, 4-83-4-84
XV-to-linear conversion, 3-15

SQR (,34082 pseudo-op), 14-90, 14-91
SQRO ('34082 pseudo-op), 14-92

SQRF (,34082 pseudo-op), 14-93, 14-94

SQRT (,34082 pseudo-op), 14-95, 14-96
SQRTO (,34082 pseudo-op), 14-97

SQRTF (,34082 pseudo-op), 14-98, 14-99

SRA instruction, 13-237, 13-238

SRE bit, 4-40, 9-6
effect on local-memory cyles, 8-31,8-32

SRINC bits, 9-7, 9-52, 9-53, 9-54, 9-55
SRINC value, 4-32, 4-33

S RL instruction, 13-239, 13-240

SRNX bits, 9-7, 9-52, 9-53, 9-54, 9-55

SRNX value, 4-42, 4-43

SRST bits, 9-52, 9-53, 9-54, 9-55

SRST value, 4-46

SS (single-step) status bit, 4-2,6-3,6-6,6-17
clearing, 6-29
setting, 6-28

SSA registers, 5-2
illustration, 5-3
initial state following reset, 6-23

SSV bit, 4-38, 9-6
effect on local-memory cyles, 8-31,8-58

ST,4-2-4-3
and the stack, 3-29
BF bit, 6-3
definitions of status bits, 4-2--4-4
IE bit, 6-3, 6-6
illustration showing bit positions, 3-5, 4-2
initial state following reset, 6-23
instructions that change it, 6-29
IX bit, 6-3

SS bit, 6-3, 6-6, 6-17
value at reset, 4-2

stack pointer. See SP
stacks, 3-26-3-32

. auxiliary stacks, 3-29-3-32
growing toward higher addresses, 3-31
growing toward lower addresses, 3-30

system stack, 3-26-3-29
instructions that pop values, 3-27
instructions that push values, 3-27

Index

saving information during a subroutine call,
3-29

saving information during an interrupt, 3-29
saving register values, 3-27-3-29

standards, video
NSTC, 9-27
PAL,9-27
RS-170, 9-27
SECAM,9-27

starting corner, selecting, 4-30, 4-79
status bits, 4-2
status codes

bus cycle completion, 2-12
local-memory cycles

block write, 8-11
bus-locked operation, 8-11
cache fill, 8-11
color-latch register load, 8-11
coprocessor cycle, 8-10
data access, 8-11
DRAM refresh, 8-10
emulator operation, 8-10
host cycle, 8-10
instruction fetch, 8-11
interrupt-vector fetch, 8-11
pixel operation, 8-11
serial-register transfer, 8-11
write-mask load, 8-11

status register. See ST
strobes

byte-select strobes, 7-7
chip-select, 7-7
read strobe, 7-7
write strobe, 7-7

SUB instruction, 13-241
SUB (,34082 pseudo-op), 14-100-14-103

SUBB instruction, 13-242
SUBO (,34082 pseudo-op), 14-104-14-105
SUBF (,34082 pseudo-op), 14-106-14-109

Index-23

SUBI instruction, 13-243, 13-244

SUBK instruction, 13-245

subroutines
effects on PC, 4-4
effects on SP, 4-5
saving information on the stack, 3-29

subsegment miss, 5-5

SUBXY instruction, 13-246

SWAPF instruction, 13-247-13-248

symbolic debugger, A-1

sync signals
composite sync, CSYNC, 2-15, 4-37
ending

horizontal sync, 4-52
vertical sync, 4-87

horizontal sync
ending (HESYNC), 4-55
HSYNC, 2-15, 4-36

vertical sync, VSYNC, 2-16, 4-37

system
configuration

with a coprocessor, 10-18
with multiple processors, 11-3

configuration (CON FIG register), 4-20-4-24
considerations, bus faults, 6-20
control, signals, 2-16

