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Preface

Read This First

This document describes the TMS34020 Graphics System Processor. It
focuses on the TMS34020’s role in applications that involve CRT-based
bit-mapped graphics systems.

If You Need Assistance...

If youwantto... Do this...
Receive more information about Call the CRC Thotline:
Texas Instruments graphics products (800) 232-3200
Or write to:

Market Communications Manager
P.O. Box 1443, MS 736
Houston, Texas 77251-1443

Order Texas Instruments Call the CRC Thotline:
documentation (800) 232-3200

Ask questions about product Call the graphics hotline:
operation or report suspected (713) 274-2340

problems

Report mistakes in this document or Send your comments to:

in any other Tl documentation Technical Publications Manager

Texas Instruments Incorporated
P.O. Box 1443, MS640
Houston, Texas 77251-9879

T Texas Instruments Customer Response Center

Related Documentation from Texas Instruments

The following TMS34010 and TMS34020 documents are available from Texas
Instruments. To obtain a copy of any of these Tl documents, please call the Tex-
as Instruments Customer Response Center (CRC) at (800) 232-3200. When
ordering, please identify the book by its title and its literature number.

Pixel Perspectivesis a quarterly newsletter, published by the Graphics Prod-
ucts group of Texas Instruments Incorporated. This newsletter describes
new products, discusses supportfor existing products, and identifies new
documentation releases.



Notational Conventions

The TMS34020 Data Sheet (lit. number SPVS004) contains electrical specifi-
cations, timing information, and mechanical data for the TMS34020.

The TMS340 Family Code-Generation Tools User’s Guide (lit. number
SPVUO004) describes the C compiler, assembler, linker, archiver, and
auxiliary tools that are available for developing TMS34010 or TMS34020
code.

The TIGA-340 Interface User’s Guide (lit. number SPVUOQ15) describes the
Texas Instruments Graphics Architecture (TIGA), a software interface
that standardizes communication between application software and
TMS340-based hardware for IBM-compatible PCs.

The TMS34010 Software Development Board User’s Guide (lit. number
SPVUO002) describes a high-performance graphics card that aids in
understanding Tl graphics products. Read Pixel Perspectives for discus-
sions of a TMS34020 version of this product and its documentation.

The TMS34010 User’s Guide (lit. number SPVU001) describes the
TMS34010, which is the first-generation graphics system processor in
the TMS340 family of graphics products.

Notational Conventions

The following terms and conventions are used throughout this manual.

Term/Convention Description

Rs, Rd source register, destination register.

Rs.XY, Rd.XY source or destination register in XY form.

Rs.X, Rd.X X half of source or destination register.

hs.Y, Rd.Y Y half of source of destination register.

R is a bit in an instruction opcode that identifies which reg-

ister file the register operands are in. R=0 identifies file
A; R=1 identifies file B.

PC’ is the address of the next instruction (current PC plus
the length of the current instruction).

Rp register pair.

cc condition codes for a jump instruction. -

W, IL 16-bit immediate value (short), 32-bit immediate value
(long).

SAddress, DAddress source address, destination address.

SOffset, DOffset source offset, destination offset.

LSB, MSB least significant bit, most significant bit.

LSbyte, MSbyte least significant byte, most significant byte.

LSW, MSW least significant word, most significant word.

Read This First



Notational Conventions

Term/Convention

Description ‘

n identifies a number that may have several values.

An, Bn identifies register n in register file A or file B.

TOS top of stack. .

F optional field select parameter for MOVE-field instruc-
tions. F=0 selects the field size & extension of field 0 for
the move; F=1 selects the field size & extension of field
1 for the move.

xxx[REGISTER] identifies a bit within a register. For example,

special font

boldface text

italic text

[1

|value]

CBP[[CONFIG]
refers to the CBP bit in the CONFIG register.

identifies program listings, coding examples, filenames, and
symbol names. For example,

0011 00000210 0001 .field i, 2
0012 00000212 0003 .field 3, 4
0013 00000215 0006 .field 6, 3
0014 00000220 .even

serves two purposes. In text, boldface identifies a key term
that is being defined. In instruction syntax, boldface identi-
fies the part of the instruction that you must enter as shown.
For example, enter

PIXBLT B,XY
exactly as shown (PIXBLT B, XY).

serves two purposes. In text, italics emphasize important
explanations. In instruction syntax, italics identify “place-
holders” thatidentify the type of information you should enter
for a parameter. For example,

CVXYL As,Ad ,

CVXYL is an instruction that has two parameters, Rs and
Rd—you must replace Rs and Rd with actual source and
destination registers (CVXYL A0,A3).

identify an optional parameter. Here’s an example of an in-
struction with an optional parameter:

CMPI W, Rd[, W] ,

CMPI has 3 parameters; the first two are required, the third is
optional. Note that the , W is bold—so if you use the optional
parameter, you must type it as shown.

means becomes the contents of. In an instruction execution
description, for example,

Rs— PC

the contents of Rs become the contents of (or replace the
contents of) the program counter.

means take the absolute value of the item between the par-
allel bars.



Notational Conventions / Information About Cautions and Warnings / Suggested References

Term/Convention

Description

{choice1|choice 2}

valueb , valueB

valueh , valueH

identifies a list; you can enter choice 1 or choice 2.

indicates concatenation. For example,
Rd:Rd+1
forms a 64-bit register area of Rd and the next register in the
same file.

identifies a binary integer. For example,

01b 1111B

identifies a hexadecimal integer. A hex number can't start
with a letter—start it with a 0 instead. For example,
OFFFFh 123H

Information About Cautions and Warnings

Theinformation in a caution or a warning is provided for your protection. Please
read each caution and warning carefully.

Suggested References

The following books and articles provide further background information about

graphics and system concepts associated with graphics:

Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood
Cliffs, New Jersey: Prentice-Hall, 1984.

Asal, Short, Preston, Simpson, Roskell, and Guttag. “The Texas Instruments
34010 Graphics System Processor.” IEEE Computer Graphics and
Applications vol.6, no.10, pp. 24—39.

vi
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Bresenham, J.E. “Algorithm for Computer Control of a Digital Plotter.” /BM Sys-
tems Journal 4, No.1 (1965): 25—30.

Bresenham, J.E. “A Linear Algorithm for Incremental Display of Digital Arcs.”
Communications of the ACM 20 (Feb. 1977): 100—106.

Cody, William J. Jr., and William Waite. Software Manual for the Elementary
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Foley, James, and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Massachusets: Addison-Wesley, 1982.

Gupta, Satish. “Architectures and Algorithms for Parallel Updates of Raster
Scan Displays.” Tech. Report CMU-CS-82-111, Computer Science
Dept., Carnegie Mellon University, 1981.

Ingalls, D.H. “The Smalltalk Graphics Kernel.” Special Issue on Smalltalk,
Byte, August 1981, pp. 168—194.

Kernighan, B., and D. Ritchie. The C Programming Language. Englewood
Cliffs, New Jersey: Prentice-Hall, 1978.

Killebrew, C.R. Jr., “The TMS34010 Graphics System Processor.” Byite,
December 1986, pp. 193—204.

Kochan, Stephen G. Programming in C. Hasbrouck Heights, New Jersey: Hay-
den Book Company, 1983.

Newman, W.M., and R.F. Sproull. Principles of Interactive Computer Graphics.
2nd ed. New York: McGraw-Hill, 1979.

Pike, Rob. “Graphics in Overlapping Bitmap Layers.” ACM Transactions On
Graphics 2 (April 1983): 135—160.

Pinkham, R., M. Novak, and K. Guttag. “Video RAM Excels at Fast Graphics.”
Electronic Design, August 18, 1983, pp. 161—168.

Pitteway, M.L.V. “Algorithm for Drawing Ellipses or Hyperbolae with a Digital
Plotter.” Computer Journal 10 (November 1967): 24—35.

Porter, T. and T. Duff. “Composing Digital Images.“ Computer Graphics, July
1984, pp. 253—259.

Sproull, R.F. and I.E. Sutherland. "A Clipping Divider.” Fall Joint Computer
Conference. Washington, DC: Thompson Books, 1968.

Van Aken, Jerry R. "An Efficient Ellipse-Drawing Algorithm.” IEEE Computer
Graphics & Applications 4 (Sept. 1984): 24—35.

Wientjes, Guttag, and Roskell. "First Graphics Processor Takes Complex Or-
ders to Run Bit-Mapped Displays.” Electronic DesignVol. 34,No.2 (Janu-
ary 23, 1986): 73—80.

vii



viii Read This First



Contents

1

Overview of the TMS34020 ..........cciiiiiiiinnnerncnnesssasanssansssnsssnnnnnns 1-1
Provides an overview of the TMS34020 and the TMS340 family, including key features, typical
applications, and a description of TMS340 support tools.

1.1  Key Features ofthe TMS34020 ........cciiiiiiiiiiii ittt iiiiee e ieinnnnaanns 1-2
1.2  Typical Applications of the TMS34020 . ...ttt e ieienenenens 1-3
1.3  Major Components of the TMS34020 Architecture ...........ccooiiviiviiiinann. 1-4
1.3.1 Internal FUNCLIONS ......ciii i i i e i i 1-5
1.3.2 Majorinterfaces .. ....ovviiiiiii i it i i s 1-8
1.4  System Development TOOIS ... .cutiiiiii ittt iiii e annaiaeens 1-10
1.4.1 Code-Generation TOOIS . . v viir ittt ittt i iene s 1-10
1.4.2  Supported SYSteMS . ... viii ittt e i e 1-12
1.4.3  PaCKages ...oiiiiiiiiiii i e e ettt 1-13
1.4.4 TIGA-340 Graphics Interface ...........cciiiiiiiiiiiiiii i, 1-13
1.5 Processors for a Graphics System ......c.iiiiii ittt 1-14
1.6 Compatibility Between the TMS34020 and TMS3401 0 .......................... 1-16
Pinouts and Signal Descriptions .........cciiiiiiiiineiinssissrnsnncssnsssnnnnnns 2-1

lllustrates the TMS34020'’s two pinout packages, identifies the interfaces that signals are asso-
ciated with, and provides a description of each signal.

2 PINOUES . oot e e e 2-2
2.2 The TMS34020's Major Interfaces ........oouieiiiiiiiiiiiiiiiiii e iiinnns 2-8
2.3  SigNal DesCriptONS vt ettt it i e e e s 2-9

2.3.1  Local-Memory Interface Signals ...........ccoiiiiiiiiiiiiiiiiiiien, 2-11
2.3.2 DRAMand VRAM Control Signals .........cceviiiiiiiiiiiiiiiinnnnnnns 2-12
2.3.3 MultiprocessorInterface Signals . ...ttt 2-13
2.3.4 Hostinterface Signals . ......ccoiiiiiiiiiiii it ittt 2-13
23,5 VideolInterface Signals .........cooiiiiiiiiiiii it it 2-15
2.3.6 System Control Signals .......c.coiiiiiiiiiiiiiii i 2-16
237 PowerSignals ........oiiiiiiiii e e e 2-16
Memory Organization and Data Structures ...........cciiiiriiininnisnennnnnnnanns 3-1

Discusses 32-bit addressing methods, the TMS34020 memory map, hardware supported data
structures, and XY addressing. This chapter also describes the differences between big-endian
and little-endian addressing.

R 70 IO /1= 4 T V201 =T o 3-2
3.2 Memory Addressing ....oooiiiiiiitt i i et e e e 3-3
R TG T 1= (o 2 3-5

ix



Contents

4

B4 PIXEIS o e i, 3-10
841 PixelsINMemoOry ... e e e 3-10
3.42 Pixelsonthe Screen ........ciiiiiiiiiiiii ittt i, 3-11

3.4.3 Display PitCh ...t i i i i et i e 3-13

35 XY AQAreSSiNg . uvviititii e i e 3-14
3.6  Converting an XY Addresstoa Linear Address ...........ccvviiiieneinninnennn. 3-15
3.7 PIXEl AITAYS .ottt e e e, 3-18
3.8  Big-Endian and Little-Endian Addressing . .........ccooiiiiiiiiiiii i 3-20
3.8.1 Selecting Big-Endian or Little-EndianMode ............................ 3-20

3.8.2 How the TMS34020 Accesses Memory in These Modes ................. 3-21

3.8.3 Assembling Code for Big-Endian or Little-Endian Addressing ............. 3-24

3.84 WiringVRAMstothe LADBUS .......ccoiiiiiiiiiiiii e 3-25

3.8.5 Big-Endian Effects on Instruction Timing ....... et et e e i, 3-25

R S - To (- 3-26
3.9.1  SYStEM StaCK .ottt e e e e e e e e 3-26

3.9.2  AUXIlIANY StaCKS ...ttt i e 3-29
TMS34020 Registers .......uvvierinieiinrrnensassssnnannccsaansannnaaannanssnssns 4-1

Provides a detailed discussion the TMS34020’s registers, including on-chip registers and I/O
registers; also provides an alphabetical reference of I/O registers combined with the B-file regis-
ters that graphics instructions use as implied operands.

4.1 The Status Register (ST) ....ovitii it i e it 4-2

42 The Program Counter (PC) ... ..ottt ettt e eeeeens 4-4

4.3 The Stack Pointer (SP) . ....oiiiiiii e et et 4-5

4.4 General-Purpose Registers (Register FilesAandB) ...............coooiiiint. 4-6

L T @ 1T |1 =1 £ 4-9

4.5.1 CPUControlRegisters .........ccoiiiiiiiiiii e 4-12

452 Host Communications Registers ..., 4-12

453 Local-Memory and DRAM/VRAM Interface Registers .................... 4-12

454 Interrupt Registers ... .ottt e e 4-12

4.5.5 . Video Timing and Screen-Refresh Registers ............. ... ...l 4-13

456 Latencyof Writesto /O Registers .......coiviiiiiiiiiviiennneenn, 4-13

4.6  Alphabetical Summary of I/O Registers and B-File Registers .................... 4-14

Instruction Cache and Internal Parallelism .................ccoiiiiiiiiiiie e, 5-1
Provides a detailed description of TMS34020 cache architecture and operation.

LI B 07 To] T3 Y (e o1 (= o3 (0] - 2P 5-2

5.2 Cache Replacement Algorithm ... ..coiiiiiiii it ettt et it e e 5-4

5.3  Cache Operation ......o..uiiiiie ittt e it 5-5

LT T I - o o T o 11 5-5

5.32 CacheMisses .....oviiiiiiiii it s et e 5-5

5.3.3 Fetching Data into the Cache Followinga Cache Miss .................... 5-6

5.3.4 Self-Modifying Code ...... PP 5-8

5.3.5 FlushingtheCache ...........c it e 5-8

5.3.6 Disablingthe Cache ...... ... e 5-8

5.4  Performance with Cache Enabled vs. Cache Disabled ........................... 5-9

5.5 Internal Parallelism...................... S PP 5-10

Table of Contents



Contents

6

Interrupts, Traps,and Reset ........coiiiiiiiiii it eeie e e s eeinannaeas 6-1
Describes the TMS34020's internal and external interrupt structure, the priorities of these inter-
rupts, and reset operation.

6.1  Related Signals . .c.iiiiit it e i i i et et 6-2
6.2 Related Registers ...... ..ottt e e, 6-2
6.3 Enabling and Disabling Interrupts ........ ..ottt 6-6
6.4 Interrupt Priorities and Vector Addresses ............. et eteeeecatie s 6-7
6.5  INterrupt ProCeSSINg ..ottt ettt i e e e e e, 6-9
6.5.1 Returning from an Interrupt Service Routine ................... ..ol 6-10
6.5.2 Interrupt LatenCy .....vvviinirt ittt it e, 6-11
6.6 Interrupting Instruction Execution ............ . i 6-13
6.7 Externalinterrupts 1 and 2 ......... ittt i e 6-15
6.8 Internal INtermupts .. ....ooii i e e 6-16
6.8.1 The Nonmaskable Interrupt (NMI) .................................... 6-16
6.8.2 TheHostinterrupt (HI) ... ..o e i e 6-16
6.8.3 The Display Interrupt (DI) ... oo i e e e e 6-17
6.8.4 Window-Violation Interrupt (WV) ... ...t 6-17
6.8.5 The Single-Step Interrupt ... s 6-17
6.8.6 lllegal-Opcode INtermUPLS .o vu et ittt it e it e i 6-18
6.9 TheBus-FaultInterrupt ...... ..o e 6-19
6.9.1  Activity During a Bus-Fault Interrupt ........ ... ..o il 6-19
6.9.2 Bus Fault System Considerations ............cociiiiin i, 6-20
6.10 Interrupting a HOSt Processor .......ovviiiiiiii it e ettt iiee e 6-21
<00 I T 1 = 1o 6-21
B.12 ReSel . it e e e e 6-22
6.12.1 Activity During Reset ...ttt it ieiee i enns 6-22
6.12.2 Initial State Following Reset ..........cciiiiiiiiiiiiiiii e 6-23
6.12.3 Activity Following Reset . ... 6-24
6.12.4 System Configuration Following Reset .......................ooill 6-26
6.12.5 RESET and Multiprocessor Synchronization ...................coiuut 6-27
6.12.6 State of VCLKDuring Reset ........ccoiiiiiiiiiiiiiiiiiii i 6-27
6.13 An Application for Interrupts: DebuggingCode ............cccviiiiiiiiit, 6-28
6.13.1 How aDebuggerWorks .........oiininiiiii ittt 6-28
6.13.2 UsingaDebugger .......ouiueiiiiiiiiiii ittt 6-28
6.13.3 Entering Single-StepMode ... 6-28
6.13.4 Clearingthe Single-Step Bit ....... ...t 6-29
6.13.5 AFew Thingsto KeepinMind .........cccoiiiiiiiiniiiiiiininnnnn. 6-29
Communicating with a HoSt Processor .......ciiviiineeiiiiiinaaaiiaannnanannanes 7-1
Describes methods for transferring information between the TMS34020 and a host processor.
7.1 RelatedSignals .......ccoiiiiiiiii e e e e 7-2
7.2 RelatedRegisters ........ccovuiiiiiiiiiii 7-3
7.3 A Basic Block Diagram for the Host Interface ...t 7-6
7.4  Basic Communication: How a Host Processor Reads from
and Writes to TMS34020 Local MemMOry .......oviiiiiiiiiiiii i i e 7-7
7.4.1 How a Host Processor RequestsaReadCycle ................coiuutt. 7-8
7.4.2 How a Host Processor Requests aWriteCycle .................cooiiitn 7-9
7.4.3 Local-Memory Faultsand Retries ........ ..o, 7-9

Xi



Contents

Xii

7.5 Features That Improve Performance of the Host Interface ....................... 7-10
7.5.1 Prefetching Data from the TMS34020’s LocalMemory ................... 7-10
7.5.2 Autoincrementing (Implicit Addressing) ..........ovieiiiiiiiiiiiieninnn 7-12
7.5.3 The TMS34020’s Default Memory Cycle ...........ccvviiiiineinnennnnn 7-15
7.6  Completing HOSt ACCESSES ... vvuu ittt ittt i et e in e enneennns 7-16
7.6.1 Activating HRDY forHost Reads ...........ccooviiiiiiiiiiiiininnn. 7-16
7.6.2 Activating HRDY for Host Writes ..........c.coiiiiiiiiiiiiiiiiiiiinenn, 7-16
7.6.3 Activating HRDY for Host Reads and Writes after Prefetches ............. 7-17
7.7  TimMINg EXamples .....iinn e e e e e 7-18
7.8 Halting TMS34020 Execution and Downloading NewCode ...................... 7-32
7.9  Host-Interface Data Throughput (Bandwidth) ...............ccoieiiiiiaa.... 7-34
7.9.1  Achieving Maximum Bandwidth .................oooiiiiii i 7-34
7.9.2 Timing Considerations for Optimizing Host-Interface Bandwidth ........... 7-35
7.10 Delays 0 HOSt ACCESSES . o vt i it iitietii ettt ittt titaieereeaaeananns 7-37
7.10.1 Worst-Case Delay .....ccoveiiiiiiiiiiii ittt ittt iieinnanns 7-37
7.90.2 Halt LatenCy ...ttt ittt i et e et e e, 7-39
7.11  Systems with Multiple TMS34020S ........coviirtiiiiiiiiiiiiieraenaneenns 7-40
7.12 Systems with 16-Bit Memory Devices . ........coeviiiiiiiii it 7-42
7.13 Systems with Big-Endian Addressing . .......c.ovviiiiiiiiiiiiiiiiiiiieiie e 7-44
Local-Memory and DRAM/VRAM Interfaces .........c.vievienieecnnnrnernnsennnnnns 8-1

Discusses the local memory interface timing, addressing mechanisms, and special topics
related to DRAMs and VRAMs.

8.1
8.2
8.3
8.4

8.5
8.6

8.7

8.8

8.9

Related Signals . ..ot e e e e e 8-2
Related Registers . ....coviii i i i e ettt e e 8-4
Priorities of Memory Bus Requests ............ccoiiiiiiiiiiii e 8-6
General Form of a Local-Memory Cycle ..ot 8-8
8.4.1 The Address/Status Subcycle ... 8-8
8.42 TheDataSubeycle. ... ..ot et e 8-9
Local-Memory Cycle Status Codes . ......covvireintiinii it iiiieeennnnnns 8-10
Ending aLocal-Memory CycCle ......coviiiiiiniiiiii it ieianieans 8-12
8.6.1 Extending a Local-Memory Cycle with Wait States ...................... 8-12
8.6.2 Completing a Successful Local-MemoryCycle .......................... 8-13
8.6.3 Retryingalocal-Memory CyCle . ........ouvuiniiinieiiiiiinannnnnns 8-13
8.6.4 Bus Faulting a Local-Memory Cycle ...........ccoviiiiiiiiiiiiniinan.. 8-14
Performing Local-Memory CyclesinPageMode ..............ccoviiviiinaa... 8-15
8.7.1 Selecting Page-Mode Operation ............coiitiiiiiiiiiiiiinnennn. 8-15
8.7.2 Howthe TMS34020 UsesPageMode ............coiviiiiiiiinnnnn.. 8-16
Local-Memory Read and Write Cycles ..........ccvviiiiiiiiiiiiinierinnnne, 8-18
8.8.1 Local-Memory Read Cycle Timing (with Page Mode) .................... 8-20
8.8.2 Local-Memory Write-Cycle Timing (with Page Mode) .................... 8-20
8.8.3 Local-Memory Read/Write or Read-Modify-Write Cycle Timing ............ 8-22
8.8.4 Host-Initiated Local-Memory Read and Write Cycles .................... 8-24
Accessing 16-Bit or 32-Bit Memory Devices (Dynamic Bus Sizing) ................ 8-25
8.9.1 Data Transfer Using DynamicBus Sizing ..........cciiiiiieiiiinnn... 8-26
8.9.2 Page Mode and DynamicBusSizing ............ccooiiiiiiiiiiii, 8-28
8.9.3 Bus-Locked Operation and Dynamic Bus Sizing ..................co.u... 8-29

Table of Contents



Contents

8.10 VRAM Serial-Register Transfers ..o, 8-29
8.10.1 Memory-to-Serial-Data-Register Cycle (VRAM Read Transfer) ........... 8-30
8.10.2 Memory-to-Split-Serial-Data-Register Cycle

(VRAM Split-Register Midline-Reload Transfer) .............cccovvien.... 8-31
8.10.3 Serial-Data-Register-to-Memory Cycle

(VRAM Write Transfer and Pseudo-Write Transfer) ..................... 8-32
8.10.4 Serial-Data-Register-to-Memory Cycle (VRAM Alternate-Write Transfer) ... 8-33

8.11  VRAM Write-Mask Local-Memory Cycles .........coviiiiiiiiiiiinnennnnnnnnn 8-34
8.11.1 Load-Write-Mask Cycle ......... .ottt 8-34
8.11.2 Write Cycle (With Mask) ..ot et e eiiaeens 8-36

8.12 VRAM Block-Write Local-Memory Cycles .........ccviiiiiiiiiiiiiiiiiiininennn 8-37
8.12.1 VRAM Support of Block-Write Cycles ...........ccooiviiiiiiiiinnnn... 8-37
8.12.2 TMS34020 Support of VRAM Block-Write Cycles .............c.covvvinnnn 8-37
8.12.3 Load-Color-Register Cycle . . .....coonii it 8-38
8.12.4 Block-Write Cycle (WithoutMask) .............coiiiiiiiiiiiiiiinen, 8-39
8.12.5 Block-Write Cycle (withMask) ........coviriiiiiiiiiii it iiiiieen 8-40
8.12.6 Data Mapping During Block-Write Cycles ...........ccoviiiiiiiinaaan.. 8-41

8.13 DRAM-Refresh Local-Memory Cycles ..........ccoiiiiiiiiiiiiiinnnnnnnnns 8-44

8.14 Local-Memory Cycles withWaitStates ............ccovviiiiiiiiiiiiiiinnnnn. 8-46
8.14.1 Adding Wait States in Read and Write Cycles ..............coovviiiannt, 8-46
8.14.2 Adding Wait States in VRAM Serial-Register Transfers .................. 8-48

8.15 The Host-Default Local-Memory Cycle ...........ccoiiiimiiiiiiiiiiiiiinnnnn. 8-49

8.16 AddressingMechanisms....... ..ottt 8-50
8.16.1 Nonmultiplexed Addressing ........ovieiriiii ittt ieiianenn 8-50
8.16.2 Multiplexed Addressing .........coviiiieiriiiirneniineennerannnanenn 8-51
8.16.3 Display Memory Requirements for Multiplexed Addressing ............... 8-54
8.16.4 Example Connections for Multiplexed Addressing . ................ouvttn 8-54
8.16.5 Memory Organization and Bank Selecting ...........ccoevvviiiiiint. 8-55
8.16.6 Display Memory Hardware Requirements ...........ooiiiiiniiiinnnnnn. 8-56

8.17 Double-Buffered Display Example (2x1280x1024) ..........cccoiviiiieennnnnn. 8-57
8.17.1 Display Memory Implementation Using Midline Reload .................. 8-58
8.17.2 Display Memory Implementation Without Midline Reload ................ 8-59

Video Timing and Screen Refresh ..........ccoiiiiiiiiiiiiiiiiiniaiininesnnnenss 9-1

Describes the TMS34020'’s video timing mechanisms, including separate and composite sync
and blanking, interlaced and noninterlaced video, and screen refreshes.

9.1 Related Signals ......ooiiniiiii i i et i e 9-2
9.2 Related Registers .....iiiiiiiiii ittt ittt iiiiee i, 9-4
"9.3 Relationship Between Horizontal and Vertical Timing Signals ..................... 9-9
9.4 Horizontal Video Timing (Internal) .. ...t i ienenns 9-11
9.5 Vertical Video Timing (Internal) .........ccoiiiiiiiiiiiiiiiiiiiiiiieieeeennnns 9-13
9.6 Composite Video TiMiNg . ... ccvtiiiiiiiiii ittt iatieenannenesaeenennns 9-15
9.6.1 Theory Behind Serration and Equalization Pulses ....................... 9-15

9.6.2 Serration Pulseson CSYNC ... ..ottt 9-16

9.6.3 Equalization Pulseson CSYNC ........cciiiiiiiiiiiiiiiiiiiiieenen 9-17



Contents

10

xiv

9.7 Noninterlaced Video TiMIiNG ......iiiiiiiiiiiiii it iiieiieeeeeerereaneneennn 9-18
9.7.1  Activity in Noninterlaced Mode .. ........coiuiriiiiiiii it 9-18
9.7.2 Programming the Vertical Timing Registers for Noninterlaced Video ....... 9-20
9.8 Interlaced Video TImMING . . ..ottt i i et i it e iraeaaananns 9-21
9.8.1 ActivityinInterlacedMode ...t i 9-21
9.8.2 Programming the Vertical Timing Registers for Interlaced Vudeo ........... 9-24
9.8.3 American and European Video Standards .............cccoiiiiiiiiiaat, 9-27
9.9 External SynchronizationModes ..........ciiiiiiiiiiiiiii it 9-29
9.9.1 Odd and Even Field Alignment in InterlacedMode ...................... 9-31
9.9.2 Synchronizing External Syncsto VCLK ..........c.civviiiiiiininnen... 9-32
9.9.3 Loadingthe VideoCounters ........ooiiiiiiiiiiiiiiiiinnianeiennnnns 9-32
9.9.4 Synchronization Conversion ..........c.ciii ittt 9-34
9.9.5 Programming Flexibility and Limitations ............... ...t 9-34
9.9.6 External Synchronization Pulse Widths ................cciiiiiiiinn... 9-35
9.10 ScreenSizesandDotRate . .......c.oveiiiiiiiiii i e 9-36
9.11 Display Interrupts and Applications ...........cceeiiiiiiiiiiiiiiiii i 9-37
9.12 Video Timing Programming Examples ............cccoiiiiiiiiiiiiiiiininnnn 9-38
9.12.1 Noninterlaced 1024 x 768 Display .........ccoeeriiiiiiiiiiiiiinnnnns 9-38
9.12.2 Composite Interlaced NTSC Display Example .............ccooiviinnn. 9-40
9.13 VideO RAM Control . . oottt ittt et ettt ittt et e e aaaanes 9-42
9.13.1 Screen Refreshes During Horizontal Blanking ................coovet. 9-42
9.13.2 Screen Refreshes During the Active Display Time (Midline Reload) ....... 9-43
9.13.3 Why Use Midline Reload? ..ottt 9-46
9.13.4 VRAMBulk Initialization .........coiiiiiiiiiiiiiii ittt 9-47
9.18.5 Video Capllre . ..o viiiii ettt ettt e e et 9-48
9.13.6 Disabling Screen Refreshes ........ccoiviiiiiiiiiiii ittt 9-49
9.14 Scheduling Screen-RefreshCycles .........ccoviiiiiii e 9-50
9.15 Generating Screen-Refresh Addresses ...ttt 9-51
9.15.1 Horizontal-Blanking Screen-Refresh Addresses ...............ccoevinnnn. 9-52
9.15.2 Screen-Refresh Addressing Sequence for Noninterlaced Displays ........ 9-53
9.15.3 Screen-Refresh Addressing Sequence for Interlaced Displays ............ 9-53
9.15.4 Midline-Reload Screen-Refresh Addresses ..........ccovvvvininnna.... 9-55
9.15.5 Display Magnificationand Y-Zoom ..........cccoiiiiiiiiinniennnnnnenn. 9-56
9.15.6 Panningthe Display ..........ccviiiiiiiiiiiii ittt i, 9-57
Communicating with a Coprocessor ...........c.cciiiiiiccrrrernreesenennssnanenes 10-1

Describes a general protocol for interfacing with a coprocessor, and describes use of the
TMS34020’s general-purpose coprocessor instructions.

10.1
10.2
10.3

Related Signals .. ..o i i e e e e e 10-2
Overview of the Coprocessor Interface .........coviiiiiiiiiiieriiiinnnnnnnn 10-3
Format of Commands Passed to a Coprocessor ...........coviiiiiiinnnnnnnnn. 10-5
10.3.1 Coprocessor ID .. ..ottt ittt ettt 10-5
10.3.2 Coprocessor Command ........coiuiniinernniennnnnnnreeeeeeennens 10-6
10.3.3 Coprocessor Parameter Size (Siz€) ........covviiiiiiiiiiiiiiinnenn.n. 10-6

Table of Contents



Contents

10.3.4 Coprocessor ParameterIndex (I) ...ttt 10-7
10.3.5 16-Bit Word Select (S) .....ccveiiiiiiiii e e 10-7
10.3.6 Coprocessor Status Code (BCST) . ..cciiiini ittt e 10-7

10.4 Local-Memory Coprocessor CYCles ...ttt iienraeanns 10-8
10.4.1 Passing Commands to a2 COProCeSSOr .........euivveiiirernnnnneennns 10-8
10.4.2 Transferring Data to or from a Coprocessor ..........ovvviiieeinnnnennn 10-8
10.4.3 Data Transfer Sequences to or from a Coprocessor ..........cevveuennn. 10-9
10.4.4 Ending a Local-Memory CoprocessorCycle ............cooiiiiiiinnn. 10-9
10.4.5 CoprocessorCommandCycle .............iiiiiiiiiiiiiiiiininnnnn. 10-10
10.4.6 Transferring Values from TMS34020 Registers to a Coprocessor ........ 10-11
10.4.7 Transferring Values from a Coprocessor to TMS34020 Registers ........ 10-12
10.4.8 Transferring Values from Local Memory to a Coprocessor .............. 10-14
10.4.9 Transferring Values from a Coprocessor to Local Memory .............. 10-15

10.5 Coprocessor Aborts and Status Checks ...t 10-17
10.6  System Configuration ........coiiiiiiiiiiie ittt i 10-18
11 Multiprocessing and System Architecture ............cciiiiiiiiiiiiieineiaiienen, 11-1

Describes the TMS34020 multiprocessor interface and gives examples of using multiple pro-
cessors to share the same local memory space.

111 Related Signals . ....ooneeiiiii i i i e 11-2

P2 Y= o 1= 11-2

11.3  Basic Multiprocessor System Configuration ............. ..o, 11-3

11.3.1 Connecting Multiple Processors Together .............coviiiiiiies, 11-3

11.3.2 Synchronizing Multiple TMS34020s atReset ............cvviienennn, 11-3

11.4 Protocols for Communicating in a Multiprocessor System .................o.... 11-5

11.4.1 How a Processor Requests Control of the Local-Memory Bus ............ 11-5

11.4.2 How a Processor Releases Control of the Local-Memory Bus ............ 11-5

11.4.3 Passing Control of the Local-Memory Bus ..............coviiviinns, 11-6

11.4.4 Functional Timing Examples ...ttt 11-7

11.5 Arbitration Logic Requirements .............o i 11-13

11.5.1 Passing Control of the Local-Memory Bus ..............ccoiiivninnn, 11-13

11.5.2 Wait States, Retries, and High-Priority Bus Requests .................. 11-15

11.6 Multiprocessor Arbitration Examples ............cii it 11-15

11.6.1 Arbitration Scheme for Two TMS34020S ...........vviiiiiinnennnnn 11-15

11.6.2 Arbitration Scheme for One TMS34020 and a Hold Device .............. 11-17

11.7  Initializing Multiple TMS34020S ... .....vitiiiiiiii it it 11-19

11.8 Configuration with a Host Processor ...........coiiiiiiiiiiiiii i 11-20

12 Graphics Instructions and Operations ...........c.cciiiiiiiiiiriniiasrnnnnsnnanss 12-1
Offers a detailed look at the TMS34020'’s graphics instructions and their special capabilities.

12.1  An Overview of Graphics Instructions ........ ...ttt 12-2

12.2 An Overview of Graphics Operations ...ttt 12-3

12.3  Single-Pixel Instructions ........ ...t e e 12-6

124 Lin@INStrUCHONS .. ..ot i it i e i e 12-7

XV



Contents

12.5 Pixel-Array Instructions ...... ..ottt it e e 12-8
12.5.1 PIXBLTs with XY and Linear Addressing ...........oooiiiiiiieninnnnnn, 12-9

12.5.2 Binary (Color Expanding) PIXBLTS .........cccciiiiiiiiiiiiiiiiinn... 12-12

12.5.3 Masked PIXBLT . ...ovinti it 12-14

12.5.4 VRAM Block-Mode PIXBLT (VBLT) .....ccniiiiiiiiiiii i 12-14

12.5.5 FILLS ..ttt i e e e e e e 12-15

12.5.6 Horizontal Pattern Fill (PFILL) ........c.oiiiiiiiiiiiii e 12-16

12.5.7 VRAM Block-Mode Fill (VFILL) ......covuuiiiniiiii i 12-16

12.6 Auxiliary Graphics Instructions ..........c.ccoiiiiiii i 12-17
12.7 Window Checking . .....o ittt ettt e e eeeereeaaeeen 12-19
12.7.1 DefiningaWindow . .......coiiiiiiiiiiiii it iiiiiennees 12-19

12.7.2 Window-Violation Interrupt ..........ccoiiiiiiiii i 12-20

12.7.3 Window Checking for Single-Pixel Instructions .......................0. 12-21

12.7.4 Window Checking for Pixel-Array Instructions ......................... 12-21

12.7.5 Window Checking for the LINE Instruction ..................c.oovittt. 12-23

12.8 PiXel ProCessing ... vvivt ittt ettt 12-27
12.8.1 Boolean Processing Examples ...........ccoiiiiiiniiiinineinninnnn, 12-28
12.8.2 Multiple-Bit Pixel Operatlons ........................................ 12-30

L= = oY= T (=Y e 12-36
12.10 Plane Masking ... ..ovvii ittt ettt ettt e 12-39
12.11 Setting Up the Implied Operands for Graphics Instructions ..................... 12-43
12.12 Converting an XY Address to a Linear Address ............cooeviiiiiiinnnn... 12-47
12.12.1 Manual XY-to-Linear Conversion ............ccoiiiiiiiiiniiineennnn. 12-47
12.12.2 The CONVxP Registers, Corner Adjusting, and Preclipping ............. 12-49

13 TMS34020 Assembly Language Instruction Set ..........cccvieiiiiiriiernnnnnnns 13-1

Xvi

Explains TMS34020 addressing modes and provides an alphabetical reference of the
TMS34020 instruction set.

13.1

13.2
13:3

Addressing Modes and Operand Formats .............ccoviiiiiiiiiiiiininnnn. 13-2
13.1.1 Immediate Valuesand Constants ...............ccviiiiiiiiiinnneannn. 13-2
13.1.2 ADbSOIUte AArESSES ..o v vttt ittt et e it 13-3
13.1.3 Register-DirectOperands .........c.cccriiiiiiiiiiiiieenrrerinnennnn. 13-4
13.1.4 Register-IndirectOperands ..........ccooiiiiiiiiii ittt 13-5
13.1.5 Register-Indirectwith Offset ...... ..ot 13-6
13.1.6 Register-Indirect with Postincrement ........... ... .ottt 13-7
13.1.7 Register-Indirect with Predecrement............ ..o iiiiiiiiiiineann 13-8
13.1.8 Register-Indirectin XY Mode .......coiiiiiiiiiiii i 13-9
Summary Table .. ..o e e e 13-9
Move Instructions SUMMaAry .....ciiiiiii ittt ittt ittt eannns 13-19
13.3.1 Register-to-RegisterMoves ...... ...t 13-19
13.3.2 Value-to-RegisterMoves . ........ooiiiiiii e 13-19
13.3.83 XY MOVES ..ottt ittt ettt ittt e i e i iae e 13-19
13.3.4 Multiple-Register Moves ..........ccoiiiiiiiiiiiiiiiii i 13-20
13.3.5 ByteMOves ... e e e 13-20
13.3.6 FieldMOVES . ... oo i i i i i ittt 13-20

Table of Contents



Contents

14

15

13.4 Arithmetic, Logical, and Compare Instructions ..............c..coiiiiiieenn... 13-24
13.5 Program-Control and Context-Switching Instructions .......................... 13-25
13.5.1 SubroutineCallsandReturns ..........c.cciiiiiiiiiiiiiiniinnnn.. 13-25
13.5.2 Interrupt Handling .......oiiiiiiiiiiiii i i e it eeiannann, 13-25
13.5.3 Setting, Saving, and Restoring Status Information ..................... 13-25
13.5.4 Jumplinstructions ... i et 13-25
13.6 Shift Instructions ...t e 13-28
18.7 XY INSHUCHONS .. o i it et ettt 13-29
13.8 Instructions Newtothe TMS34020 .........ccviiiiiriiiiii i iiiiaieeennn. 13-30
13.9 Alphabetical Instruction Reference ..........ccoviiiiiiiiii ittt iiiienen 13-31
TMS34082 Pseudo-0pPS ......cvvveevvnnnnans {iesesensssesenrasEasaasatanatnennna 14-1

Provides a general description of the TMS34082 and the TMS34020's impleméntation of its
general-purpose coprocessor instructions in a manner that directly supports TMS34082 as-
sembly language instructions.

14.1 Overview and Key Features of the TMS34082 . ............coiiiiiiiiiiinnnn s 14-2
14.2 PSeUdo-Op FOrmMat .. ..oviii ittt i ittt it i e et e i, 14-3
14.3 Register Operands ..........o.iuuiiieiiriniienitenteneaieerneenneennennss 14-6
Instruction TIMING ....ciiiiiiiiiiieiiaiiineeeitessncsrsessnsssesssnnsasssssannns 15-1
Summarizes the instruction timings for all TMS34020 assembly language instructions.