CLKIN, 2-16, 8-2
LCLK1, LCLK2, 2-16,8-2
LlNTt, LlNT2, 2-16, 8-2
RESET, 2-16

control (CONTROL register), 4-24--4-28
design

connecting an emulator to a target system,
A-2, A-3

emulation considerations, A-1-A-10
multiple processors, 11-1

with multiple TMS34020s, 7-40-7-41

system memory, 8-56

D
T bit, 4-25

tap point, 4-44

target cable, mechanical dimensions, A-9

target system, setup with XDS emulator, A-2

test and emulation, A-1-A-1 0

Index-24

TFILL instruction, 13-249-13-252
implied operands

COLOR 1, 4-19
CONTROL, 4-27
CONVDp, 4-29
DADDR,4-31
DPTCH,4-34
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEND,4-90
WSTART, 4-91

TIGA,1-13
TM bits (TMQ-TM2), 4-24
TMS34010, registers not used by TMS34020

DPYADR,4-35
D PYSTRT, 4-48
DPYTAP, 4-49
HSTADRH, 4-56
HSTDATA, 4-65

TMS34020
applications, 1-3
architecture, 1-4-1-9
block diagram, 1-5
compatibility with the TMS3401 0, 1-16-1-18
development tools, 1-10
in a graphics system, 1-14
instruction set, 13-1-13-31

addressing modes, 13-2-13-9
arithmetic instructions, 13-24
compare instructions, 13-24
condition codes for jumps, 13-26
context-switching instructions, 13-25-13-27
jump instructions, 13-25-13-31
logical instructions, 13-24
move instructions, 13-19-13-23
operand formats, 13-2-13-9
program-control instructions, 13-25-13-27
shift instructions, 13-28
summar, 13-9-13-18
XY instructions, 13-29

internal functions, 1-5
key features, 1-2-1-3
major interfaces, 1-8
overview, 1-1-1-18

TMS34020 Emulator, A-1
TMS34082,14-1-14-7

key features, 14-2-14-7
overview, 14-2-14-7

pseudo-ops, 10-3
See also Chapter 14
format, 14-3-14-5
register operands, 14-6-14-7

sample graphics system, 1-14

TMS44C251 (1M VRAM), 1-15

TR/QE signal, 2-9, 2-12, 8-3

transceivers, used in host interface, 7-6

transparency
enabling, 4-25
modes

on destination=COLORO, 4-24
on resu!t=O, 4-24
on source=COLORO, 4-24

selecting a mode, setting the TM bits, 4-24
T bit, 4-25

TRAP L instruction, 13-256-13-258

TRAP N instruction, 13-253-13-255

traps, 6-21
how many supported?, 6-1
vector locations, 6-8 ;::-

V (overflow) status bit, 4-3

VBLT instruction, 13-259-13-261
enabling the VRAM block-write feature, 4-22
implied operands

DADDR,4-31
DPTCH,4-34
DYDX, 4-51
PMASK,4-76
PSIZE,4-77
SADDR,4-79

use of VRAM block-write feature, 8-39, 8-40,
8-41

Vcc, 2-10

VCE bit, 4-39, 9-6
effect on local-memory cyles, 8-30, 8-31,8-32

VCLK signal, 2-10, 2-15, 9-3

VCOUNT register, 4-84-4-86, 6-17, 9-5
external synchronization, 9-29
loading with the SETVCNT value, 4-82

VEBLNK register, 4-86-4-87, 9-5
interlaced video, 9-26

vector addresses, 6-8

VEN bit, 4-22, 8-4
effect on local-memory cyles, 8-34, 8-36

vertical
back porch, 9-10
front porch, 9-10
video timing (internal), 9-13-9-14

vertical blanking, 9-9
interlaced video, 9-23
NTSC and PAL standards, 9-27

vertical sync, 9-9
direction, 4-37

vertical timing
SETVCNT register, 4-82
VCOUNT,4-84
VESYNC register, 4-87
VOTAL register, 4-89
VSBLNK register, 4-88

VESYNC register, 4-87-4-88,9-5
interlaced video, 9-25

VFILL instruction, 13-262-13-263

Index

enabling the VRAM block-write feature, 4-22
implied operands

DADDR,4-31
DPTCH,4-34
DYDX, 4-51
PMASK,4-76
PSIZE,4-77

use of VRAM block-write feature, 8-39, 8-40,
8-41

video
American vs. European, 9-21,9-27
capture enable, 4-39
capture feature, 9-48
composite video, 9-15-9-17

enabling/disabling, 4-38
control

CSYNC direction (CSD bit), 4-37
HSYNC direction (HSD bit), 4-36
selecting CBLNK or VBLNK, 4-38
selecting CSYNC or HBLNK, 4-38
VSYNC direction (VSD bit), 4-37

display interrupt, 9-37
display mask, 4-44-4-46
display next address, 4-42
enabling the display, 4-40
equalization region, 9-15-9-17
external synchronization, 9-29-9-35
horizontal timing, 9-11-9-12
interlaced video, 9-21-9-28
interlaced video (selecting), 4-40
midline reload, 9-55
midlines reload, 9-43-9-46