15.1 Timing for All Instructions Except MOVEs andMOVBs .............ccvviievinnn, 15-2
15.2 Timing for MOVE and MOVB Instructions ............ccviiiiiiinnninnnenn... 15-10
Test and Emulation Considerations .........ccccviviiiieriiieisnensssessensnnsnnans A-1
A1 Overview of an Emulation System ..........ccoiiiiiiiiiiiiiiiiiiiineeeennns A-2
A.2 Emulation Connector (12-PinHeader) ..........cooiiiiiiiiiiiiiiiiiiiieann. A-3
A3  Signal BUuffering .....covviiiiiiii it it it e e e e e A-4
A4 BUIfEr Delays ..o ittt ittt e et e e e e, A-5
A5  DesignConsiderations .........ccouiiiiiiii ittt e e A-7
A6 Mechanical DIMeNnsioNs ........c.coieiiiiiiiin ittt iiie e rtnninnneeennns A-9
GlOSSANY + v v vetiiieeninetinasesnnessneessonssonssssssssnsssnsssanssssnnnssnnsans B-1

Xvii



1-1
1-2
1-3
14
1-5
2-1
2-2

3-1
3-2
3-3

3-5

3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

Xviii

TMS34020 BloCK Diagram .. ...vveetii et i et ie et eanaenaaeeannernnnns 1-5

TMS34020 Software Development FIOW ...........cvviiiiii i 1-10
Graphics Processing Shared Between TMS340 and Host Processors ............... 1-13
Graphics Products Roadmap .........coouiiniiiiiii it 1-14
TMS34020 1Kx1Kx8 PC Display System .........coviiiriiiiii it 1-15
TMS34020 Pinout, 145-Pin PGA Package (Bottom View) .............ccooviinen.... 2-2
TMS34020 Pinout, 132-PinQFP Package ..........ccoiiiiiiiiiiiiniiiiiinnin., 2-5
The TMS34020's Major Interfaces . ......ovvviiii it e et 2-8
TMS34020 Memory Map .. .ovii i i ettt ettt ettt ettt 3-2
Logical Memory Address SPace . ......ovuiiiniiiii i 3-3
Physical Memory Addressing .......oueeiiiniiit ittt i saaiieneanns 3-4
Status Bits That Control Field0and Field 1 ...t 3-5
Field Storage in External Memory ...ttt 3-6
Field Alignment in Memory ...ttt i ettt ettt e 3-7
Field InSertion ... ... i i et e 3-9
Pixel Storage in External Memory ........ ..ottt 3-10
Mapping of Pixels to a Monitor Screen ...ttt 3-11
Configurable Screen Origin . ....oi ittt ittt i ettt it et e e ia e 3-12
Display Memory Dimensions .. ...ttt ittt ie e erieaeinaaenanaas 3-12
Display Memory Coordinates ..........ccvviiiiirriiiiiii e riineenannenns 3-13
Pixel Addressing in Terms of XY Coordinates ..............cciiiiiiiiiiiiinnenn.. 3-14
Conversion from XY Coordinates to Memory Address ............ccvviiiinnnnne.. 3-17
) N £ - |/ 3-18
How BEN CONFIG Determines the EndianMode ............cooiviiiiiiiennnne... 3-20
How CBP CONFIG Write-Protects CONFIG’'s LSbyte ...............ccooiivint.. 3-21
How Data Is Represented in Little-EndianMode ............c.ccovviiiiiiiiiinne... 3-22
Addressing a Field in a Long-Word (Little-Endian) .............ccooiiiiiiiiiinnn, 3-22
Moving a Field into a General-Purpose Register (Little-Endian) ..................... 3-22
How Data Is Represented in Big-EndianMode ..............ccoviiiiiiiiiiinne... 3-23
Addressing a Field in a Long-Word (Big-Endian) .............c.ccoiiiiiiiiiiiina, 3-23
Moving a Field into a General-Purpose Register (Big-Endian) ...................... 3-23
Sample Listing File (Assembler Output) for Little-Endian and Big-Endian Code ....... 3-24
Loading Object Code ifto Memory . ......ooviiiiii it it eiieaeiaeanns 3-25

Table of Contents



Figures

326
3-27
3-28
3-29
3-30
4-1
4-2
4-3

4-5

4-7

5-1
5-2
5-3
54
6-1
6-2
6-3
7-1
7-2

7-3
74

7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13

7-14

7-15
7-16
7-17
7-18
7-19
7-20

7-21
7-22

Connecting VRAMS t0the LAD BUS ..ot . 3-25
Sy StEM StaCK o\ttt e e i, 3-26
StaCK OperatioNs ...ttt e et e e 3-28
An Auxiliary Stack That Grows Toward Lower Addresses ..........ccvviiiienenn... 3-30
An Aucxiliary Stack That Grows Toward Higher Addresses ..........ccoiiiiiiennn, 3-31
Status Register .. ..o e e e e e e 4-2
PrOgram COUMET ... 'v vttt et ettt et ettt e et et et et e e e et e e e eneaenenas 4-4
The Stack-Pointer Register . ...ttt ittt ettt et e et i eeas 4-5
The Register Files . ......iini i i i it it it et it i eaans 4-6
/O Register Memory Map .. ..oviirit i e et et et i, 49
How DPYMSK Maps to the Logical Screen-Refresh Address ...................... 4-44
The Functions of the Different Fields of DPYMSK ..., 4-45
Replicating the Mask Value foran 8-Bit Pixel ........... ..., 4-76
TMS34020 Instruction Cache . ........ciiiiiiiii i i e eaieeeens 5-2
~ Segment Start AdAress ... e -5-3
Internal Data Paths . ... i e e e e e 5-10
Parallel Operation of Cache, Execution Unit, and Memory Interface .. ............... 5-11
VeCtor ADAreSS MaD . ..ottt i i e ittt e, 6-8
Actions Performed When the TMS34020 Takes an Interrupt ..............cevunee.. 6-9
Actions Performed When the TMS34020 Executes a RETI or RETM Instruction ...... 6-10
Block Diagram with a Host System, a TMS34020, and External Transceivers ......... 7-6
How a Host Processor Uses the Host Byte-Select Signals
to Access Data in TMS34020 MeMOrY .....c.viieiiii i i niieennnnennnens 7-8
How the Values of HINC[HSTCTLH] and HPFW[HSTCTLH] Affect Prefetching ..... 7-10
How the Value of HINC[HSTCTLH] Affects Address Comparison .................. 7-10
How the Value of HLB[HSTCTLH] Affects Prefetching ...........cccvvevivinina.... 7-11
Legal Host Byte-Select Combinations for Autoincrementing ........................ 7-13
How the Values of HINC[HSTCTLH] and HPFW[HSTCTLH] Affect Autoincrementing 7-13
Single Host Read Cycle; HCS Used as Strobe ..........oovvivineinenernennnnnn. 7-19
Single Host Read from I/0 Registers; HREAD Used as Strobe ..................... 7-20
Single Host Read with One Wait State; HCS Used as Strobe ..............ccvnnn... 7-21
Host Read Back-to-Back with Prefetch of Next Word; HCS Used as Strobe . ......... 7-22
Back-to-Back Host Read Cycles with Implicit Addressing; HREAD as Strobe ......... 7-23
Successive Reads to Same 32-Bit Location; HCS and HREAD Strobed Together ... .. 7-24
Single Host Write Cycle; HCS Used as Strobe ....ovvvivnireriiiineieenennnnnnss 7-25
Single Host Write Cycle to I/O Registers; HWRITE Used as Strobe ................. 7-26
Single Host Write Cycle with One Wait State; HCS Used as Strobe ................. 7-27
Back-to-Back Host Write Cycles; HCS Used as Strobe ..........vvvveiiinennnnnn.. 7-28
Back-to-Back Host Write Cycles with Implicit Addressing; HWRITE as Strobe ........ 7-29
Host Write Cycle Back-to-Back with Prefetch of Next Word; HCS Used as Strobe .... 7-30
Host Write Cycle Back-to-Back with Prefetch of Next Word and Implicit Addressing;
HREAD and HWRITE Used as Strobes ........ccciiiiiiiiiiiiiiiiiiininnnnnnn 7-31
Host Request Synchronization ..ottt e e 7-35
Host-to-TMS34020 Transceiver Wiring with 16-BitMemory ........................ 7-43

xix



Figures

7-23
81
8-2
8-3
8—4

85
8-6
8-7

8-8

8-9
8-10

8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
9-1
9-2
9-3

9-5

9-7
9-8

9-9
9-10
9-11
9-12
9-13

Big-Endian and Little-Endian Byte AddressingModes ..............coiiiiiiiian, 7-44
The Two Parts of a Local-Memory Cycle ..............ccoviiiininnn. e, 8-8
Multiple Local-Memory Cycles Using PageMode ...............cooiiiiiiiiinae. 8-15
General Timing of the Local-Memory Read and Write Cycles ....................... 8-19
Local-Memory Read-Cycle Timing (with PageMode) ..............ooiiiiiiiat, 8-21
Local-Memory Write-Cycle Timing (with PageMode) ...t 8-22
Local-Memory Read/Write or Read-Modify-Write-Cycle Timing ..................... 8-23
Dynamic Bus Sizing for a Read Cycle (Connection to LADO—LAD15,

Indicated by SIZE16 Low During 2" Data Cycle) ........oevieiiinniinininena, 8-27

Dynamic Bus Sizing for a Write Cycléa (Connection to LAD16—LAD31,
Indicated by SIZE16 High During 2" DataCycle) .........ccvvviiiiiiiiiiinnnnnnn 8-28

Memory-to-Serial-Data-Register Cycle (VRAM Read Transfer) ..................... 8-30
Memory-to-Split-Serial-Data-Register Cycle .
(VRAM Split-Register Midline-Reload Transfer) ............ccooiiiiiiiiiiiia... 8-31
VRAM Write Transfer and Pseudo-Write Transfer .............coooiiiiiiiiin... 8-32
VRAM Alternate-Write Transfer ... i 8-33
Load-Write-Mask CycCle ..o ittt eee e reeaeeeaans 8-35
Write Cycle (With Mask) ..o e e 8-36
Load-Color-Register Cycle ........ccoviiiiiiiiiii it iia i eanannes 8-38
Block-Write Cycle (Without Mask) ..ot 8-39
Block-Write Cycle (withMask) ...... ... i i 8-40
Refresh Cycle TIMiNg . ...ovvviiii i et eeee e 8-45
Local-Memory Read Cycle with 1 WaitState .................. oot 8-47
Memory-to-Serial-Data-Register Cycle with Wait State (VRAM Read Transfer) ....... 8-48
The Host-Default Cycle ........ooiiiiiii i e e e 8-49
Logical Address Output 0N LAD . ...ttt i i ittt ie e, 8-51
VRAM Address Decode for Example System ...........cviiiiiiiiiiiinnnennnn.. 8-57
DRAM Address Decode for Example System ...........coiiiiiiiiiiiiiiiiiien 8-58
Example Display Memory Dimensions (with Midline Reload) ....................... 8-59
Example Display Memory Dimensions (Without Midline Reload) .................... 8-60
Horizontal and Vertical Timing Relationship .........c.ooiiiiiiiiii e 9-9
The POrChes . ... e i e i e e 9-10
Horizontal Timing ... ..o e it e e e e i et 9-11
Horizontal Timing Logic—Equivalent Circuit .. ... 9-12
Example of Horizontal Signal Generation .............coiiiiiiiiiiiiiiiiiinnn... 9-12
Vertical Timing for Noninterlaced Display ..........ccoiiiiiiiiiiiiiiiiiiiiine... 9-13
Vertical Timing Logic—Equivalent Gircuit ...ttt 9-14
Regions of Vertical Blanking Where Equalization and
Se?ration Pulses Occur on CSYNC . q ........................................... 9-16
Composite Sync During Serration Region (Interlaced) ..................oooiiina.t. 9-17
Composite Sync During Equalization Regions (Interlaced) ......................... 9-17
Electron Beam Pattern for Noninterlaced Video .............. ..ot 9-18
Noninterlaced Video Timing Waveform Example ...............iiiiiiiiiiiiaan, 9-19
Programming the Video Timing Registers for Noninterlaced Video .................. 9-20
Table of Contents



Figures

9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22

9-23
9-24
9-25
9-26
10-1
10-2
10-3
104
10-5
10-6
111
11-2

11-3
114
11-5

11-6
11-7
12—
12-2
12-3
124
12-5
12-6
127
12-8
12-9

12-10
12-11
12-12
12-13

Electron Beam Pattern for a Typical Interlaced Display ................ccovvvnvn.... 9-22
Interlaced Video Timing Waveform Example .............c.cooiiiiiiiiiiiininnennn. 9-23
The Two Regions of Vertical Blanking Used for Programming Calculations .......... 9-25
Programming the Video Timing Registers for Interlaced Video ..................... 9-26
Vertical Blanking for NTSC and PAL Standards ............ccovviiiiiinniinnennn.. 9-27
Synchronization Delay Compensation .............c.iiiiiiiiininrineineannnn. 9-33
Local-Memory Memory-to-Register TransferCycle ................ccovinnn.... 9-43
Local-Memory Split-Serial-Register VRAM Memory-to-RegisterCycle ............... 9-44
Local-Memory Split-Serial-Register VRAM Horizontal-Blanking

Memory-to-Register Cycles ..........c.oiiiiiiiii e 9-45
Local-Memory Register-to-Memory TransferCycle ..............cccoovviinennn.... 9-48
Screen-Refresh Address Fields ......vvveerereeiineiie it 9-51
Screen-Refresh Address Generation FIow . ...........ooviiiiiiiin .. 9-54
Mapping Relationship Between DPYMSK, DPYST, and DPYNX .................... 9-56
Coprocessor Instruction Format .. ...t e 10-5
Coprocessor Command CYCIe ... ...c.uiueiniiiet i ie i enan, 10-10
Transferring a TMS34020 Register to @ Coprocessor .........ooveiieeiinnneennn. 10-11
Transferring from a Coprocessor to a TMS34020 Register ..............ccovvuen... 10-13
Transfer Memory 10 COProCESSOr ...ttt ittt i i e ieaneaneens 10-14
Transferring from Coprocessorto MEMOry ........c.oiiiiiiiiiiiiiriineennnnnn 10-16
Synchronization of Multiple TMS34020s ..........ccoiiiiiiiiiiii i it 11-4
Releasing Control of the Local-Memory Bus and Control Signals

(Gl Driven High During a Host-Default Idle Cycle) ...........cccovvviiiiiiinin.... 11-8
Releasing Control of the Local-Memory Bus and Control Signals

(Gl Driven High atthe Endof aWrite Cycle) ........ovviiiiiiiiiii i 11-9
Releasing Control of the Local-Memory Bus and Control Signals

(Gl Driven High at the End of a Host Read Cycle) .............cc.covivviiiininn... 11-10
Releasing Control of the Local-Memory Interface

(Gl Driven High During a Page-Mode Sequence) ...........oviiiineineennnnnn.. 11-11
Regaining Control of the Local-Memory Bus and Control Signals .................. 11-12
Passing Control of the Local-Memory Between Two TMS34020s .................. 11-14
Graphics Operations INteraction . ..............veeieiiiriniininerenineneneanss 12-5
How XY and Linear Arrays are Stored in Off-Screen Memory ..................... 12-10
Possible Starting Corners .........oiiiiiiiiii i et 12-11
An Example of the Color-Expand Operation ...............c.ccoiiiiiiiiinnninnn.. 12-13
A Trapezoidal Fill ...... ..o e e e e 12-18
Setting the W[CONTROL] Bits to Select a Window-Checking Mode .............. . 12-19
Specifying Window Limits ..........cooiiiiiiiiiii i i 12-20
Outcodes for Line ENAPOINES .. ....vueetr ettt e e, 12-24
Using Midpoint Subdivision to Determine

Which Portion of a Line Lies WithinaWindow ...............cccoiiiiiiiin.... 12-25
The PPOPICONTROLI BIS ... e teetaeeteetaeeeiieeeeeieeeeieeaennnnn, 12-27
Examples of Operations on Single-Bit PiXels .. ..........oviiiiiininiiiinnn.. 12-28
Examples of Boolean and Arithmetic Operations .....................cccoin... 12-31

Examples of Operations on Pixel INtensity .. .......oouieieere e eeaanann. 12-33

XXi



Figures

12-14
12-15
12-16
12-17
12-18
12-19
12-20
131
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
14-1
14-2

14-3
144
A-1
A-2
A-3
A4
A-5
A-6
A-7
A-8

XXii

Enabling Transparency and Selecting a Transparency Mode ...................... 12-36
Replicating the Plane-Mask Value Through PMASK . ........... .. ... . oo itl 12-39
Read Cycle with Plane Masking, Transparency on Result=0 ..................... 12-40
Write Cycle with Transparency on Result=0 and Plane Masking ................... 12-41
Filled Areafor Example 12—4 .. ... .. i e i ieie e 12-43
How an XY Address IsRepresented ...t 12-47
How Values Are Contained ina CONVxP Register ..., 12-49
An Example of Immediate Addressing . ... e 13-2
An Example of Absolute Addressing ..ottt e e 13-3
An Example of Register-Direct Addressing ...........covviiviinenn... e 13-4
An Example of Register-Indirect Addressing ..........oviiii ittt 13-5
An Example of Register-Indirect with Offset Addressing ........................... 13-6
An Example of Register-Indirect with Postincrement Addressing .................... 13-7
An Example of Register-Indirect with Predecrement Addressing .................... 13-8
Register-to-Memory MoVes . ...ttt e 13-21
Memory-to-Register MoVeS ... .c.viiiiii it i ettt e e 13-22
Memory-to-Memory MOVES .. .......iiiiiiiiiii it eiiiiii it ieaneeeeeeannanas 13-23
ATrapezoidal Fill ... ... e e e 13-249
VeCtor AdAresSS Map .. ..iiiii i et et et i e 13-254
Vector Address Map ...t i et e i 13-257
Coprocessor Instruction Informationonthe LADbus ...........cccoviiiiiin.., 14-3
How General Coprocessor Instruction Syntax

Corresponds t0 TMS34082 PSEUAO-0PS + ..t vvvt vt iiii it iieeeniienananens 14-5
TMS34082 Registers That Can Be Used as Pseudo-op Operands .................. 14-6
TMS34082 Register Sequence List .........ccoiiiiiiiiii i 14-7
Typical Setup Using the TMS34020 Emulator and Your Target System ............... A-2
Connecting the TMS34020 Emulator to Your Target System.................con.... A-2
12-PinHeader Signals ........ .ot e e A-3
LCLK1 Buffer Restrictions ..........oiiiiiii i i e et eee e ens A-5
Emulator Pod Interface ... i e e e A-6
= Lo =] 0= o) I A-9
Pod DImMeNSIONS ...ttt e A9
12-Pin Connector DIMeNSiONS ... .o.ttitt ittt it iiee e enanns A-10

Table of Contents



1-1
21
2-2
2-3
2-4
2-5
2-6
31
41
4-2
4-3

6-1
6-2
6-3

6-5
7-1
7-2
81
8-2

84
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
9-1
9-2

Quick Comparison of TMS34010 and TMS34020 Features .............ovvvveenn.. 1-16
Numerical List of TMS34020 Pin Assignments (145-PinPGA) ..............coovues. 2-3
Alphabetical List of TMS34020 Pin Assignments (145-Pin PGA) ..................... 2-4
Numerical List of TMS34020 Pin Assignments (132-PinQFP) .................ooout 2-6
Alphabetical List of TMS34020 Pin Assignments (132-PinQFP) ..................... 2-7
TMS34020 Pin DesCriptionNs . ...ttt ittt iee e e 2-9
Bus-Cycle Completion Conditions ............iiiiiiiiiiiii it 2-12
Decoding the Field-Size Bits inthe Status Register ........... ... ..ot 3-5
Definitions of Bits inthe Status Register........... ..o 4-2
How Instruction Execution Affectsthe PC ....... ..o 4-4
Summary of B-File Registers’ Implied-Operand Functions ..................... ... 4-8
Summary of IO Registers . .....ooii i i e 4-10
Interrupt Prionties ... ..ot e e e 6-7
Sources of Interrupt Delay . ..o e 6-12
External Interrupt VECIOrS . ..c.oi it i e it 6-15
Interrupts That are Associated with Internal Events ....................o it 6-16
Initial State of Output Pins while RESET and Glare Low .........ccvvvvvniennnnns. 6-22
Host Interface Estimated Maximum Bandwidth ................ ... .o oot 7-34
Sources Of Delay ... e 7-37
Priorities for Memory Cycle Requests .. ..o e 8-6
LAD-BUS Status COAES .. ..vvtiiiitt ettt eiieeiaiee i aaaaanneeeanes 8-10
Bus Cycle Completion Conditions ...ttt 8-12
Interpretation of SIZE16 ... .. ..ot e 8-25
Connections of 4-Bit VRAMSs to the TMS34020 LAD Bus for 4 Bits per Pixel ......... 8-41
Data Remapping for Block Write at 4 Bits per Pixel ...............ooiiiiiiiint. 8-42
Block-Write Data EXpansion . .......ciiiiiiiii it e 8-42
Connections of 4-Bit VRAMs to the TMS34020 LAD Bus for 8 Bits per Pixel ......... 8-43
Data Remapping for Block Write at 8 Bits per Pixel ............... ..ot 8-43
DRAM ArTay SizZeS .. v vttt ittt ettt te ettt e e et et eaaa e 8-52
Logical Addresses Output onthe RCABUS ....c.iviiiiii ittt eennnns 8-53
Example Connectionstothe RCABUS ....coitiiiiiiiii i iieeeeeens 8-55
Screen-Refresh Latency . ..o et s 9-50
Minimum Horizontal-Blanking Duration . ...ttt e e iennnans 9-51



Tables

9-3
10—1
10-2
111
11-2
11-3
12—1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
14-1
151
15-2
15-3

XXiv

Y-ZoOm CONtrol ..ottt e e i e 9-57
TMS34020 General Coprocessor Instructions ...........c.cooviviiniiineinnnennnns 10-3
Suggested Coprocessor ID ASSIgNMENtS .....ovierrireriniiernirrernnnneeeess 10-6
Bus Request Codes for the Multiprocessor Interface ..............cccoeiiiiin.t. 11-5
Arbitration Scheme for Two TMS3402020S ..........citiieiiinniinneinnnernnns 11-16
Arbitration Scheme for One TMS3402020 and a Hold Device ..................... 11-17
Summary of Graphics INStruCtioNs ........c.viiiiiiii ittt e 12-2
Summary of Graphics Operations ...ttt i e 12-3
PIXBLTs That Can Start from Any COMMer .. ......ovuneieeeieeeeniaeeeeeeennaannn 12-11
Window-Checking Modes for Single-Pixel Instructions . ...............cooiiiin.L. 12-21
Window-Checking Modes for Pixel Array Instructions .............c.cooiviiiinne, 12-21
Window-Checking Modes for the LINE Instruction ............. . coiiiiiiiat, 12-23
Pixel-Processing Options ..........coiiiiiiiiiiiiiinnn.. P 12-27
Summary of Implied Operands Used by the Graphics Instructions ................. 12-45
TMS34020 Conversion (CONVxP) Registers .........coiiiiiiiiiiiiiiiiiiniannn, 12-48
Summary of MOVE INStructions . .......c.oouiiieiii ittt eennes 13-19
Condition Codes for JRcc and JAcc Instructions ...ttt 13-27
Summary for XY Instructions . . .. ..ottt i ettt e e, 13-29
Summary of Operand Formats for the MOVB Instruction . ..............covvvnnne, 13-154
Summary of Operand Formats for the MOVE Instruction...................cout 13-159
Summary of Array Types for the PIXBLT Instruction . ................coooiitts. 13-191
Summary of B-File Registers for PIXBLT Instructions ...............coviviiann, 13-191
Summary of I/O Registers for the PIXBLT Instructions ................ccovvviane, 13-192
Summary of Operand Formats for the PIXT Instructions ......................... 13-206
Summary of B-File Registers for PIXT Instructions ..................coiinnt, 13-206
Summary of I/O Registers for the PIXT Instructions ............... ..., 13-207
Symbols Used in Pseudo-op Syntax Listings ..........c.ooiiiiiiiiiiiiiiie.t. 14-6
Effects of Pixel-Processing Options on Graphics Instructions ....................... 15-2
Cases Table for MOVE and MOVB Timings ........ooiiiiiiiniiiiiiiiiniennnnn, 15-10
Source/Destination Alignment for MOVE and MOVB Timings . . ......vvveevvnnnnen 15-12

Table of Contents



Exam

i

5-1
5-2
5-3
12-1
12-2
12-3
124

Code Without Branches or Immediate Data ...........ccoiiii i, 5-6
Code WIth BranChes ..o v vttt i e e ettt a et aaaaaaaas 5-7
Code with Immediate Data ........coiiiiiiiieiiii i iiiiiiiiaiieeeeaiaaaaans 5-7
Transparency on Result=0for PIXT*Rs,"Rd ...t 12-37
Transparency on Source = COLORO for PIXT*Rs,*Rd ...t 12-38
Transparency on Destination = COLORO for PIXT *Rs,*Rd . ................out 12-38
Setting Up Implied Operands for a FILL Instruction ..ot 12-44

XXV



XXVi Table of Contents



Chapter 1

Overview of the TMS34020

s
SR

The TMS34020 Graphics System Processor (GSP) is an advanced, 32-bit
microprocessor, optimized for graphic display systems. The TMS34020 is the
second generation of the TMS340 family of computer graphics products from
Texas Instruments.

The TMS34020 provides a high-performance, cost-effective solution for appli-
cations that require efficient data manipulation in a graphics environment. The
TMS34020 can be configured to serve in a host-based, stand-alone, or multi-
processing system. The TMS34020 has host and multiprocessor interfaces to
facilitate implementation of multiple TMS34020 systems.

The TMS34020 is well supported by a full set of hardware and software devel-
opment tools, including an optimizing C compiler, an assembler, software
libraries, a PC-based development board, and an emulator. In addition, the
TMS34020 is fully compatible with and supported by the Texas Instruments
Graphics Architecture (TIGA-340).

Topics covered in this introductory section include

Section Page
TMS34020-specific information 1.1 Key Features .........ccovviiiininnnnnn 1-2
describes characteristics of the 12 Typical Applications ................u... 1-3
TMS34020 processor. 1.3 Major Components of
the TMS34020 Architecture .............. 1-4
Information about related products 1.4 System Development Tools . ............. 1-10
desc(rjll::;es the c;eve/opmeqt tac;o’ls 1.5 Processors for a Graphics System ........ 1-14
an Tnjggj‘&(g :ng CZZZL% ;ei 1.6 Compatibility Between the
’ TMS34010 and TMS34020 .............. 1-16

compatibility with earlier devices.
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1.1

Key Features of the TMS34020

3

.

(W

W W N Hi N

Fully programmable 32-bit general-purpose processor with 512-Mbyte
linear address range (bit addressable)

Second-generation graphics system processor

B Object code compatible with the TMS34010

® Enhanced instruction set

B Optimized graphics instructions

B Direct coprocessor interface to TMS34082 floating-point processor

Instruction cycle times:

W TMS34020-40 ..... 100 ns

E TMS34020-32..... 125 ns
On-chip peripheral functions include

Programmable CRT control

Direct DRAM/VRAM interface

Direct communication with an external (host) processor
Communication with multiple TMS34020s

Functional expansion with the coprocessor interface

W Automatic CRT display refresh

Instruction set supports special graphics functions such as pixel
processing, XY addressing, and window checking

Programmable 1-, 2-, 4-, 8-, 16-, or 32-bit pixel size

16 Boolean and 6 arithmetic pixel processing options (raster-ops)
30 general-purpose 32-bit registers

512-byte LRU on-chip instruction cache

Opt|m|zed DRAM/VRAM interface
Page mode for burst memory operations up to 40 Mbytes per second

B Dynamic bus sizing (16-bit and 32-bit transfers)
B Byte-oriented CAS strobes
B Automatic CRT display refresh

Flexible host processor interface
B Supports host transfers at up to 20 Mbytes per second

@ Direct access to all of the TMS34020 address space
B |mplicit addressing (autoincrementing)
B Prefetching for enhanced read access

Flexible multiprocessor interface

Overview of the TMS34020
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Lh Programmable CRT control

Composite sync mode
Separate sync mode
Synchronization to external sync

Lk Direct support for special features of 1M VRAMs

Load write mask

Load color mask

Block write

Write using the write mask

1.2 Typical Applications of the TMS34020

The TMS34020’s 32-bit processing power and its ability to handle complex
data structures make it well suited for a variety of applications. Typical applica-
tions that take advantage of the TMS34020’s features include

1-3
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1.3 Major Components of the TMS34020 Architecture

The TMS340 family of processors from Texas Instruments combines the best
features of general-purpose processors and graphics controllers to create a
range of cost-effective, flexible, powerful graphics systems. The key features
of the TMS340 family are speed, a high degree of programmability, and effi-
cient manipulation of hardware-supported data types such as pixels and
2-dimensional pixel arrays.

With a built-in instruction cache, the ability to simultaneously access memory
and registers, and an instruction set that enhances raster graphics operations,
the TMS34020 provides programmable control of the CRT interface as well as
the memory interface (both standard DRAM and multiport VRAM). The
TMS34020’s 4-gigabit (512 Mbyte) physical address space is completely
bit-addressable on bit boundaries using variable-width data fields. Graphics
addressing modes support 1-, 2-, 4-, 8-, 16-, and 32-bit pixels.

The TMS34020’s unique memory interface reduces the time needed to per-
form tasks such as bit alignment and masking while supporting advanced
DRAM access modes. The 32-bit architecture supplies the large blocks of con-
tinuously addressable memory that are necessary in graphics applications.
Systems designed with the TMS34020 can take advantage of VRAMtechnolo-
gy to facilitate applications such as high-bandwidth frame buffers; this circum-
vents the bottleneck often encountered when using conventional DRAMs in
graphics systems.

The TMS34020 instruction set includes a full complement of general- purpose
instructions, as well as graphics functions, that you can use to construct effi-
cient high-level functions. The instructions support arithmetic and Boolean op-
erations, data moves, conditional jumps, and subroutine calls and returns. The
TMS34020 instruction set also supports the TMS34082 as a coprocessor.

The TMS34020 architecture supports a variety of pixel sizes, frame buffer
sizes, and screen sizes. On-chip functions have been carefully selected so that
no functions tie the TMS34020 to a particular display resolution. This enhances
the portability of graphics software and allows the TMS34020 to adapt to
graphics standards such as TIGA, MIT’s X, CGI/CGM, GKS, NAPLPS, PHIGS,
and evolving industry and display-management standards.

Figure 1-1 illustrates the TMS34020’s internal architecture.

Overview of the TMS34020
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Figure 1-1.  TMS34020 Block Diagram
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1.3.1 Internal Functions

The center portion of Figure 1—1 highlights the main internal functions of the
TMS34020 CPU.

i

L

The 32-bit status register (ST) contains several bits that indicate the CPU
status. Section 4.1 (page 4-2) discusses the status register.

The 32-bit program counter (PC) points to the next instruction word to be
fetched. The PC’s four LSBs are always 0. Section 4.2 (page 4-4) dis-
cusses the program counter.

Register files A and B each contain fifteen 32-bit general-purpose regis-
ters. The B-file registers are also used as implied operands for the graphics
instructions. Section 4.4 (page 4-6) discusses the register files.

The 32-bit stack pointer (SP) contains the bit address of the top of the sys-
tem stack. The SP is also available to instructions that operate on either
register file. For more information, refer to Section 4.3 (page 4-5).
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Instruction cache

Ch

.

The 32-bit barrel shifter shifts or rotates 32-bit operands from 1 to 32 bit
positions in a single machine cycle. This user’s guide does not discuss bar-
rel-shifter operation because the operation is transparent.

The 32-bit ALU allows the TMS34020 to perform most register-to-register
operations in a single machine state. (Accessing external memory
requires a minimum of two states.) The following actions can occur in par—
allel during a single machine state:

B Two operands are transferred from the selected general-purpose reg-
ister file to the ALU.

B The ALU performs the specified operation on the operands.
B The result is routed back to the general-purpose register file.

The TMS34020 contains a 512-byte instruction cache that can contain up to
256 instruction words (an instruction word may be an entire single-word
instruction or 16 bits of a multiple-word instruction). When the cache is
enabled, the TMS34020 provides single-cycle execution of general-purpose
instructions and of most integer arithmetic and Boolean operations.

Chapter 5 discusses cache operation.

I/O registers

1-6

Fifty-four 16-bit, on-chip registers are dedicated to peripheral control functions.
The 1/O registers are divided into five categories:

L

Local-memory registers are dedicated to controlling functions such as big-
endian/litile-endian addressing, refresh rate, row/column mode, plane
masking, refresh address, and recovery from bus faults.

Video timing and screen-refresh registers generate the sync and blanking
signals used to drive a CRT, schedule screenrefreshes, and allow external
synchronization.

Host-interface registers help the TMS34020 to communicate with a host
processor.

Interrupt-control registers provide status information about interrupt
requests.

CPU-control registers configure the TMS34020 to operate with specific
characteristics.

Section 4.6 (page 4-14) provides individual descriptions of each I/O register.

Overview of the TMS34020
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Microcontrol ROM

Clock timing logic

Host control logic

Page-mode registers

Other special processing hardware

The TMS34020 transfers decoded instructions to the microcontrol ROM for in-
terpretation.

The clock timing logic converts the clock-input signal (CLKIN) to internal timing
signals and generates the clock-output signals, LCLK1 and LCLK2, used by
external devices. The machine state is a fundamental time unit of the
TMS34020's graphics processor; it is the time interval during which the proces-

'sor is in a particular microinstruction state. The instruction timing for each

assembly-language instruction is specified in multiples of machine states. The
TMS34020's machine state is a single local clock period in duration (the time
from one LCLK1 low-to-high transition to the next). The local clock period is
four times the period of CLKIN.

The host control logic allows a host processor to communicate with the
TMS34020 and allows access to TMS34020 local memory. Commands, data,
and status information are communicated through this logic.

The page-mode registers buffer data to and from the local-memory interface
so that data may be temporarily stored during processing. This enhances data
flow to memory.

The TMS34020 CPU also supports the following special processing functions
in hardware:

Detecting whether a pixel lies within a specified display window
Detecting the leftmost or rightmost 1 within a 32-bit register
Expanding a black-and-white pattern to a variable pixel-depth pattern
Rotating and merging variable-width fields

Individual byte strobes for partial word writes to memory

Dynamic bus sizing

Data bus swizzling for special VRAM block modes

Big-endian and little-endian addressing modes

o000 0000
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1.3.2 Major Interfaces

Local-memory and DRAM/VRAM interfaces

Video interface

The TMS34020’s local-memory interface consists of a 32-bit, bidirectional
address/data bus, various control signals, and row/column address control.
During a local-memory cycle, address and status information are output on the
local address/data (LAD) bus; then, data is transferred over the same LAD
lines. The TMS34020 can transfer data over 16-bit or 32-bit buses.

The TMS34020 interfaces directly to DRAMs and VRAMSs, providing address
multiplexing for 64Kxn, 256Kxn, 1Mxr, and 4Mxn devices. The row and col-
umn addresses necessary for accessing DRAMs and VRAMSs are available
directly from the TMS34020’s RCA bus, eliminating the need for external multi-
plexing hardware.

For more information, refer to Chapter 8.

The TMS34020’s video interface is extremely flexible and programmable,
allowing you to choose between

Ld Separate sync and blanking or composite sync and blanking
LX Synchronization to externally or internally generated video signals
Gk Interlaced or noninterlaced video

The video interface directly supports VRAMs by generating the serial-register
transfers necessary for refreshing a display.

For more information, refer to Chapter 9.

Host interface

Coprocessor interface

The host interface allows you to map the TMS34020’s local memory into a
host’'s memory address space. This allows you to transfer data, commands,
and status information between the TMS34020 and the host processor.

For more information, refer to Chapter 7.

The coprocessor interface allows you to extend the TMS34020's basic archi-
tecture. Most coprocessor interfaces require a memory-mapped approach, so
that a processor treats a coprocessor as a peripheral device. The TMS34020,
however, allows direct connection to a coprocessor and provides special

Overview of the TMS34020
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instructions that allow you to send instructions and data between the
TMS34020 and a coprocessor. The TMS34020 provides extended coproces-
sor support for the TMS34082 Floating-Point Processor, which is specially
designed to serve in a TMS34020 system.

For more information, refer to Chapter 10.

Multiprocessor interface

The multiprocessor interface allows multiple TMS34020s (as well as other
processors) to share the same local memory. The TMS34020’s grant-in and
request-priority signals provide a flexible method of passing control from one
processor to another. The multiprocessor interface requires external arbitra-
tion logic to

L4 inform a TMS34020 when it can take control of the bus, and
L decode the priorities of requests from the multiple processors.

This scheme allows back-to-back memory cycles even when control passes
from one TMS34020 to another.

Any number of devices can be configured together within a single system.
However, system performance is not increased significantly when a system
contains more than three TMS34020s.

For more information, refer to Chapter 11.

Emulation interface

The TMS34020 supports a 4-wire interface that simplifies connections
between a debugger and a target system. For details about emulation, refer
to Appendix A. :
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1.4 System Development Tools

The TMS34020 is well supported by a complete set of hardware and software
development tools, including a C compiler, an assembler/linker, software
libraries, and a PC-based development board. In addition, the TMS34020 is
fully compatible with and supported by the Texas Instruments Graphics Archi-
tecture (TIGA-340).

1.4.1 Code-Generation Tools
Figure 1-2 illustrates the TMS34020 code development flow. The figure high-

lights the most common paths of software development; the other portions are
optional.

Figure 1-2.  TMS34020 Software Development Flow
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System Development Tools

assembler

archiver

These tools use common object files format (COFF), which encourages modu-
lar programming. COFF allows you to divide your code into logical blocks,
define your system’s memory map, and then link code into specific memory
areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1-2.

The TMS34020 C compiler is a full-featured optimizing compiler that trans-
lates standard Kernighan-and-Ritchie C programs into TMS34020 assem-
bly-language source. Key characteristics include

Lk Standard Kernighan-and-Ritchie C with extensions. The compiler

compiles standard C programs as defined by Kernighan and Ritchie’s The

C Programming Language (first edition). The compiler supports these

standard extensions: enumeration types, structure assignments, passing

* structures to functions, and returning structures from functions. A future
release of the compiler will support the full ANSI standard.

Ld Big-endian or little-endian code.

L2 Optimization. The compiler uses several advanced techniques for gener-
ating efficient, compact code from C source.

Ly Assembly-language output. The compiler generates assembly- language
source that is easily inspected, enabling you to see the code generated
from the C source files.

d ANSIstandard runtime support. The compiler package comes with a com-
plete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory alloca-
tion, data conversion, timekeeping, trigonometry, exponential, and hyper-
bolic functions. Functions for 1/0 and signal handling are not included
because they are application-specific.

[d Flexible assembly-language interface. The compiler has straight-forward
calling conventions, allowing you to easily write assembly and C functions
that call each other.

L3 Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

L Source interlist utility. The compiler package includes a utility that interlists
your original C source statements into the assembly-language output of
the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each C statement.

The assembler translates assembly-language source files into machine lan-
guage object files.

The archiver allows you to collect a group of files into a library. It also allows
you to modify a library by deleting, replacing, extracting, or adding members.

1-11
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" linker
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One of the most useful applications of the archiver is to build a library of object
modules. Several object libraries and a source library are included with the C
compiler.

You can also use application-specific object libraries, available as separate
products: ’ K

L Themath/graphics function library contains math functions for perform-
ing algebraic, trigonometric, and transcendental operations as well as
graphics functions for performing viewport management, bitmapped text,
graphics output, color-palette control, 3-dimensional transformations, and
graphics initialization.

Lk The font library contains a variety of proportionally spaced and mono-
spaced fonts. You can use the functions in the graphics library to display
the fonts.

4 The CCITT data compression function library contains CCITT-compat-
ible routines for compressing and decompressing monochrome image
data.

[ The 8514 adaptor emulation function library contains routines for emu-
lating IBM PS/2 high-resolution display.

These functions and routines can be called from C programs. You can also
create your own object libraries. '

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module thatcan
be executed in a TMS34020 target system. You can use one of several debug-
ging tools to refine and correct your code. Available products include a PC-
based software development board (SDB) and a realtime in-circuit emula-
tor. , : ‘

An object format converter is also available; it converts a COFF object file
into an Intel, Tektronix, or Tl-tagged object-format file that can be downloaded
to an EPROM programmer.

1.4.2 Supported Systems

The TMS34020 C compiler and assembly language tools are available for
these systems:

@ IBM-PC with PC-DOS
 VAX:

m VMS

B Ultrix

Overview of the TMS34020
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L3 Apollo workstations:

B Domain/IX

B AEGIS
L Sun-3 workstations with UNIX
[ Macintosh with MPW

1.4.3 Packages
Texas Instruments supplies development tools in several packages.
Lk Assembly language tools package

. . object forma
assembler archiver linker ' converter

[d C compiler package

C compiler

1.4.4 TIGA-340 Graphics Interface

The Texas Instruments Graphics Architecture (TIGA-340) is a software inter-
face standard for the TMS340 family of graphics system processors. TIGA
enhances the performance of MS-DOS-based PCs that contain a TMS34010
or TMS34020 and an 8088/86 or 80286/80386 host microprocessor by opti-
mizing communications between the graphics processor and the host proces-
sor. The TIGA interface allows the host and graphics processors to share
execution of the application.

Figure 1-3.  Graphics Processing Shared Between TMS340 and Host Processors

application

C— A
application TIGA-340
interface Interface TMS340-based
TIGA routines

and
drawing primitives

communications
driver

Host System TMS340 Board
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1.5 Processors for a Graphics System

Texas Instruments offers a broad line of graphics and video products. The
TMS34020 Graphics System Processor, TMS34082 Floating-Point Proces-
sor, and TMS44C251 1-Mbit Video RAM bring workstation performance to the
PC and other small systems. Figure 1—4 shows all of the Texas Instruments
Graphics products.

Figure 1-4.  Graphics Products Roadmap

TMS34070 TMS34075

TMS34061 } TMS34010

TMS4161 TMS4461 { TMS44C251

The following paragraphs describe the TMS34082 and TMS44C251, which
are included in the TMS34020 sample system shown in Figure 1-5.

TMS34082

Many TMS34020 applications require floating-point operations. The
TMS34082 floating-point processor is designed to interface directly with the
TMS34020, allowing the TMS34020 to perform computation-intensive func-
tions more than 100 times faster than a software implementation. The
TMS34082 performs single- and double-precision floating-point operations,
conforming fully to the IEEE 754 standard.

In addition to normal floating-point operations, the TMS34082 performs com-
plex 2- and 3-dimensional operations such as 3x3 convolution, 4x4 matrix, and
cubic spline operations.

Additional TMS34082 features include

32-bit data path

32-bit integer and logical operations

40-MFLOPS sustained operation

Single-instruction divide/square-root operations

External microcode memory interface for defining custom instructions

(EEEE Ny Ry

Overview of the TMS34020
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TMS44C251

Avideo RAM (VRAM) is a special memory device, optimized for use in graphics
systems. The TMS44C251 multiport VRAM is a high-speed, dual-ported
memory. It consists of DRAM organized as 262,144  4-bit words, interfaced
to a serial data register.

Sample system

A typical graphics system designed with the TMS34020 uses several types of
memory, as well as external laiches, buffers, and transceivers to connect the
TMS34020 to the memories, a coprocessor, or a host processor. Figure 1-5
shows a representative TMS34020 design for a PC display system. Note that
this system uses the TMS34082 as a coprocessor, a palette, and VRAMSs,
DRAMSs, and ROM memories.

Figure 1-5.  TMS34020 1Kx 1KX8 PC Display System

652 = serial
register

palette |— video

)
a
3
— '623
TMS34020
>t 244
|| 74ALS373
(transparent
latch)
coprocessor
(TMS34082)
g i
Interface Memory Interface
Key: °652 Bidirectional, latching transceivers (such as the 74ALS652) Required
’623 Bidirectional bus transceivers (such as the 74ALS623) Optional

244 Buffer (such as the 74ALS244) Optional
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1.6 Compatibility Between the TMS34020 and TMS34010

The information in this section is for readers who are familiar with the
TMS34010 graphics system processor. If you are not familiar with the

TMS34010, you may want to skip this section. Note that this user’s
guide does not require you to be familiar with the TMS34010.

The TMS34020 is the second generation of the TMS340 family of graphics
system processors; the TMS34010 is the first generation. The TMS34010 was
the building block for the TMS34020; however, the TMS34020 greatly extends
the TMS34010’s capabilities by adding new features and enhancing existing
features. Table 1-1 shows a sample comparison of the TMS34010 and
TMS34020 features.