Index-25

noninterlaced video, 9-18-9-20
non interlaced video (selecting), 4-40
registers, 9-4-9-8

DINC,9-7
DPYCTL,9-5
DPYMSK,9-8
DPYNX,9-7
DPYST, 9-7
HCOUNT, 9-4
HEBLNK,9-4
HESERR,9-4
HESYNC,9-4
HSBLNKi 9-4
HTOTAL,9-4
SETHCNT, 9-4
SETVCNT, 9-5
VCOUNT, 9-5
VEBLNK,9-5
VESYNC,9-5
VSBLNK,9-5
VTOTAL,9-5

screen refreshes, 9-55
disabling, 9-49
generating addresses, 9-51
scheduling, 9-50-9-51

serration region, 9-15-9-17
signals, 2-15, 9-2

CBfiiiRJVBLNK, 2-15, 9-2
CSYNCIHBLNK, 9-2
HSYNC, 2-15,9-3
SCLK, 2-15, 9-3
VCLK, 2-15, 9-3
VSYNC, 2-16, 9-3

standards
NTSC,9-27
PAL, 9-27
RS-170, 9-27
SECAM,9-27

start address for display, 4-46-4-48
timing examples, 9-38-9-42
timing registers

DPYCTL, 4-36
HCOUNT, 4-52
HEBLNK, 4-53
HESERR, 4-54
HESYNC, 4-55
HSBLNK, 4-66
HTOTAL, 4-67
SCOUNT, 4-80
SETHCNT, 4-81-4-82

Index-26

SETVCNT, 4-82-4-83
VCOUNT, 4-84
VEBLNK, 4-86
VESYNC, 4-87
VSBLNK, 4-88
VTOTAL, 4-89

vertical timing, 9-13-9-14
VRAM control, 9-42

video control logic
horizontal blanking

HEBLNK, 4-53
HSBLNK, 4-66

horizontal timing, HCOUNT, 4-52
scan line duration, 4-67
serration, HESERR, 4-54
sync signals

HESYNC, 4-55
VESYNC, 4-87

vertical blanking
VEBLNK, 4-86
VSBLNK, 4-88

video timing, 9-1-9-58

VLCOL instruction, 13-264-13-265
implied operands, COLOR1, 4-19

VRAMs, 9-42
1M VRAMs, 1-15,2-12,9-55
alternate write transfers, 8-33
automatic screen refreshes, 4-40
big-endian addressing, 3-25
block-write cycles, 8-37

data mapping, 8-41
with mask, 8-37, 8-40
without mask, 8-37, 8-39

block-write modes, 4-22
bulk initialization, 9-47
control, 9-42
data expansion, 8-37
display mask, 4-45
fast fills, 8-37
load-color-register cycles, 8-37, 8-38
load-write-mask cycles, 8-34
memory-to-register cycles, 4-40
memory-to-serial register cycle, 8-30
memory-to-split-serial register cycle, 8-31
midline reload, 4-38
pseudo-write transfer, 8-32
screen refreshes, 4-38, 4-39, 4-40

during horizontal blanking, 9-42
serial registers, 4-38

serial-register transfer cycles, 4-39
adding wait states, 8-48

telling the TMS34020 that the graphics system
contains special-function VRAMS, 4-22

TMS44C251, 1-15
write cycles, with mask, 8-36
write transfers, 8-32
write-mask cycles, 8-34

VSBLNK register, 4-88-4-89, 9-5
interlaced video, 9-26

VSD bit, 4-37, 9-6

Vss, 2-10

VSVNC signal, 2-16, 9-3
pin number, 2-10
selecting as input or output, 4-37

VTOTAL register, 4-89-4-90, 9-5
interlaced video, 9-26

W bits (WO-W1), 4-25, 6-17

wait states, 8-46-8-48
coprocessor cycles, 10-9
extending a local-memory cycle, 8-12