Note that the TMS34010 and TMS34020 are not pin-for-pin compatible.
Table 1-1.  Quick Comparison of TMS34010 and TMS34020 Features

Feature TMS34010 TMS34020
External bus size Lk 16 bits Cd 32hbits
Cycle time d 130,160,0r200ns LI 100o0r125ns
Cache size Ch 256 bytes Cd 512 bytes
Horizontal pitch b Powerof2 Cd  Unlimited
Word addressing Ld Little endian Lk Little or big endian
VRAM support L  Serial registers ¥ Serial registers
Lk  Block writes
LX  Split serial registers
Lk Enhanced page mode
Interfaces L Host b Host
9 Hold 3 Murproosseor
Coprocessor support [d  Memory mapped [ Direct connection

Throughout this user’s guide you'll find descriptions of compatibility between
the TMS34010 and TMS34020. Such passages are marked with this symbol
in the margin:

TMS34010 object code is upward compatible with the TMS34020. If new
TMS34020 features would prevent TMS34010 code from running, the
TMS34020 provides you with a method of switching these features off. At
reset, these features are off to provide compatibility with the TMS34010.

1-16 Overview of the TMS34020
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In general, if you followed the compatibility notes in the TMS34010 User’s
Guide, your TMS34010 code should be object-code compatible with the
TMS34020.

The following list describes restrictions that TMS34010 code must adhere to
in order to be compatible with the TMS34020.

L Color information. The TMS34020 uses all 32 bits of the COLORO (B8)
and COLOR1 (B9) values. The TMS34010 used only the 16 LSBs of these
values. Although the TMS34010 will ignore the 16 MSBs of these values,
TMS34010 code should replicate the color information throughout all 32
bits of these registers.

L Plane mask. All 32 bits of the PMASK register, at addresses C000 0160h
(16 LSBs) and C000 0170h (16 MSBs), are valid for the TMS34020.
TMS34010 could should copy the 16-bit PMASK value at address
C000 0160h to address C000 0170h.

(4 Reserved bits. TMS34010 code should not use any reserved bits in the
status register or the 1/O registers.

(4 Register B13. The TMS34020 uses register B13 as a pattern register.
TMS34010 code should load B13 with all 1s, causing the code to draw a
solid line instead of an unexpected patterned line.

(3 CONVSP & SPTCH, CONVDP & DPTCH. The TMS34020 uses SPTCH
and DPTCH to determine the values of CONVSP and CONVDP, respec-
tively. TMS34010 code should be sure that SPTCH and DPTCH agree with
CONVSP and CONVDP. That is, the 5 LSBs of CONVxP must equal the
1s complement of loga(xPTCH), which is given by the LMO of xPTCH. Set
the 11 MSBs of CONVxP to 0.

If an instruction uses CONVSP or CONVDP, then the MSB of CONVxP
should be 0 and xPTCH should contain 2CONV*P pefore instruction execu-
tion.

(3 Timing loops. TMS34010 code should avoid timing loops; obtain timing
via the video logic (using DPYINT) or via external interrupt 1 or 2.

(4 Dataalignment. For optimum TMS34020 performance, TMS34010 code
should align to 32-bit boundaries (instead of 16-bit boundaries).

& Cache. TMS34010 code should not depend on cache-load order.

4 Saving the graphics context. If TMS34010 code requires saving/restor-
ing of the graphics context, the code should store the 1/O registers at
addresses C000 00BOh and C000 0130—C000 01AOh (inclusive).

(4 Resetvector. Atreset, the TMS34020 loads the 4 LSBs of the reset vector
into the 4 LSBs of the CONFIG register. TMS34010 code should not
depend on values in the 4 LSBs of the reset vector.
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[d Videoregisters. Allaccesses to video timing registers should be separate

from other code. Particularly, HESYNC, HEBLNK, HSBLNK, HTOTAL,
HCOUNT, VESYNC, VEBLNK, VSBLNK, VTOTAL, and VCOUNT should
be manipulated through symbolic names (not by addresses) because their
addresses have changed.

Interrupt routines. Interrupt service routines for the TMS34010 should
make no assumptions about the state of the stack, except that the PC and
ST are stacked after any extra words. The interrupt routine must return
with an RETl instruction, which will pop any extra words to the correctinter-
nal registers.

lllegal opcodes. TMS34010 code should not depend on any of the
TMS34010’s illegal opcodes (except 0000h) to cause a TRAP 30.

Traps. Trap FFFF FBCOh is the TMS34020’s bus-fault trap. Trap
FFFF FBEOh is the TMS34020’s single-step trap.

Host interface. To TMS34010 code, the TMS34020’s host interface
appears the same as the TMS34010’s host interface. Iltis desirable fordata
shared with the host to be aligned on 32-bit boundaries. In general, code
written for the TMS34010 host interface will need to be changed because
the TMS34020’s host interface is different from the TMS34010’s.

Overview of the TMS34020



Chapter 2

Pinouts and Signal Descriptions

AR

This chapter illustrates the TMS34020 pinouts and provides detailed descrip-
tions of the TMS34020’s signals. For mechanical dimensions of TMS34020
packages, refer to the TMS34020 Data Sheet.

Section Page

The pinouts section illustrates the 2.1 Pinouts .........oiiiiiiiiininnen. 2-2
two packages that the TMS34020
is available in, and associates the
signal names with the correct pin
numbers for each device.

The TMS34020's pins are divided 2.2 The TMS34020's Major Interfaces ........... 2-8
among the TMS34020’s major
interfaces.

The TMS34020’s signals are 2.3 Signal Descriptions .............coeevnnn 2-9
described, in detail, as they apply
to the various interfaces.

2-1



Pinouts

2.1 Pinouts
The TMS34020 is offered in two packages:
Lk a 145-pin grid array (PGA) package and
(2 a 132-pin quad flat package (QFP).

Figure 2—1 shows the pinout of the 145-pin PGA, and Figure 2—2 shows the
pinout for the 132-pin QFP.

Figure 2-1.  TMS34020 Pinout, 145-Pin PGA Package (Bottom View)
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Table 2-1.  Numerical List of TMS34020 Pin Assignments (145-Pin PGA)

Pin#  Signal Pin#  Signal Pin#  Signal Pin#  Signal Pin#  Signal
Al Vss B15 LAD12 F1 HRDY K15  LAD20 P2 HWRITE
A2  ALTCH c1  CASo F2 RO L1 LINT1 P3  HCS
A3 CBLNK/ c2 Vg F3 Vg L2  CAMD P4 HA30

VBLNK
A4  HSYNC c3  DDOUT F13  LAD24 L3 LRDY P5 HA27
A5  TR/QE C4  DDIN F14 LADS8 L13  LAD1 P6 HA24
A6 RCA2 C5 Vg F15 Vgg L14  LAD2 P7  HA22
A7  RCA3 C6 SF G1  HINT L15 LAD19 P8  HA18
A8 Vgc C7  RCA4 G2  HOE M1 BUSFLT PS  HA14
A9 RCAé C8 Vg G3  HDST M2  PGMD P10 HA13
A10  RCA7 C9  RCA8 G13 LAD? M3  VCLK P11 HA10
A1l RCA10 C10 RCA12 G14 Vgg M13  Vgg P12 HA7
A12  SCLK Ci1  LAD30 G15 LAD23 || M14 LAD16 P13 HA5
A13  LAD15 C12 Vg H1  LCLK1 Mi5 LAD18 P14  HBSO
A14  LAD29 C13 Vg H2  EMU3 N1 SIZE16 P15  LADO
A15  Vgg Cl4 Vg H3  LCLK2 N2 Ve R1  HREAD
B1  CAS3 C15 LAD26 H13  LAD22 N3  CLKIN R2  HA31
B2 WE D1 RAS H14 LAD21 N4  Vgg R3  HA28
B3  Vgg D2  CAS2 H15 LAD6 N5 HA29 R4  HA26
B4  CSYNC/ D3 Vg J1 EMUO N6  HA25 R5  HA23

HBLNK
B5 VSYNC D4 NC J2 @l N7  HA21 R6  HA20
B6  RCA0 D13 LAD28 J3 EMU1 N8  Vgg R7  HA19
B7  RCA1 D14 LADM J13  LAD4 N9  Vgg R8  HA17
B8  RCA5 D15 LAD10 J14 Vg N10  HA12 RO  HA16
B9  RCA9 E1 Ri1 J15  LAD5 N11  HA6 R10 HA15
B10 RCAM E2 Vg K1 EMU2 N12 HBS2 R11  HAM
B11  LAD3{ E3 CASt K2  RESET N13  HBS1 R12 . HA9
B12 LAD14 E13 LAD27 K3  LINT2 “N14 Vg R13  HA8
B13 V¢ E14 LAD25 K13  Vgg N15 LAD17 R14 HBS3
Bi4 LAD13 E15 LAD9 K14 LAD3 P1 Ve R15 Vgg

Note: Pin D4 is NC (notinternally connected). You may use this pin for package alignment, but do not connect it.

2-3



Pinouts

Table 2-2.  Alphabetical List of TMS34020 Pin Assignments (145-Pin PGA)

Signal Pin# Signal Pin # Signal Pin # Signal Pin # Signal Pin #
ALTCH A2 HA17 R8 LAD2 L14 || LAD31 B11 || Vee A8
BUSFLT M1 HA18 P8 LAD3 K14 || LCLK1 H1 Vee B13
CAMD L2 HA19 R7 LAD4 J13 || LCLK2 H3 Vee c2
CAS0 Ci HA20 R6 LAD5 J15 || TINT1 L1 Vee C14
CASH E3 HA21 N7 LAD6 H15 | CiNT2 K3 Vee E2
CAS2 D2 HA22 P7 LAD7 G13 || LRDY L3 Vee J14
CAS3 B1 HA23 R5 LAD8 F14 |INC D4 Vee N2
CBLNK/ A3 HA24 P6 || LAD9 E15 || PGMD M2 || Vee N14
VBLNK

CLKIN N3 HA25 N6 LAD10 D15 | Ro F2 Vee P1
CSYNC/ B4 HA26 R4 LAD11 D14 |l R1 E1 VCLK M3
HBLNK

DDIN C4 HA27 P5 LAD12 B15 | RAS D1 Vss Al
DDOUT C3 HA28 R3 LAD13 B14 | RCAO B6 Vss A15
EMUO J1 HA29 N5 LAD14 B12 || RCA1 B7 Ves B3
EMUA1 J3 HA30 P4 LAD15 A13 || RCA2 A6 Vss C5
EMU2 K1 HA31 R2 LAD16 M14 || RCA3 A7 Vgs cs
EMU3 Hz2 HBSO P14 | LAD17 N15 || RCA4 c7 Vss ci2
GI J2 HBS1 N13 | LAD18 M15 || RCA5 B8 Vss C13
HA5 P13 | HBS2 N12 || LAD19 L15 || RCA6 A9 Vss D3
HA6 N11 || HBS3 R14 || LAD20 K15 || RCA7 A10 || Vss F3
HA7 P12 [[HCS P3 LAD21 H14 || RCA8 C9 Vss F15
HAg' R13 | HDST G3 LAD22 H13 | RCA9 B9 Vss G14
HA9 R12 | HINT Gi LAD23 G15 || RCA10 A1 || Vs K13
HA10 P11 HOE G2 LAD24 F13 || RCA11 B10 || Vss M13
HA1M R11 || HRDY F1 LAD25 E14 | RCA12 C10 || Vgs N4
HA12 N10 | HREAD R1 LAD26 Ci15 || RESET K2 Vss N8
HA13 P10 || HSYNC A4 LAD27 E13 || SCLK A12 || Vgs N9
HA14 P9 HWRITE P2 LAD28 D13 || SF Cé Vss R15
HA15 R10 || LADO P15 | LAD29 A14 || SIZET6 N1 VSYNC B5
HA16 R9 LAD1 L13 | LAD30 ci1 || TRQE A5 WE B2

Note: Pin D4 is NC (notinternally connected). You may use this pin for package alignment, but do not connectit.
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Table 2-3.  Numerical List of TMS34020 Pin Assignments (132-Pin QFP)

Pin# Signal Pin # Signal Pin # Signal Pin # Signal
1 EMU1 34 Ves 67 LAD7 100 RCA4
2 EMUO 35 HA16 68 LAD23 101 RCA3
3 EMU2 36 HA15 69 Vss 102 RCA2
4 Gl 37 HA14 70 Vss 103 RCA1
5 RESET 38 HA13 71 LADS 104 RCA0
6 LINT2 39 HA12 72 LAD24 105 SF
7 LINTH 40 HA11 73 LAD9 106 TR/QE
8 CAMD 41 HA10 74 LAD25 107 VSYNC
9 BUSERR 42 HA9 75 LAD10 108 HSYNC
10 SIZE16 43 HA8 76 LAD26 109 CBLNKAVBLNK
1 PGMD 44 HA7 77 LADT 110 CSYNC/HBLNK
12 LRDY 45 HA6 78 LAD27 i1 Vss
13 Veo 46 HA5 79 Veo 112 Vgs
14 VCLK 47 HBS3 80 LAD12 113 ALTCH
15 CLKIN 48 HBS2 81 LAD28 114 DDIN
16 HWRITE 49 HBSH1 82 Vss 115 DDOUT
17 HREAD 50 HBSO 83 LAD13 116 WE
18 HCS 51 LADO 84 LAD29 117 CAS3
19 HA31 52 LAD16 85 LAD14 118 CAs2
20 HA30 53 LAD1 86 LAD30 119 CAS1
21 HA29 54 LAD17 87 LAD15 120 CAS0
22 HA28 55 LAD2 88 LAD31 121 Vee
23 HA27 56 LAD18 89 SCLK 122 RAS
24 HA26 57 Vss 90 RCA12 123 Vss
25 HA25 58 LAD3 91 RCA11 124 Ro
26 HA24 59 LAD1S 92 RCA10 125 R1
27 HA23 60 Vee 93 RCA9 126 HOE
28 HA22 61 LAD4 94 RCA8 127 HDST
29 HA21 62 LAD20 95 RCA7 128 HRDY
30 HA20 63 LAD5 96 RCA6 129 HINT
31 HA19 64 LAD21 97 RCAS5 130 EMU3
32 HA18 65 LAD6 98 Vee 131 LCLK1
33 HA17 66 LAD22 99 Vss 132 LCLK2

2.6 Pinouts and Signal Descriptions
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Table 2-4.  Alphabetical List of TMS34020 Pin Assignments (132-Pin QFP)

Signal Pin # Signal Pin # Signal Pin # Signal Pin #
ALTCH 113 HA21 29 LAD10 75 RCA2 102
BUSERR 9 HA22 28 LAD11 77 RCA3 101
CAMD 8 HA23 27 LAD12 80 RCA4 100
CASO 120 HA24 26 LAD13 83 RCA5 97
CAS1 119 HA25 25 LAD14 85 RCA6 96
CAS2 118 HA26 24 LAD15 87 RCA7 95
CAS3 117 HA27 23 LAD16 52 RCA8 94
CBLNK/VBLNK 109 HA28 22 LAD17 54 RCAS 93
CLKIN 15 HA29 21 LAD18 56 RCA10 92
CSYNC/HBLNK 110 HA30 20 LAD19 59 RCA1 91
DDIN 114 HA31 19 LAD20 62 RCA12 90
DDOUT 115 HBSO 50 LAD21 64 RESET 5
EMUO 2 HBS1 49 LAD22 66 SCLK 89
EMUA HBS2 48 LAD23 68 SF 105
EMU2 3 HBS3 47 LAD24 72 SIZE16 10
EMU3 130 HCS 18 LAD25 74 TR/QE 106
Gl 4 HDST 127 LAD26 76 Vee 13
HA5 46 HOE 126 LAD27 78 Vee 60
HA6 45 HINT 129 LAD28 81 Vee 79
HA7 44 HRDY 128 LAD29 84 Vee 98
HA8 43 HREAD 17 LAD30 86 Vee 121
HA9 42 HSYNC 108 LAD31 88 VCLK 14
HA10 4 HWRITE 16 LCLK1 131 Vss 34
HA11 40 LADO 51 LCLK2 132 Vss 57
HA12 39 LAD1 53 LINTH 7 Vss 69
HA13 38 LAD2 55 LINT2 6 Vss 70
HA14 37 LAD3 58 LRDY 12 Vss 82
HA15 36 LAD4 61 PGMD 11 Vgs 99
HA16 35 LAD5 63 . RO 124 Vss 111
HA17 33 LAD6 65 R1 125 Vss 112
HA18 32 LAD? 67 RAS 122 Vss 123
HA19 31 LADS 7 RCAO 104 VSYNC 107
HA20 30 LAD9 73 RCA1 103 WE 116

2-7



The TMS34020’s Major

Interfaces

2.2 The TMS34020’s Major Interfaces

The TMS34020’s pins are divided among several interfaces:

Name Pins
Local-memory interface 39 pins
DRAM/VRAM control interface 22 pins
Multiprocessor interface 3 pins
Host interface 38 pins
Video interface 6 pins
Emulation interface 4 pins
System control 6 pins
Power and ground 26 pins (PGA)
14 pins (QFP)

Figure 2-3 associates the TMS34020’s pins with its major interfaces.

Figure 2-3.  The TMS34020’s Major Interfaces

local-memory 4
interface

DRAM/VRAM
interface <

(=)

video
interface

~ (=5

LA

r—
——
f—

LADO—LAD31

PGMD
SIZE16
BUSFLT

RCA0—RCA12
CAS0—CAS3

HSYNC
CSYNG/HBLNK
CBLNK/VBLNK
Vee

Vss

HAS—HA31

HBS0—HBS3
FCS
HREAD
HWRITE
HRDY
HINT
HDST
HOE

a
RO
R

EMUS
EMUO—EMU2

CLKIN
RESET
LINT1
LINT2
LCLK1
LCLK2

N\

-
 E ——
e —
—
—
.
-

/
‘_
-—_.

i p—

| —,

—v—

-————
-——————

S

Pinouts and Signal Descriptions

host
interface

multiprocessor
bus arbitration

emulation
interface

system
control



Signal Descriptions

2.3 Signal Descriptions

This section describes the TMS34020 signals. Table 2-5 associates the sig-
nals with the proper interfaces, provides brief descriptions, and references
page numbers on which you can find detailed signal descriptions. Subsections
2.3.1 through 2.3.7 provide details concerning the individual groups.

Table 2-5.  TMS34020 Pin Descriptions

Refer to
Signal Name /0 Description Page. ..
ALTCH o) Address latch 2-11
BUSFLT | Bus fault 2-11
DDIN (o] Data bus direction input enable 2-11
DDOUT 0 Data bus direction output enable 2-11
LADO—LADS1 110 Local address/data multiplexed sig- 2-11
nals
LRDY | Local ready 2-11
PGMD | Page mode 2-11
SIZE16 I Bus size 2-11
CAMD | Column-address mode 2-12
CAS0—CAS3 0 Column-address strobes 2-12
RAS 0 Row-address strobe 2-12
RCA0—RCA12 (0] Thirteen multiplexed row-/column- 2-12
address signals
SF (0] Special function pin 2-12
TR/QE o] Transfer/output enable 2-12
WE (o) Write enable 2-12
Gl | Bus-grant input 2-13
Ro, R1 0 Bus-request code 2-13
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Table 2-5.  TMS34020 Pin Descriptions (Continued)

2-10

Refer to

Signal Name /0  Description Page. ..
HA5—HA31 | Host-address input signals 2-13
HBS0—HBS3 | Host byte selects 2-13
HCS | Host chip select 2-13
HDST o] Host data-latch strobe 2-13
HINT (0] Host interrupt 2-13
HOE (o] Host data-latch output enable 2-13
HRDY (o] Host ready 2-13
HREAD | Host read strobe 2-13
HWRITE I Host write strobe 2-13
CBLNKABLNK 0 Composite blanking or vertical blank- ~ 2-15

ing
CSYNC/HBLNK /O Composite sync or horizontal blank- 2-15

ing
HSYNC /O  Horizontal sync 2-15
SCLK | Serial data clock 2-15
VCLK | Video clock 2-15
VSYNC /0 Vertical sync 2-15
EMO—EMU2 I Emulation pins 0—2 Appendix A
EMU3 0] Emulation pin 3 Appendix A
CLKIN | Clock input 2-16
LCLK1, LCLK2 (e} Local output clocks 2-16
LINTH1, LINT2 | Local interrupt requests 2-16
RESET | System reset 2-16
Vee | Nominal 5-volt power supply inputs (5  2-16

pins on QFP, 9 pins on PGA)
Vss | Electrical ground inputs (9 pins pins 2-16

on QFP, 17 pins on PGA)

Pinouts and Signal Descriptions
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2.3.1 Local-Memory Interface Signals

The TMS34020 communicates with external memory and with external memo-
ry-mapped I/O devices through its local-memory interface. This interface’s sig-
nals are also used in conjunction with the DRAM and VRAM interface.

Signal Name /0  Description

ALTCH (0] Address latch. The high-to-low transition of ALTCH can be used to capture the ad-
dress and status present onthe LAD bus. A transparentlatch (such as a 74ALS373)
will maintain the current address and status as long as ALTCH remains low.

BUSFLT | Bus fault. External logic asserts BUSFLT high to the TMS34020 to indicate that an
error or fault has occurred on the current bus cycle. BUSFLT is also used with LRDY
to generate bus-cycle retries so that the entire memory address is presented again
on the LAD pins.

DDIN (@) Data bus direction, input enable. This active-high output is used to drive the acti-
ve-high input enables on bidirectional transceivers (such as the 74ALS623). The
transceivers buffer data input and output on the LADO—LAD31 pins when the
TMS34020 is interfaced to several memories.