WE signal, 2-9, 2-12, 8-3,10-2

WEND register, 4-90-4-91

window checking
defining a window

end address (WEND), 4-90
start address (WSTART), 4-91

effect of DVDX, 4-50
modes, selecting, 4-25
pixel arrays, 3-19
W bits (Wo-W1), 4-25
window-violation interrupt, 6-17

window-violation interrupt, 4-25, 6-17
disabling, 6-6
enabling, 4-69, 6-6
pending indication, 4-70
priority, 6-7

worst-case, delays to host accesses, 7-37
bus-master arbitration, 7-38
CPU cycles, 7-39
DRAM-refresh cycles, 7-38
host request synchronization, 7-38
previous host cycle, 7-38
screen-refresh cycles, 7-38

write cycles
adding wait states, 8-46
block-write cycles

data mapping, 8-41
with mask, 8-40
without mask, 8-39

general timing, 8-19-8-24
initiated by the host, 8-24

Index

local memory, 8-18
serial-register-to-memory cycles, 8-32, 8-33
timing with page mode, 8-20
VRAM block-write cycles, 8-37
with mask, 8-36

write masks
loads, status code on local-memory cycle, 8-11
local-memory cycles, 8-34

write-enable signal, 2-12

write-per-bit (block write) operation, 4-22

write-with-mask, 4-22

WSTART register, 4-91-4-92

WVE bit, 4-69, 6-3

WVP bit, 4-70,6-4,6-17

II
X1 E bit, 4-69, 6-3

X1 P bit, 4-70, 6-4, 6-15

X2E bit, 4-69, 6-3

X2P bit, 4-70, 6-4, 6-15

XDS emulator, 1-12,4-63, A-1

XOR instruction, 13-266

XORI instruction, 13-267
XV addressing, 3-14

array addresses
destination address (DADDR), 4-30
source address (SADDR), 4-79

benefits, 3-14
configurable screen origin, 3-11
coordinate range, 3-14
format illustration, 3-14
general-purpose registers, 3-14
instructions that use it, 3-15
limits, 4-50
mapping to on-screen memory, 3-12
OFFSET register, 4-73
origin, 3-14
pixels, 3-11, 3-14
window checking, 3-14

Index-27

Index

XY instructions, 13-29
ADDXY, 13-38
ADDXYI,13-39
CMPXY, 13-84
CVXYL,13-92-13-93
FILL XV, 13-117-13-120

XY-to-linear conversion, 3-15-3-17
automatic conversion, 3-15
calculating the Y component, 3-15
CVXYL instruction, 3-16
formula, 3-15
pitch

actual pitch, 3-15
conversion factors, 3-15,3-16
destination pitch, 4-28, 4-34
mask pitch, 4-28, 4-72
source pitch, 4-28, 4-83

Index-28

process, 3-17

Y-zoom,4-32
increment value, 4-33, 4-42

V-zoom feature, 9-56-9-57

YZCNT bits (YZCNTo-YZCNT4), 4-42, 9-7, 9-56
YZINC bits (YZINCO-YZINC4), 4-32, 4-33, 9-7