DDOUT (0] Data bus direction, output enable. This active-low signal drives the active-low
output enables on bidirectional transceivers (such as the 74ALS623). The trans-
ceivers buffer data input and output on the LADO—LAD31 pins.

LADO—LAD31 110 Multiplexed local address/data bus. At the beginning of a memory cycle, the word
addressis outputon LAD4—LAD31, and the cycle statusis outputon LADO—LADS3.
After the address is presented, LADO—LAD31 are used for transferring data within
the TMS34020 system. LADO is the LSB and LAD31 is the MSB.

LRDY | Local ready. External circuitry drives this signal low to stop the TMS34020 from
completing a local-memory cycle it has initiated. While LRDY remains low, the
TMS34020 will wait, unless the TMS34020 is given a retry request (through the
BUSFLT signal). Wait states are generated in increments of one full LCLK1 cycle.
LRDY can be driven low to extend local-memory read and write cycles, VRAM ser-
ial-data-register transfer cycles, and DRAM-refresh cycles. During internal cycles,
the TMS34020 ignores LRDY.

PGMD I Page mode. The memory decode logic asserts this signal low if the currently ad-
dressed memory supports burst (page mode) accesses. Burst accesses occur as
a series of CAS cycles for a single RAS cycle to memory.

SIZE16 | Bus size. The memory decode logic may pull this signal low if the currently ad-
dressed memory or port supports only 16-bit transfers. SIZE16 can also be used
to determine which 16 bits of the data bus are used for a data transfer.

Table 2-6 lists the bus cycle completion conditions controlled by LRDY and
BUSFLT.
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Table 2-6.  Bus-Cycle Completion Conditions

Completion Condition BUSFLT LRDY

Wait 0 0
Successful transfer 0 1
Retry 1 0
Bus fault 1 1

2.3.2 DRAM and VRAM Control Signals

Signal Name

/O Description

CAMD

Column-address mode. This input dynamically shifts the column address on the
RCAO0—RCA12 bus to allow the mixing of DRAM and VRAM address matrices us-
ing the same multiplexed address RCAO—RCA12 signals.

CAS0—CAS3

Column-address strobes. The CAS outputs drive the CAS inputs of DRAMs and
VRAMs. These signals strobe the column address on RCA0—RCA12 to the mem-
ory. The four CAS strobes provide byte write access to the memory.

RAS

Row-address strobe. The RAS output drives the RAS inputs of DRAMs and
VRAMSs. The high-to-low transition on this signal strobes the row address on
RCAO0—RCA12 to memory.

RCAO—RCA12

Multiplexed row-address/column-address signals. At the beginning of a
memory access cycle, the row address for DRAMs is present on RCAO—RCA12.
The row address contains the most significant address bits for the memory. As the
cycle progresses, the memory column address is placed on RCAO—RCA12. The
addresses that are actually output during row and column times depend on the
memory configuration (set by RCMO0 and RCM1 in the CONFIG register) and the
state of CAMD during the access. RCAQ is the LSB and RCA12 is the MSB.

Special-function pin. This is the special-function signal to 1M VRAMs. This signal
allows the use of block write, load write mask, load color mask, and write using write
mask. This signal is also used to differentiate instructions and addresses for the
coprocessor as part of the coprocessor interface.

—
oy
=
m

Transfer/output enable. This signal drives the TR/QE input of VRAMs. During a
local-memory read cycle, TR/QE functions as an active-low output enable to gate
data from memory to LADO—LAD31. During special VRAM function cycles, TR/QE
controls the type of cycle that is performed.

=

Write enable. The active low WE output drives the WE inputs of DRAMs and
VRAMs. WE can also be used as the active-low write enable to static memories and
other devices connected to the TMS34020 local interface. During a local-memory
read cycle, WE remains inactive high while CAS is strobed active low. During a lo-
cal-memory write cycle, WE is strobed active low before CAS is. During VRAM ser-
ial-data-register transfer cycles, the state of WE at the falling edge of RAS controls
the direction of the transfer.

Pinouts and Signal Descriptions



Signal Descriptions

2.3.3 Multiprocessor Interface Signals

The multiprocessor interface allows multiple TMS34020s to share the same
local memory by providing a request/grant protocol for devices that want to ac-
cess shared memory.

Signal Name /0 Description

€] l Bus grant input. External bus arbitration logic drives GI low to enable the
TMS34020 to gain access to the local-memory bus. The TMS34020 must release
the bus if Gl is high so that another device can access the bus.

R1,Ro o) Bus request and control. These two signals indicate a request for use of the bus
in a multiprocessor system; they are decoded as shown below.
R1 RO Bus Request Type
0 0 High-priority bus request
0 1 Bus cycle termination
1 0 Low-priority bus request
1 1 No bus request pending

L A high-priority bus request provides for VRAM serial-data-register transfer
cycles, DRAM refresh (when 12 or more refresh cycles are pending), or a host-
initiated access. The external arbitration logic should grant this request as soon
as possible by asserting Gl low.

[ A low-priority bus request is used to provide for CPU-requested access and
DRAM refresh (when less than 12 refresh cycles are pending).

Bus cycle termination status is provided so that the arbitration logic can determine
that the device currently accessing the bus is completing an access and other de-
vices may compete for the nextbus cycle. A no bus request pending status is output
when the currently active device does not require the bus on subsequent cycles.

2.3.4 Host Interface Signals

The host interface signals are used for communication between the
TMS34020 and a host processor. Signals input on these pins are assumed to
be asynchronous with respect to the local clocks (LCLK1 and LCLK2). Signals
output onthese pins are synchronized only when responses are dependenton
memory cycles that must be generated by the TMS34020.

The host interface allows the TMS34020’s memory to be mapped into a host
processor’s address space. The TMS34020 can act as a DRAM controller for
ahostprocessor. The address of the required access is input to the TMS34020,
and data is transferred through external transceivers.

2-13
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Signal Name

/O Description

HA5—HAS31

27 host-address input signals. A host can access a long-word by placing the ad-
dress on these lines. HA5—HA31 correspond to the LAD5—LAD31 signals that
output the address to the local memory.

HBS0—HBS4

4 host byte selects. The byte selects identify which bytes within the long-word are
being selected.

HCS

Host chip select. A host drives this signal low to latch the current host address pre-
sent on HA5—HA31 and the host byte selects on HBS0—HBSS3. This signal also
enables host access cycles to the TMS34020 /O registers or local memory. During
the low-to-high transition of RESET, the level on the HCS input determines whether

the TMS34020 is halted (HCS is high for host-present mode) or whether it begins
executing its reset service routine (HCS is low for self-bootstrap mode).

Host data strobe. The rising edge of this signal latches data from the TMS34020
local address space to the external transceivers on host read accesses. It can be
used in conjunction with HRDY to indicate that data is valid in the external transceiv-
ers.

Host interrupt. This signal allows the TMS34020 to interrupt a host by setting the
INTOUT bit in the HSTCTLL I/O register. This signal can also be used to interrupt
the host if a BUSFLT or RETRY occurs due to a host access cycle.

Host-data output enable. This signal enables data from the external transceivers
to the TMS34020 local address space on host write cycles. HOE can be used in con-
junction with HRDY to indicate data has been written to memory from the external
transceivers.

HRDY

Host ready. This signal is normally low and goes high to indicate that the
TMS34020 is ready to complete a host-initiated read or write cycle. A host can use
HRDY logically combined with HDST and HOE to determine when the local bus ac-
cess cycles have completed.

HREAD

Host read strobe. This signal is driven low during a read request from a host proc-
essor. This notifies the TMS34020 that the host is requesting access to local
memory orto the I/O registers. HREAD should notbe asserted at the same time that
HWRITE is asserted.

HWRITE

Host write strobe. This signal is driven low to indicate a write request by a host
processor. This notifies the TMS34020 that a write request is pending. The rising
edge of HWRITE is used to indicate that the data provided by the hostin the external
data transceivers can be written. HWRITE should not be asserted at the same time
HREAD is asserted.

2-14
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2.3.5 Video Interface Signals

Signal Name

/0  Description

CBLNK/VBLNK

o}

Composite blanking/vertical blanking. You can program this signal to selectone
of two blanking functions:

T Composite blanking for blanking the display during both horizontal- and verti-
cal- retrace periods in composite-sync video mode.

LI Vertical blanking for blanking the display during vertical retrace in separate-
sync video mode.

Immediately following reset, this signal is configured as CBLNK output.

CSYNC/HBLNK

I/O

Composite sync/horizontal blanking. You can program this signal to select one
of two functions:

[ Composite sync (either input or output as set by a control bit in the DPYCTL
register) in composite-sync video mode:

®  As an input, CSYNC synchronizes the TMS34020 video-control registers
to externally generated horizontal-sync pulses. The actual synchronization
can be programmed to begin at any VCLK cycle; this allows for any external
pipelining of signals. CSYNC extracts HSYNC and VSYNC from externally
generated horizontal-sync pulses.

As an output, CSYNC is the active-low composite-sync pulse generated
by the TMS34020’s on-chip video timers.

L Horizontal blank (output only) for blanking the display during horizontal retrace
in separate-sync video mode.

Immediately following reset, this signal is configured as a CSYNC input.

o]

Horizontal sync. HSYNC is the horizontal-sync signal that controls external video
circuitry. You can program this signal to be either an input or an output by modifying
a control bit in the DPYCTL register.

Lk Asan output, HSYNC is the active-low horizontal-sync signal generated by the
TMS34020’s on-chip video timers.

LI Asaninput, HSYNC synchronizes the TMS34020 video-control registers to ex-
ternally generated horizontal-sync pulses. The actual synchronization can be
programmed to begin at any VCLK cycle; this allows for any external pipelining
of signals.

Immediately following reset, HSYNC is configured as an input.

SCLK

Serial data clock. This signal is the same as the signal that drives VRAM serial-da-
ta registers. This allows the TMS34020 to track the VRAM serial-data-register
count, providing serial-register-transfer midline-reload cycles. (SCLK may be
asynchronous to VCLK; however, it typically has afrequency that is a multiple of the
VCLK frequency.)

VCLK

Video clock. This clock is a derivative of the video system’s dotclock and is used
internally to drive the video timing logic.
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Signal Name

/0  Description

VSYNC

I/0

Vertical sync. VSYNC is the vertical-sync signal that controls external video cir-
cuitry. You can program this signal to be either an input or an output by modifying
a control bit in the DPYCTL register.

L As an output, VSYNC is the active-low vertical-sync signal generated by the
TMS34020's on-chip video timers.

LX As an input, VSYNC synchronizes the TMS34020 video-control registers to ex-
ternally generated vertical-sync pulses. The actual synchronization can be pro-
grammed to begin at any horizontal line; this allows for any external pipelining
of signals.

Immediately following reset, VSYNC is configured as an input.

2.3.6 System Control Signals

Signal Name

/0O  Description

CLKIN

Clockinput. This systeminputclockis used to generate the LCLK1 and LCLK2 out-
puts, to which all processor functions in the TMS34020 are synchronous. A sepa-
rate asynchronous input clock (VCLK) controls the video timing and video registers.

LCLK1, LCLK2

(0]

Local output clocks. These two clocks are 90 degrees out of phase with each
other. They provide convenient synchronous control of external circuitry to the inter-
nal timing. All signals output from the TMS34020 (except the CRT timing signals)
are synchronous to these clocks.

LINTT, LINT2

Local interrupt requests. Interrupts from external devices are transmitted to the
TMS34020 on LINT1 and LINT2. Each local interrupt signal activates the request
for one of two interrupt request levels. An external device generates an interrupt re-
quest by driving the appropriate interrupt request pin to its active-low state. These
signals can be applied asynchronously to the TMS34020 as they are synchronized
internally before use. The signal should remain low until it is recognized by the
TMS34020.

System reset. RESET is normally high. During normal operation, RESET is driven
low to reset the TMS34020. When RESET is asserted low, the TMS34020's internal
registers are set to an initial known state, all output pins are driven to inactive levels,
and all bidirectional pins are driven to a high-impedance state. The TMS34020’s be-
havior following reset depends on the level of the HCS input just before the low-to-
high transition of RESET. If HCS is low, the TMS34020 begins executing the instruc-
tions pointed to by the reset vector. If HCS is high, the TMS34020 is halted until a
host processor writes a 0 to the HLT bit in the HSTCTLL register.

2.3.7 Power Signals

Signal Name 1/0  Description
Vee | Nominal 5-volt power supply inputs (5 pins for the QFP, 9 pins for the PGA)
Vss | Electrical ground inputs (9 pins for the QFP, 17 pins for the PGA)

Note: For proper TMS34020 operation, all these signals must be connected externally.

2-16
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Chapter 3

Memory Organization and Data Structures

YIPITITeN

Much of the TMS34020’s power derives from its flexible memory access.
Several memory organization features are tailored specifically for graphics
applications:

L A large memory space supports a variety of display resolutions.
L You can access memory locations with linear or XY addresses.
Ld The TMS34020 provides hardware support for several data structures:

B Fields are configurable data structures. A field can begin and end at
any bit address and can be 1 to 32 bits long.

B As used by the TMS34020, bytes are a special type of field; byte
length is fixed at 8 bits.

B Pixels are configurable data structures; pixel length can be any power
of 2 in the range of 1 to 32 bits.

B Pixel arrays are 2-dimensional, rectangular blocks of pixels.

Additionally, the TMS34020 can be addressed in little-endian or big-endian
mode, and provides a system stack. Unless explicitly stated otherwise, all
discussions refer to little-endian addressing.

Section Page
Memory organization sections 3.1 MemoryMap ..............coviiiiiinnn, 3-2
illustrate the TMS34020's memory 3.2 Memory Addressing .. ...........ooeeeenn.. 3-3
map and general addressing
schemes.
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Additional features include endian 3.8 Big-Endian and Little-Endian Addressing .... 3-20
modes and stack operations. 39 Stacks ... e 3-26




Memory Map

3.1 Memory Map

Figure 3—1 illustrates the TMS34020 memory map.

Figure 3-1.  TMS34020 Memory Map
—bit2%2_1

=" (last bit in memory)

le——— s2bits ——— T (first bit in memory)

Memory is logically organized as 4 gigabits, but is physically accessed 32 bits
atatime. Figure 3—1 shows locations as long (32-bit) words, identified by 32-bit
addresses. Word addresses range from 0000 0000h to FFFF FFEOh (bit
address 0000 0000h is the rightmost bit in the word at the bottom of
Figure 3-1, and bit address FFFF FFFFh is the leftmost bit in the word at the
top.) Reading or writing to an address in the range C000 0000h to CO00 03EOh
accesses an internal I/O register. (An external memory cycle is also generated
on accesses to these locations, allowing the I/O registers to be shadow
mapped in external memory.) Reading or writing to any address outside this
range accesses external memory (or a memory-mapped device).

3-2 Memory Organization and Data Structures
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As Figure 3—1 shows, memory is divided into several regions:

[ General use

Address ranges 0h—BFFF FFEOh and C000 2000h—FFFF DFEOh are
for general use (executable code, data tables, etc.).

[ VO registers

Addresses C000 0000h—CO000 03EOQh are reserved for the internal I/O
registers. Chapter 4 discusses the I/O registers; it contains a map of this
memory area that associates each I/O register with the appropriate
address.

2 Interrupt, reset, and trap vectors

Addresses FFFF FBCOh—FFFF FFEOh are reserved for 34 interrupt,
reset, and trap vectors. A vector is a 32-bit address that points to the start-
ing location in memory of the appropriate interrupt, reset, or trap service
routine. Chapter 6 contains more information about interrupts and traps.

4 Reserved memory

Addresses C000 0400h—C000 1FEOh are reserved for future expansion
of the I/O registers. Addresses FFFF EO00Oh—FFFF FBAOh are reserved
for future expansion of the interrupt vectors.

3.2 Memory Addressing

The TMS34020 is a bit-addressable machine with a 32-bit memory address.
The total memory capacity is 4 gigabits (512 Mbytes). Memory is accessed as
acontinuously addressable string of bits; each 32-bit address points to an indi-
vidual bit within memory. Bit addresses range from 0000 0000h to
FFFF FFFFh.

Figure 3-2 illustrates the TMS34020's logical memory structure.
Figure 3-2.  Logical Memory Address Space
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Figure 3-3 illustrates physical memory organization.

Figure 3-3.  Physical Memory Addressing

The TMS34020 communicates with memory over a 32-bit address/data bus
(LADO—LAD31) and always reads a complete long (32-bit) word from
memory. Writes to memory may be 8-, 16-, 24-, or 32-bit values through the
use of the TMS34020’s CAS (byte) strobes.

Along-word accessed during amemory cycle always begins on a 32-bit bound-
ary; thus, the 5 LSBs of the 32-bit starting address of the word are always 0s.
Bits within a word are numbered from 0 to 31; bit 31 is the MSB and bit 0 is the
LSB. A word is identified by the address of its LSB.The LSB of a memory word
is depicted as the rightmost bit in the word.

The 4 LSBs of the 32-bit logical address in Figure 3—3 do not appear on the
LAD bus. Bit 4 is output for use with 16-bit memory devices only. When the
TMS34020 accesses a field that does not begin and end on long-word bound-
aries, these 5 LSBs are used internally to identify a bit boundary within an
accessed long-word.

Internal logic automatically performs the bit alignment and masking necessary
to extract a field from physical memory; this is completely transparent to soft-
ware. Similarly, inserting a field into memory may require a series of read and
write cycles, accompanied by internal masking and shifting of data to properly
align the data structure within memory. The memory control logic performs
these tasks automatically.
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3.3 Fields

The TMS34020 supports 2 software-configurable field types, field 0 and field
1. A field is defined by 2 parameters:

L Starting address. A field’s starting address is the address of the field’s
LSB. A field can begin at an arbitrary bit address in memory. When a field
is moved from memory to ageneral-purpose register, the field is right-justi-
fied within the register; that is, the field’s LSB coincides with the register’s
rightmost bit (bit 0). The register bits to the left of the field are all 1s or all
0s, depending on the values of both the appropriate FE (field extension)
status bit and the field’s sign bit (MSB). If FE=1 the field is sign-extended;
if FE=0, the field is zero-extended.

Li Field size. Field size can range from 1 to 32 bits. The lengths of fields 0
and 1 are defined by two 5-bit fields in the status register, FS0 and FS1.

Figure 3—4 identifies the status bits that control the size and extension of field
0 and field 1. Table 3—1 shows how the field size is encoded in FS0 and FS1.

Figure 3-4.  Status Bits That Control Field 0 and Field 1

31 11 10—6 5

T .
gttt FEA FS1 FEO FSO

L
bt

Note: For a complete description and illustration of the ST, see Chapter 4.

Table 3-1.  Decoding the Field-Size Bits in the Status Register

Field Field Field || Field

5 FS Bits Size 5 FS Bits Size 5 FS Bits Size 5 FS Bits Size
00001 1 01001 9 10001 17 11001 25
00010 2 01010 10 10010 18 11010 26
00011 3 01011 11 10011 19 11011 27
00100 4 01100 12 10100 20 11100 28
00101 5 01101 13 10101 21 11101 29
00110 6 01110 14 10110 22 11110 30
00111 7 01111 15 10111 23 BRERRD 31
01000 8 10000 16 11000 24 00000 32

Figure 3-5 illustrates a field in memory. In this example, the field straddies the
boundary between words r and n+1 in memory. Field extraction and insertion
is performed by on-chip hardware:

3 To move the field to a general-purpose register, the TMS34020 extracts
the field from memory by reading word » and word »n+1 in separate cycles.
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L3 To move the field from a general-purpose register, the TMS34020 inserts
the field into memory by reading and writing word n and reading and writing
word n+1.

The memory operations necessary to insert or extract a field are performed
automatically by special hardware and are transparent to software.

Figure 3-5.  Field Storage in External Memory

3-6

In Figure 3-5, word n is pointed to by a 27-bit physical address, output by the
TMS34020 to memory. This 27-bit address corresponds to bits 5—31 of the
field’s 32-bit logical address. The 5 LSBs of the logical address point to the
beginning of the field within word ».

The number of memory cycles required to extract or insert a field depends on
how the field is aligned within memory. Field manipulation is more rapid when
fields are stored in memory so that they do not cross word boundaries.
Figure 3-6 illustrates various cases of alignment and nonalignment of fields
to word boundaries in memory. Given a field starting address and field length,
the memory controller will recognize the specified field alignment as one of the
6 cases in Figure 3—6. Field extraction and field insertion are performed in a
manner that requires the minimum number of memory cycles.

[d Cases A1—A4. The field begins and ends on byte boundaries within a
single word.

B InCaseA1,thefieldis 8 bits wide and the starting address is aligned to
a byte boundary within a word.

B InCase A2, the field is 16 bits wide and the starting address is aligned
to the first, second, or third byte boundary within a word.

M InCase A3, the field is 24 bits wide and is aligned to the first or second
byte boundary in a word.

B In Case A4, the field is 32 bits wide and is word-aligned.
For Cases A1—A4, a field extraction requires a single read cycle, and a
field insertion requires a single write cycle.

Memory Organization and Data Structures



Fields

Figure 3-6.  Field Alignment in Memory

1)
| word n !