Z (zero) status bit, 4-3
zero-extending

field 0, 4-2
field 1,4-2

ZEXT instruction, 13-268

Printed in U.S.A., August 1990
2564006·9761 revision·

-IjJ
TEXAS

INSTRUMENTS

SPVU019

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	04-86
	04-87
	04-88
	04-89
	04-90
	04-91
	04-92
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	13-001
	13-002
	13-003
	13-004
	13-005
	13-006
	13-007
	13-008
	13-009
	13-010
	13-011
	13-012
	13-013
	13-014
	13-015
	13-016
	13-017
	13-018
	13-019
	13-020
	13-021
	13-022
	13-023
	13-024
	13-025
	13-026
	13-027
	13-028
	13-029
	13-030
	13-031
	13-032
	13-033
	13-034
	13-035
	13-036
	13-037
	13-038
	13-039
	13-040
	13-041
	13-042
	13-043
	13-044
	13-045
	13-046
	13-047
	13-048
	13-049
	13-050
	13-051
	13-052
	13-053
	13-054
	13-055
	13-056
	13-057
	13-058
	13-059
	13-060
	13-061
	13-062
	13-063
	13-064
	13-065
	13-066
	13-067
	13-068
	13-069
	13-070
	13-071
	13-072
	13-073
	13-074
	13-075
	13-076
	13-077
	13-078
	13-079
	13-080
	13-081
	13-082
	13-083
	13-084
	13-085
	13-086
	13-087
	13-088
	13-089
	13-090
	13-091
	13-092
	13-093
	13-094
	13-095
	13-096
	13-097
	13-098
	13-099
	13-100
	13-101
	13-102
	13-103
	13-104
	13-105
	13-106
	13-107
	13-108
	13-109
	13-110
	13-111
	13-112
	13-113
	13-114
	13-115
	13-116
	13-117
	13-118
	13-119
	13-120
	13-121
	13-122
	13-123
	13-124
	13-125
	13-126
	13-127
	13-128
	13-129
	13-130
	13-131
	13-132
	13-133
	13-134
	13-135
	13-136
	13-137
	13-138
	13-139
	13-140
	13-141
	13-142
	13-143
	13-144
	13-145
	13-146
	13-147
	13-148
	13-149
	13-150
	13-151
	13-152
	13-153
	13-154
	13-155
	13-156
	13-157
	13-158
	13-159
	13-160
	13-161
	13-162
	13-163
	13-164
	13-165
	13-166
	13-167
	13-168
	13-169
	13-170
	13-171
	13-172
	13-173
	13-174
	13-175
	13-176
	13-177
	13-178
	13-179
	13-180
	13-181
	13-182
	13-183
	13-184
	13-185
	13-186
	13-187
	13-188
	13-189
	13-190
	13-191
	13-192
	13-193
	13-194
	13-195
	13-196
	13-197
	13-198
	13-199
	13-200
	13-201
	13-202
	13-203
	13-204
	13-205
	13-206
	13-207
	13-208
	13-209
	13-210
	13-211
	13-212
	13-213
	13-214
	13-215
	13-216
	13-217
	13-218
	13-219
	13-220
	13-221
	13-222
	13-223
	13-224
	13-225
	13-226
	13-227
	13-228
	13-229
	13-230
	13-231
	13-232
	13-233
	13-234
	13-235
	13-236
	13-237
	13-238
	13-239
	13-240
	13-241
	13-242
	13-243
	13-244
	13-245
	13-246
	13-247
	13-248
	13-249
	13-250
	13-251
	13-252
	13-253
	13-254
	13-255
	13-256
	13-257
	13-258
	13-259
	13-260
	13-261
	13-262
	13-263
	13-264
	13-265
	13-266
	13-267
	13-268
	14-001
	14-002
	14-003
	14-004
	14-005
	14-006
	14-007
	14-008
	14-009
	14-010
	14-011
	14-012
	14-013
	14-014
	14-015
	14-016
	14-017
	14-018
	14-019
	14-020
	14-021
	14-022
	14-023
	14-024
	14-025
	14-026
	14-027
	14-028
	14-029
	14-030
	14-031
	14-032
	14-033
	14-034
	14-035
	14-036
	14-037
	14-038
	14-039
	14-040
	14-041
	14-042
	14-043
	14-044
	14-045
	14-046
	14-047
	14-048
	14-049
	14-050
	14-051
	14-052
	14-053
	14-054
	14-055
	14-056
	14-057
	14-058
	14-059
	14-060
	14-061
	14-062
	14-063
	14-064
	14-065
	14-066
	14-067
	14-068
	14-069
	14-070
	14-071
	14-072
	14-073
	14-074
	14-075
	14-076
	14-077
	14-078
	14-079
	14-080
	14-081
	14-082
	14-083
	14-084
	14-085
	14-086
	14-087
	14-088
	14-089
	14-090
	14-091
	14-092
	14-093
	14-094
	14-095
	14-096
	14-097
	14-098
	14-099
	14-100
	14-101
	14-102
	14-103
	14-104
	14-105
	14-106
	14-107
	14-108
	14-109
	14-110
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-03
	C-05
	C-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	xBack