‘word n+1°
- field

| wordn | I

[d Case B. The field does not straddle a word boundary and does not begin
and end on byte boundaries (thatis, either itis not aligned on a byte bound-
ary, oritis aligned on a byte boundary but is not a multiple of 8 bits). A field
extraction requires a single read cycle. A field insertion requires the follow-
ing sequence of memory cycles:

B Read word n
B Write word n

[ CaseC. Thefield straddles the boundary between 2 words and begins and
ends on byte boundaries. A field extraction requires the following
sequence of memory cycles:

B  Read word n
B Read word n+1
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A field insertion requires the following sequence or memory cycles:

H  Write word »
W Write word n+1

Case D. The field straddles the boundary between 2 words. The field
address is byte aligned, but the end of the field does not coincide with the
end of abyte. A field extraction requires the following sequence of memory
cycles:

B Read word n
B Read word n+1

A field insertion requires the following sequence of memory cycles:

®  Write word n
B Readwordn+1
B Write word n+1

Case E. The field straddles the boundary between 2 words. The end of the
field is byte aligned, but the start is not. A field extraction requires the
following sequence of memory cycles:

B Read word n
B Read word n+1

A field insertion requires the following sequence of memory cycles:

B Read word n
B Write word n
B Write word n+1

CaseF. The field straddles the boundary between 2 words and neither the
start nor the end of the field is aligned to a byte boundary. A field extraction
requires the following sequence of memory cycles:

B Readwordn
M Read word n+1

A field insertion requires the following sequence of memory cycles:

B  Read word n
Write word »
Read word n+1
Write word n+1

A field insertion modifies only the portion of a word that lies within a field. The
TMS34020 memory controller must perform a read-modify-write operation
when a field that does not begin and end on byte boundaries is written to
memory. The memory controller uses these 2 parameters (address LSBs and

Memory Organization and Data Structures
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field size) to produce a mask that identifies the bits in the word corresponding
to the field. Hardware uses the mask to perform the read-modify-write cycle.
The TMS34020’s local memory control logic automatically generates the mask
and executes the read-modify-write operation; this is transparent to the
software.

Figure 3—7 shows an example of inserting a 14-bit field stored in a register to
logical address 0000 0007h.

Figure 3-7.  Field Insertion

(a) Field to be inserted

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
|X|X|X|X|X|X|X|X|X|X|X|X|X|XIX|X|X|X|FlFlFIFIFlFlFIFIFlFIFIFIFIFI

(b) Rotate to align to bit 7

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
[XIXIX XX XXX XXX EJEJE]E[E]E]E]F]{F F|F[F|F|F|X|X|X|X|X|X|X]

(c) Initial destination data

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
|A|A|A|A|A[A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|A|Al

(d) Mask generated
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

[ofoJofofojojojofojojofeftfaftfrjaftfejafrtjr]1ft]n |0I0|0I0I0|0|0|

(e) Field destination data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211 10 9 8 7 6 5 4 3
[AJATATATATATATATATATATETEIE[E[FIEIE[F[FIF[E[FIEEJATATATATATATA]

(a) The field to be inserted is shown right-justified in the designated
general-purpose register.

(b) The CPU has rotated the field to align it with the destination in memory.
(c) The TMS34020 reads the original word from the destination in memory.
(d) The mask is generated to designate the bits to be modified.

(e) The field is inserted into the word from memory, and the result is written
back to the destination address in memory.

In the more complex case in which a field straddles a word boundary in
memory, the portion of the field lying within each word is inserted into that word
using the methods described above.
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3.4 Pixels

The term pixel has two meanings in the context of a TMS34020-based graph-
ics system. Outside the TMS34020, a physical pixel is a picture element on a
display surface. Inside the TMS34020, alogical pixel is a software configurable
data structure supported by the TMS34020 instruction set. The logical pixel
data structure in TMS34020 memory contains the information needed to speci-
fy the attributes of a picture element visible on a screen. The information for
a horizontal line of pixels on a screen is usually stored in consecutive words
in memory.

3.4.1 Pixels in Memory

Within TMS34020 memory, the pixel data structure is defined by 2 parameters:
Lk its starting address (the address of the pixel's LSB) and
Ca the pixel size (the number of bits per pixel).

The PSIZE register defines the current pixel size. A pixelcanbe 1,2, 4, 8, 16,
or 32 bits long. The TMS34020 treats pixels as a special case of a field in which
the field size is constrained to be a power of 2. Unlike other memory fields, pix-
els do not cross long-word boundaries within memory; they are aligned within
memory so that a memory word contains an integral number of pixels. For
example, a 2-bit pixel should begin at a bit address whose LSB s 0, a 4-bit pixel
should begin at a bit address whose 2 LSBs are 0s, and so forth.

When a pixel is moved from memory to a general-purpose register, the pixel
is right-justified within the register. That is, the pixel's LSB coincides with the
rightmost bit (bit 0) of the register. Register bits to the left of the pixel are loaded
with Os.

Figure 3-8 illustrates pixel storage in memory. The pixel is located within the
word pointed to by the 27-bit physical address corresponding to bits 5—31 of
the pixel’s 32-bit logical address. The 5 LSBs of the logical address specify the
displacement of the pixel within the word. When the pixel length is less than
32, each word contains 2 or more pixels.

Figure 3-8.  Pixel Storage in External Memory

Memory Organization and Data Structures
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On-chip hardware performs pixel extraction and insertion in a manner that
requires the minimum number of memory cycles. (The operations are trans-
parent to software.) Two memory cycles (a read followed by a write) are always
required to insert a pixel of less than 8 bits. Inserting an 8-, 16-, or 32-bit pixel
requires a single write cycle (unless plane masking is enabled). Extracting a
pixel (1 to 32 bits) requires a single read cycle.

3.4.2 Pixels on the Screen

Figure 3-9 illustrates the mapping of pixels from memory to a display screen.
The screen-refresh function outputs pixels in the sequence of ascending pixel
addresses. However, the electron beam sweeps from the left edge of the
screen to the right edge during each horizontal scan interval, so pixels appear
on the screen in the opposite order of their representation in memory. That is,
the least significant pixel (in terms of bit address) appears on the left, and the
most significant pixel appears on the right.

Figure 3-9.  Mapping of Pixels to a Monitor Screen

word word word

n=1 n__ n+l
LA BE R R L AC I A R Y

creen 10000 '
....--...r-.r.---.

The TMS34020 allows you to identify a pixel in terms of its XY coordinates on
the screen or in terms of the address of the logical pixel in memory. These 2
methods are called XY addressing and linear addressing, respectively.

Whenyou use XY addressing, you can select the origin to lie in either the upper
left or lower left corner of the screen. The DPYST and DINC registers control
the origin’s position. Figure 3—10 (a) illustrates the default coordinate system
in which the origin of the 2 coordinate axes is located in the upper left corner
of the screen. In this system, DPYST contains the address of the pixel at the
upper left of the screen, and DINC contains the display pitch. Figure 3—10 (b)
shows the alternate coordinate system in which the origin is located in the lower
left corner of the screen. In this case, DPYST contains the address of the pixel
at the lower left of the screen, and DINC contains the 2s compliment of the
display pitch.
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Figure 3-10. Configurable Screen Origin

(a) Default screen origin

(b) Alternate screen origin

default
screen
origin

alternate
screen
origin

Using the default screen origin, Figure 3—11 illustrates the mapping of pixels
from the memory to the screen. In Figure 3—11, horizontal movement repre-
sents travel in the X direction on the screen. Vertical movement represents
travel in the Y direction. The depth of the buffer represents the pixel size. The
on-screen memory contains the pixels that appear on the screen.

In Figure 3—11, the display memory is shown in terms of a screen format, rather
than the memory format used in the memory map in Figure 3-1 (page 3-2).
The screen format places the lowest pixel address at the upper left corner of
the memory map. This is the same relative orientation in which the pixels
appear on the screen. Compare this to the memory format shown in
Figure 3—1, which places the lowest bit address at the lower right corner of the
memory map. This convention is frequently used in industry to represent the
relative location of addresses in memory. Inthis user’s guide, assume the stan-
dard format is used unless the screen format is explicitly indicated.

Figure 3-11.  Display Memory Dimensions

3-12
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Figure 3-12. Display Memory Coordinates

Figure 3—12 illustrates the mapping of XY coordinates to on-screen memory.
For simplicity, assume that the screen origin coincides with the upper left cor-
ner of the display memory. p represents the X extent of the display memory;
nrepresents the Y extent. Each box represents a pixel within the memory; the
number in the box represents the pixel’s memory location, relative to the begin-
ning of the on-screen memory.

(X extent) x (pixel size)
differences in 32-bit

memory addresses of
2 vertically adjacent
pixels

> Display memory
.| p=Xextent

3.4.3 Display Pitch

COMPA2

‘n=Y extent

‘ Each box contains a pixel. The
3 number inside the box is the
pixel’s linear address.

Display pitch is the difference in memory addresses between 2 pixels that are
vertically adjacent on the screen (one is directly. above the other). In
Figure 3—12, the pitch is calculated as p times the pixel size, where p is the X
extent of the display memory. The pixel size is constrained to be a power of 2,
so the multiply can be replaced by a shift operation. Array pitch is the differ-
ence in memory addresses of 2 vertically adjacent pixels in the array. If the
array occupies a rectangular area on the screen, the array pitch is the same
as the display pitch.

During a pixel operation such as a PIXBLT, the source array pitch, destination
array pitch, and (if it is a masked PIXBLT) mask array pitch are defined in sepa-
rate, dedicated hardware registers. This eases the transfer of pixel arrays
between on-screen and off-screen memory, which may have different pitches.

As an example, here’s how you would calculate the display pitch if the pixel size
= 4 bits and the X extent of the pixel display = 1024 pixels:

display pitch = (1024 pixels per line) x (4 bits per pixel)
= 4096 (which is 2'3)

Note that the TMS34020 does not require the display pitch to be a power of
2, as was the case for the TMS34010.
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3.5 XY Addressing

COMPA>

The TMS34020 allows you to define pixel addresses in terms of 2-dimensional
XY coordinates that correspond to screen locations. This is referred to as XY
addressing. XY addressing has several benefits:

Ld TMS34020 software can be easily ported from one display configuration
to another. System-dependent details, such as the number of bits per pixel
and the X extent of the display memory, are transparent to the software.
However, these are used by the machine to automatically convert the XY
coordinates to the address of a pixel in memory.

L XY addressing allows you to think in terms of the high-level concept of XY
coordinates rather than in terms of the machine-level mapping of pixels
into memory.

L& XY addressing facilitates operations such as window checking.

The TMS34020 supports XY coordinates in the range (-32768,-32768) to
(+32767,+32767).

The TMS34010 did not support signed XY values, as the TMS34020 does.

Figure 3—13 illustrates the XY addressing format.

Figure 3—13. Pixel Addressing in Terms of XY Coordinates

3-14

OFFSET |

In Figure 3—13, a 32-bit general-purpose register contains an XY address. The
X and Y components are treated as separate16-bit signed integers. The X
component is right-justified within the 16 LSBs of the register. The Y compo-
nent is right-justified within the 16 MSBs of the register.
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3.6 Converting an XY Address to a Linear Address

For all instructions that use XY addressing, the TMS34020 automatically con-
verts a pixel's XY address to a 32-bit logical address (linear address). The
TMS34020 uses four parameters to perform XY-to-linear conversion:

logical pixel size

pitch conversion
factor

actual pitch

offset

defined in the PSIZE register

defined in the CONVSP, CONVDP, or CONVMP reg-
ister

defined in the SPTCH, DPTCH, or MPTCH register
if the conversion involves a pitch that is not a power
of 2 or a sum two of powers of 2

specifies the XY origin, defined in the OFFSET regis-
ter

The TMS34020 uses the following formula to calculate the physical address
associated with the XY address:

address = [(Y x display pitch) + (X X pixel size)] + offset

Because the pixel size must always be a power of 2, the multiplication of the
X component is performed using a shift operation. The method of calculating
the Y component depends on the pitch value.

If the pitch is. ..

This is how the Y value is calculated

a power of 2

The TMS34020 performs a left shift. The amount that
the component is shifted is contained in the lower half
of the appropriate CONVxP register.

two powers of 2

The operation is performed by summing 2 shifts of the
Y value. The number of bits to be shifted during the first
and second shifts are contained in the lower and upper
halves of the appropriate CONVxP register, respective-
ly. This adds a cycle to each conversion.

an arbitrary pitch (not a
power of 2 and not two
powers of 2)

The TMS34020 must perform a full 16-bitx32-bit multi-
ply. Inthis case, the appropriate xPTCH register is used
directly as the multiplier of the Y value. This adds about
12 cycles to each conversion.

The TMS34020 must perform one or more XY-to-linear conversions for the fol-

lowing instructions:

CVDXYL
CVMXYL
CVSXYL
CVXYL
DRAV

FILL XY PIXBLT L, XY
FLINE PIXBLT XY, L
LINE PIXBLT XY, XY
PIXBLT B, XY PIXTs
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3-16

The TMS34020 uses the pitch conversion factors in the CONVSP, CONVDP,
and CONVMP registers to calculate the Y component of an address.

CONVSP  (source pitch) is used if the XY address points to a source pixel or
pixel array.

CONVDP  (destination pitch) is used if the XY address points to a destina-
tion pixel or pixel array.

CONVMP  (mask pitch) is used for calculating the correct value when using
- abinary mask array.

Before executing an instruction that uses XY addressing, use the SETCSP,
SETCDP, or SETCMP instruction to load the value for the appropriate register.

The TMS34020 uses the PSIZE value to determine the displacement of the X
component. '

The OFFSET register contains the linear memory address of the pixel located
at coordinates (0,0). The TMS34020 uses the OFFSET register when translat-
ing XY coordinates into linear addresses. (Note that OFFSET does not control
which region of the display memory is output to refresh the video screen—it
is a virtual screen origin.) This allows the coordinate axes of the XY address
to be translated to an arbitrary position in memory. The OFFSET register sup-
ports the use of window-relative addressing in which the XY coordinates are
specified relative to coordinate offsets in the display memory. The window’s
position and size can be specified arbitrarily. You can use the CVXYL instruc-
tion to convert a new XY offset to a linear address. CVXYL converts an XY
address to a linear address for the purpose of absolute memory addressing,
orforusing special features available to instructions that use linear addressing.
Figure 3—14 illustrates the XY-to- linear conversion process.

Memory Organization and Data Structures
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Figure 3-14. Conversion from XY Coordinates to Memory Address

16 15 0

31
(a) Original XY address| Y | X |

(b) Extract 16 LSBs  |s5555S5555555558S 9| X |
and sign-extend

(c) Shift X left by [sssssssssssss| X o 0 of
logo (pixel size)

(d) Extract 16 MSBs | v
from original XY
address

(e) Shift ¥ left by 16 Y
e g lsssssssssssssssdl |

l[oooooo0o0000000000]|

(f) Multiply by the pitch| s s | Y l[oooooo0000000 0]

(g) Add together the
adjusted X and Y |
components

(h) Add offset to result
to get final memory |
address

X+Y |000|

memory address |

Key: S represents the sign bit.

The example in Figure 3—14 corresponds to a pixel size of 8 bits and a pitch
of 8,192.

(a) shows the original XY address.
(b) extracts the X component.

(c) shifts the X component left by loga(pixel size). The result represents the
product of the X component and the pixel size.

(d) extracts the Y component.
(e) left rotates the Y component by 16, sign-extends the Y component.

(f) multiplies the shifted Y component by the pitch. (This may be a shift, the
sum of 2 shifts, or an actual multiply depending on the pitch value. In this
example, Y is shifted 12 bits to the left.)

(g) adds the results of step (c) and (f) to form the displacement in memory of
the pixel at (X,Y) from the pixel at the origin.

(h) adds the offset to the result of (g), producing the the final memory address.
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3.7 Pixel Arrays

A rectangular area of the screen that is DX pixels wide and DY pixels high is
an example of a data structure called a 2-dimensional pixel array. An array
may contain many pixels, but the TMS34020 can manipulate an array as a
single structure. The TMS34020’s instruction setincludes a powerful set of ras-
ter operations, called PIXBLTs (pixel-block transfers), that manipulate pixel
arrays on the screen and elsewhere in memory.

Figure 3—15 shows a pixel array that occupies a rectangular area in display
memory. The pixels in each row are packed together into adjacent cells in the
display memory. Rows don't usually occupy adjacent areas of memory; they're
separated from each other by a constant displacement (the array pitch). The
array pitchis the difference in memory addresses between 2 vertically adjacent
pixels. In Figure 3—15, the array pitch equals the display pitch. The product of
the array width (DX) and the pixel size must be less than or equal to the pitch.

Figure 3-15. Pixel Array

Key: DX = pixels per row of array DY = pixels per column of array

A pixel array is specified in terms of its width, height, pitch, and starting ad-
dress. The starting address is usually the address of the first pixel to be moved
during a PIXBLT. The default starting address is simply the base address in the
array—that is, the address of the pixel with the lowest address in the array.

In Figure 3—15, the XY origin is located in its default position at the upper left
corner of the screen. The default starting address is the address of the pixel
located in the upper left corner of the array. When a PIXBLT operation moves
the pixels from a source pixel array to a destination array, the pixels in each
row are moved in sequence from left to right, and the rows are moved in
sequence from top to bottom.

Certain PIXBLT operations allow the starting pixel to be specified as the pixel
in one of the other three corners of the array. This feature is provided so that
when the source and destination arrays overlap, the appropriate starting
corner can be selected to insure that no data is lost by being overwritten during
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PIXBLT execution. The order in which pixels in the array are moved can be
altered to be from right to left and from bottom to top, as appropriate, to accom-
modate the change in the starting corner.

The starting address of a pixel array can be specified in terms of either the XY
coordinates of the starting pixel (XY address), or the memory address of the
starting pixel (linear address):

(X Anarray whose starting location is specified as an XY address is referred
to as an XY array. In this format, the starting location of the array is identi-
fied by the XY coordinates of the first pixel in the array.

(X A pixel array whose starting location is specified as a memory address is
referred to as a linear array. In this format, the location of the array is identi-
fied by the memory address of the first pixel in the array.

The XY array format has 2 advantages. First, the starting location of the array
is given in system-independent Cartesian coordinates, rather than as a
system-dependent memory address. Second, using XY addressing allows you
to take advantage of the TMS34020’s window checking facilities (which allows
it to automatically detect an attempt to write a pixel inside or outside a defined
area).

The linear format’s main advantage is that it allows PIXBLTs to execute more
quickly because it eliminates the need to translate from XY to linear format
before accessing memory.

The general rules governing array pitch are

X When an array is specified in XY format, the pitch can be any multiple of
the pixel size. However, PIXBLT operations performed on XY-format
arrays are most efficient if the pitch is a power of 2.

Lk When an array is specified in linear format, the pitch must be a multiple of
the pixel size. For the special case of a PIXBLT B,XY or PIXBLT B,L
instruction, the source pitch may be any value. (Note that this corresponds
to a pitch that is a multiple of the pixel size where the pixel size is 1.) This
feature supports efficient use of memory by allowing adjacent rows of the
source array to be packed together with no intervening gaps.

PIXBLTs are useful for moving arrays from one area of the screen to another;
they can also be used to move arrays to the screen from other parts of memory,
and vice versa. The pitch for the off-screen pixel array can be specified inde-
pendently of the pitch for the on-screen array. This allows you to store
off-screen data efficiently, regardless of the display pitch. On-screen objects
can be defined as XY arrays but may be more efficiently stored as linear arrays
in off-screen memory. The PIXBLT instructions support the transfer of a linear
array to an XY array, and vice versa. PIXBLT instructions can also be used to
rapidly move blocks of nonpixel data (for example, ASCll characters) from one
memory location to another.
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3.8 Big-Endian and Little-Endian Addressing

COMPA>

The TMS34020 allows you to address fields within memory in one of two
ways—in little-endian or big-endian mode.

Note:

Unless specifically stated otherwise, all illustrations and discussions in this
user’s guide refer to little-endian mode.

The TMS34010 uses little-endian addressing only.

3.8.1 Selecting Big-Endian or Little-Endian Mode

The value of BEN[CONFIG] determines which endian mode the TMS34020
will use for addressing.

Figure 3-16. How BEN [ CONFIG] Determines the Endian Mode
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31 0
L TR ’,l l BEN=0 selects
L"'“!||I""!.|l|'“{nl""!wll"lfnl'"l!.|l"'I!||1"'I!||I"lIE.|I"'I!nxI"‘I!.|I""!||I|"Ilull'“!‘ll"'l!nﬂ"l}nI“]I!m’"I!nI'"I!nI“'I]m"“!lll’“lfull"“En"'“lnﬂ'ﬂfn 0 little-endian mode
e I,nll‘“l I BEN=1 selects
L!l"]1,||1"'!,ul‘"f.ul"",nl“'!.||l“l!.||I"'!,ul"'!,|ll“'E,||I'"E.||!"'5,.|I"'!.;|!"'f.,ll"':,nl“'f.ul"'}.nl'"f,ul‘"!,ul"'!,ul"]f,ull'l!..|I|"E,||l"'!n|1"'1.|1l|"!.| 1 big-endian mode
Note: For a complete illustration and description of CONFIG, see Chapter 4.

You can set BEN in one of two ways:

[d By writing to CONFIG via the host interface. In this case, the TMS34020
should be halted.

Ld By resetting the TMS34020. At the end of the reset routine, the TMS34020
copies the 4 LSBs of the reset vector into the 4 LSBs of the CONFIG regis-
ter.

Program code should not change bits 0—2 of the CONFIG register; this could
cause unpredictable behavior. To ensure that code doesn't accidentally
change these bits, you can set CBP[CONFIG] to write-protect the LSbyte of
CONFIG.
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Figure 3-17. How CBP [ CONFIG] Write-Protects CONFIG's LSbyte

31 3 0
.................... L _
] CBP=0 offers no
0 !} write protection

'} CBP=1 write-protects:
CONFIG's LSbyte

You can set CBP in one of three ways:
L By writing to CONFIG via the host interface.

L Byresetting the TMS34020. Atthe end of the reset routine, the TMS34020
copies the 4 LSBs of the reset vector into the 4 LSBs of the CONFIG regis-
ter.

(4 By allowing TMS34020 program code to write to this bit. If you do this, be
sure that you don't alter bits 0—2 of CONFIG.

The only way to clear CBP is by resetting the TMS34020. CBP will remain
cleared only if bit 3 of the reset vector is also O (if it's 1, then a reset will write
a 1 back to CBP).

3.8.2 How the TMS34020 Accesses Memory in These Modes
The following descriptions uses several terms and conventions:

L3 The terms least significant bit (LSB) and most significant bit (MSB) define
specific bits within a 32-bit long-word, or specific bits within a field. These
terms refer to the arithmetic significance of these bits.

L& The following illustrations show the MSB of a field or long-word on the left
side. The bits at the ends of the word are numbered 0 or 31, implying that
the bits within a long-word are numbered 0 through 31. The 0 and 31 are
positioned so that the implied number associated with each bit is its appro-
priate bit address within the long-word. The manner in which the
TMS34020 addresses these bits differs in the two modes.

@ Note also that there are two frames of reference for data; illustrations show
data in

B memory or an I/O register or
B 3 general-purpose register.

The TMS34020 is primarily a little-endian processor; its method for placing
data in a general-purpose register reflects this.
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Little-endian mode

This is the TMS34020’s default mode. Figure 3—18 shows the same 32-bit
hexadecimal value (01234 ABCDh) in aregister and in along-word in memory.
Note that this illustration shows the MSB (bit 31) on the left side.

Figure 3-18. How Data Is Represented in Little-Endian Mode

MSB B
(t]ejofejalelo]o]

(b) Data in a register

(a) Data in memory at
address 0000 1000h

(JefeJsfaleofo

Figure 3—19 shows how the TMS34020 uses little-endian mode to access an
8-bit field that starts at bit 4 within the long-word. Notice that for little-endian
mode, the field’s bit address is determined by counting in from the LS (little)
end of the long-word.

Figure 3-19. Addressing a Field in a Long-Word (Little-Endian)

If you want to move this 8-bit data field into a general-purpose register, you
might execute the following instructions:

SETF 8,0,0
MOVE @00001004,A0,0

Figure 3—20 shows how the TMS34020 places this data into AO.

Figure 3-20. Moving a Field into a General-Purpose Register (Little-Endian)

Note that the data is right-aligned within the register, so that the LSB of the field
coincides with the register’s LSB.
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Big-endian mode
Figure 3—21 shows the same 32-bit hexadecimal value (01234ABCDh) in a
register and in a long-word in memory. This illustration shows the MSB on the
left side. The register's MSB is bit 31; the long-word’s MSB s bit 0.

Figure 3-21. How Data Is Represented in Big-Endian Mode

(b) Data in a register

(a) Data in memory at
address 0000 1000h

Figure 3—22 shows how the TMS34020 uses big-endian mode to access an
8-bit field that starts at bit 4 within the long-word. Notice that for big-endian
mode, the field’s bit address is determined by counting in from the MS (big) end

of the long-word.

Figure 3-22. Addressing a Field in a Long-Word (Big-Endian)

If you want to move this 8-bit data field into a general-purpose register, you
might execute the following instructions:

SETF 8,0,0
MOVE @00001004,A0,0

Figure 3—23 shows how the TMS34020 places this data into AO.

Figure 3-23. Moving a Field into a General-Purpose Register (Big-Endian)

Note that the data is right-aligned within the register, so that the LSB of the field
coincides with the register’s LSB.
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Differences between big- and little-endian modes

L The TMS34020 accesses 32-bit-wide, 32-bit-aligned fields in the same
manner for both modes. Differences between the two modes are apparent
only when data is not 32 bits long-or when itis not aligned to a 32-bit bound-
ary within memory.

4 In both modes, data is right-aligned when it is moved into a general-
purpose register.

L3 In big-endian mode, bits within a field or long-word are renumbered, not
reordered.

3.8.3 Assembling Code for Big-Endian or Little-Endian Addressing

The TMS34020 assembler can produce object code for little-endian or big-
endian mode. By default, the assembler produces little-endian code; if you
want it to produce big-endian code, be sure to use the —e assembler option.

To assembile little-endian code To assemble big-endian code

gspa filename gspa —e filename

(For more information about the assembler, refer to the TMS340 Family Code-
Generation Tools User's Guide.)

If you compare the listing files of big- and little-endian code, you'll find no differ-
ences in the listed object code. Figure 3—24 shows a listing file with object
code. For ease of reading, the assembiler lists object code in the same manner
for both little- and big-endian code.

Figure 3-24. Sample Listing File (Assembler Output) for Little-Endian and Big-Endian Code

3-24

0001 00000000 aabbccdd .long OAABBCCDDh
0002 00000020 0%9e0 MOVI 11223344h, A0
00000030 11223344
0003 00000050 0380 ABS A0
0004 00000060 o9c1l MOVI 6677h, Al
00000070 66717
object code

Although the object code in the listing file looks the same for both modes, the
assembler actually creates different object code for the two modes. If you're
writing a loader, it's important to know how to load the object code into memory.
Figure 3—25 demonstrates this.
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Figure 3-25. Loading Object Code into Memory

(a) Little-endian mode (b) Big-endian mode

3.8.4 Wiring VRAMSs to the LAD Bus

Figure 3—26 shows examples of how you might use TMS44C251 VRAMs in
your system. A TMS44C251 has 4 bidirectional data pins, DQ0—DQ3; each
data pin is connected to an LAD pin. Figure 3-26 (a) shows wiring for little-
endian mode; as (b) shows, you must wire the VRAMs backwards for big-
endian mode.

Figure 3-26. Connecting VRAMs to the LAD Bus

(a) Little-endian mode

(b) Big-endian mode

3.8.5 Big-Endian Effects on Instruction Timing

The instruction timings listed in this document are for little-endian code.
Timings for big-endian code are essentially the same as timings for little-
endian code; however, the setup for graphics instructions may consume extra
machine states (instructions’ inner loops consume no additional states). The
effect on timing is slight.
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3.9 Stacks

The TMS34020’s system stack is implemented in local memory and managed
in hardware. The stack is used to store return addresses and processor status
information during interrupts, traps, and subroutine calls. The contents of gen-
eral-purpose registers can be pushed onto the stack and popped off the stack.
The system stack can also be used for dynamically allocated data storage.

The stack is accessed through a dedicated 32-bit internal register, called the
stack pointer, or SP. The SP points to the top of the system stack; it can be
accessed as register 15 in either of the general-purpose register files, A or B.

In addition to the system stack, you can define your own auxiliary stacks. The
system stack always grows toward lower memory addresses; an auxiliary
stack can be defined to grow toward either lower or higher addresses. The
MOVE instructions, combined with the predecrement and postincrement
addressing modes, facilitate pushing and popping of auxiliary stack data. You
can use one or more general-purpose registers as auxiliary stack pointers and
frame pointers. The indexed addressing modes can be used in conjunction
with a frame pointer to access variables embedded within the stack.

3.9.1 System Stack

Figure 3—27 shows the structure of the system stack, which grows in the direc-
tion of lower memory addresses.

Figure 3-27. System Stack
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The SP points to the top of the stack; it contains the 32-bit address of the LSB
(bit 0) of the value on top of the stack. The SP can contain any 32-bit address;
however, stack operations execute more efficiently when the 5 LSBs of the SP
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are 0s. This aligns the SP to long-word boundaries in memory, reducing the
number of memory cycles needed to push or pop values.

Any instruction that manipulates general-purpose registers can also be used
to manipulate the SP. The SP can be specified as the source or destination op-
erand in any instruction that operates on the general-purpose registers. In-
structions that manipulate the SP include:

Instructions That Instructions That
Push Values on the Stack Pop Values from the Stack
MMTM SP, register list MMFM SP, register list
CALL Rs RETI
CALLA absolute address RETS
CALLR relative address POPST
TRAP number MOVE *SP+, Rd
PUSHST
MOVE Rs, =*SP

3.9.1.1 Saving Registers on the System Stack

Register information can be stored on the stack during an interrupt or a subrou-
tine call. This frees up the register for use by an interrupt routine or a subroutine
and allows you to restore the original register values from the stack when the
routine completes. ’

During an interrupt, the contents of the PC and ST are automatically saved on
the stack; if you want to save values that are in general-purpose registers, you
can use the MMTM and MMFM instructions. MMTM pushes multiple gener-
al-purpose registers onto the stack, and MMFM pops multiple general-purpose
registers from the stack.

When the contents of a 32-bit register are pushed onto the stack, they are
stored in the 32-bit word below the word whose address is contained in the SP.
This is shown in Figure 3—-28, which demonstrates the effects of the following
instruction sequence:

MMTM SP,A0 ; Push register A0 onto stack

MMFM SP,Al ; Pop stack into register Al

Figure 3—28 (a) shows the original state of the stack and registers.
Figure 3—28 (b) illustrates the state after AQ is pushed onto the stack.
Figure 3—28 (c) shows the results of popping the top of the stack into A1.

g
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Stacks

The TMS34020 performs 2 steps to push the contents of a 32-bit register onto
the top of the stack:

1) Decrements the SP by 32.
2) Pushes the register contents onto the stack.

The TMS34020 performs 2 steps to pop the top of the stack into a 32-bit regis-
ter:

1) Pops the 32 bits at the top of the stack into the register.

2) Increments the SP by 32.

3.9.1.2 Saving Information on the System Stack During an Interrupt

During an interrupt, the TMS34020 pushes the PC and ST onto the stack; this
allows the interrupted routine to resume execution when the interrupt process-
ing is completed. An interrupt routine performs the following actions:

1) Decrements the SP by 32.

2) Pushes the PC onto the stack.

3) Decrements the SP again by 32.

4) Pushes the ST onto the stack.

During a return from an interrupt

1) Pops the 32 bits at the top of the stack into the ST.
2) Increments the SP by 32.

3) Pops the 32 bits at the top of the stack into the PC.
4) Increments the SP again by 32.

3.9.1.3 Saving Information on the System Stack During a Subroutine Call

A subroutine call saves the state of the calling routine on the stack; this allows
the routine to resume execution when the subroutine completes. A subroutine
call performs the following actions:

1) Decrements the SP by 32.
2) Pushes the PC onto the stack.
During a return from a subroutine

3) Pops the 32 bits at the top of the stack into the PC.
4) Increments the SP by 32.

3.9.2 Auxiliary Stacks
Auxiliary stacks, which are typically used to contain dynamically allocated data

storage, can be managed in software. You can use any A- or B-file register
(except the SP) as the auxiliary stack pointer. For the purposes of discussion,

3-29



Stacks

the symbol STK represents the auxiliary stack pointer. STK is a symbol that
must be equated to one of the general-purpose registers; for example:

STK .set AQ

STK can contain any 32-bit value; however, stack operations execute more effi-
ciently when the 5 LSBs of the STK are 0s. This aligns the STX to long-word
boundaries in memory, reducing the number of memory cycles needed to push
or pop values.

As Figure 3-29 and Figure 3-30 show, an auxiliary stack can grow in either
direction in memory. These figures represent memory as a string of continu-
ously addressable bits.

Figure 3—29 shows a stack that grows toward lower memory addresses.

Figure 3-29. An Auxiliary Stack That Grows Toward Lower Addresses

3-30

@ stack

5

- lg T low—s
addresses addresses
STK
(b)
S
(c)
S

STK

Lk Figure 3-29 (a) shows the original stack.

Ld In Figure 3—-29 (b), afield of arbitrary size is pushed onto the stack with this
instruction:

MOVE Rs,*-sTK

(Rsand STK represent general-purpose registers and must be in the same
register file.)

L In Figure 3-29 (c), the field is popped off the stack with this instruction:
MOVE *STK+,Rd
(Rdand sTK represent general-purpose registers and must be inthe same
register file.)
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Between instructions, STK always points to the lowest bit address in the
stack—this corresponds to the very top of the stack. You can use the MMTM
STK,register list instruction to save multiple registers on the stack in
Figure 3—29. Later, you can restore the registers to their former values with an
MMFM STK,register list instruction.

Figure 3—-30 shows a stack that grows toward higher memory addresses:

Figure 3-30. An Auxiliary Stack That Grows Toward Higher Addresses

(a) st/e{ck
<— high 1 low—s
ac?dresses addresses
STK
(b)
© _SIack

[k Figure 3-30 (a) shows the original stack.

i In Figure 3-30 (b), a field of arbitrary size is pushed onto the stack using
the following instruction:

MOVE Rs,*STK+

Lx In Figure 3-30 (c), the field is popped off the stack with this instruction:
MOVE *~STK,Rd

Betweeninstructions, the STK always points to one plus the highest bitaddress
in the stack—this location is one bit beyond the very top of the stack.
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Chapter 4

__TMS34020 Registers

The TMS34020 has two on-chip general-purpose register files, file A and file
B. Each register file contains fifteen 32-bit registers. The register files share
a 32-bit hardware stack pointer (SP) that automatically manages the system
stack during interrupts and subroutine calls. The TMS34020 also has 2 dedi-
cated 32-bit registers—a program counter and a status register.

In additionto the CPU registers, the TMS34020 has 54 memory-mapped regis-
ters that are dedicated to I/O functions.

Section Page
Dedicated registers include the 4.1 The Status Register (ST) ................ 4-2
status register, program counter, 4.2 The Program Counter (PC) .............. 4-4
and stack pointer. 4 o o Stack POINEr (SP) .« v evvveeesenn.. 45

Programmable/general-purpose 4.4 General-Purpose Registers
registers include dual register files (Register FilesAandB) ..........ccouuunn 4-6
and memory-mapped l/O registers. 45 /0 RegiSters .. ........eeuueeeeennnn.. 49
4.6 Alphabetical Summary of I/O Registers
and B-FileRegisters .. ........covoinn e 4-14



The Status Register (ST)

4.1 The Status Register (ST)

The status register (ST) is a special-purpose, 32-bit register that reflects the
processor status. The ST also contains several parameters that define the
characteristics of two programmable data types, fields 0 and 1. At reset, the
TMS34020 initializes the ST to 0000 0010h. Figure 4-1 illustrates the status
register. Table 41 lists the functions associated with the status bits.

Figure 4-1.  Status Register

31 30 29 1 10—6 5 40
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Note: Shaded portions are reserved.

Table 4-1.  Definitions of Bits in the Status Register

Bit Field
Number Name Function

0—4 FSO Field size 0: Length in bits of the first memory data field.
FS0 = 00001,—11111, defines a field size of 1—31
FS0 = 00000, defines a field size of 32

5 FEO Field extension 0: Determines whether the memory field is extended with 0s or with
the sign bit when loaded into a 32-bit general-purpose register.
FEO =0 selects zero extension for field 0
FEO =1 selects sign extension for field 0

6—10 FS1 Field size 1: Length in bits of the second memory data field.
FS1 = 00001,—11111, defines a field size of 1—31
FS1 = 000005 defines a field size of 32

11 FE1 Field extension 1: Determines whether the memory field is extended with Os of with
the sign bit when loaded into a 32-bit general-purpose register.
FE1 =0 selects zero extension for field 1
FE1 =1 selects sign extension for field 1

21 IE Interrupt enable: Master interrupt enable/disable bit.
IE=0 disables all maskable interrupts
IE=1 enables all maskable interrupts

22 SS Single step: Setting the SS bitto 1 causes the TMS34020 to interrupt program execu-
tion following execution of each instruction. This is useful for debugging purposes.

25 IX Interruptible instruction executing: When an interrupt occurs during instruction ex-
ecution, the TMS34020 sets or clears the IX bit before saving the ST on the stack.
IX=0 indicates that an interrupt occurred at an instruction boundary
IX=1 indicates that an interrupt occurred in the middle of an interruptible instruc-

tion

4-2 TMS34020 Registers
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Table 4-1.  Definitions of Bits in the Status Register (continued)

Bit Field

Number Name Function
26 BF Bus fault: Set when a bus fault occurs on a local-memory cycle.
28 \% Overflow: Set according to instruction execution.
29 z Zero: Set according to instruction execution.
30 C Carry: Set according to instruction execution.
31 N Negative: Set according to instruction execution.
12—20 ;ml:;;;ml;:;;.ul::;;[ul:;;.lu Reserved: These bits are reserved; the TMS34020 does not use them. At reset, the
23—24 fylyy  TMS34020 clears these reserved bits to 0.

HE

27 g

Note: To maintain compatibility, you should write only Os to these bits.

All instructions can potentially change the status register; during instruction
execution, the TMS34020 may settheV, Z, C, and N bits. If you want to directly
affect the ST, you can use the following instructions.

PUTST writes the contents of a specified general-purpose register into
the status register. Here’s an example:

MOVI 00000010h, AO

PUTST AO
GETST copies the contents of the ST into a specified general-purpose
register.
SETC sets the C bit without altering any other status bits.
CLRC clears the C bit without altering any other status bits.
SETF writes values to the FS0 and FEO or FS1 and FE1 bits without

altering any other status bits.

EXGF exchanges the 6 LSBs of a specified general-purpose register
with the FSO and FEO bits or with the FS1 and FE1 bits.

EINT sets the IE bit.

DINT clears the IE bit.

PUSHST  pushes the contents of the ST onto the stack.
POPST pops the value at the top of the stack into the ST.



The Program Counter (PC)

4.2 The Program Counter (PC)

The program counter (PC) is a special-purpose, 32-bit register that points to
the next instruction word to be executed. Instructions are always aligned on
16-bit boundaries; thus, as Figure 4-2 shows, the PC’s 4 LSBs always contain
0s.

Figure 4-2.  Program Counter

31 4
word address

o |
o N

28 bits 4 bits—>

An instruction consists of one or more 16-bit instruction words. The first word
contains the opcode for the instruction; additional words may contain immedi-
ate data, displacements, or absolute addresses. As the TMS34020 fetches
each 16-bitinstruction word, itincrements the PC to point to the next instruction
word.

The PC contents are replaced during a branch instruction, subroutine call
instruction, return instruction, or interrupt. As Table 4-2 shows, instructions
can be categorized according to their effects on the PC.

Table 4-2. How Instruction Execution Affects the PC

Instruction Type Effect on PC
No branch The PCis incremented at the end of the instruction, al-
lowing execution to proceed sequentially to the next in-
struction.
Absolute branch The PC is loaded with an absolute address; the ad-
(TRAP, CALLA, JAcc) dress’ 4 LSBs are set to Os.
Relative branch The signed displacement (8 or 16 bits) is added to the

(CALLR, JRce, DSJcc) PC’s current contents. The signed displacement is
treated as a word displacement; that is, it is shifted left
4 bit positions before it is added to the PC.

Indirect branch The PCis loaded with the register contents. The 4 LSBs
(JUMP, CALL) are set to Os.

Two additional instructions provide you with direct control of the PC.

GETPC copies the contents of the PC into a specified general-purpose reg-
ister.

EXGPC exchanges the contents of the PC with the contents of a specified
general-purpose register.

4-4 TMS34020 Registers
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4.3 The Stack Pointer (SP)

The stack pointer (SP) is a special-purpose, 32-bit register that contains the
bit address of the top of the system stack. The TMS34020 contains only a
single SP; however, this SP can be addressed as a member of either register
file, as register A15 or register B15. Any instruction that uses a general-pur-
pose register as an operand can also use the SP as an operand.

Figure 4-3 illustrates the stack pointer; Section 3.9, Stacks, (page 3-26)
describes stack operation in detail.

Figure 4-3.  The Stack-Pointer Register

31 543210
word address ojojofoj|o
- 27 bits » <+—5 bits
Note: The 5 LSBs may not always be 0s; however, stack operations are more efficient when these bits are 0Os.

The system stack grows toward smaller addresses. The stack pointer always
pointstothe value atthe top of the stack. Specifically, the SP contains the 32-bit
address of the LSB of that value. Although the SP’s 5 LSBs can have any arbi-
trary value, stack operations execute more efficiently when the 5 LSBs are 0.
Clearing these bits to Os aligns the stack pointer on a 32-bit word boundary;
thus, only a single memory access (two cycles) is necessary to push or pop
the contents of a 32-bit register.

During subroutine calls and interrupts, the PC and ST are pushed onto the
stack. These are both 32-bitregisters. (If the SP is not long-word aligned when
instruction execution is interrupted, the TMS34020 aligns the stack before
saving the PC and ST.) The MMTM and MMFM instructions push/pop multiple
32-bit registers from the A or B file.

For the most efficient execution, you should ensure that the SP is always
aligned to a long word and that it is incremented or decremented in multiples
of 32 bits.
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4.4 General-Purpose Registers (Register Files A and B)

Figure 4—4.

4-6

The TMS34020 has thirty 32-bit general-purpose registers, divided into regis-
ter files A and B. The register files share a single stack pointer (SP). Figure 4—4
illustrates the register files (note the shared SP).

The Register Files

Register File A

Register File B

bit 0

bit 31 bit 0 bit 31
M B

MSB LSB

Ao|
Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

T The line instructions use these registers for a different purpose.
Some graphics instructions use these registers as temporary registers.

As Figure 4—4 shows, 15 of the general-purpose registers, AO—A14, form reg-
ister file A. Register file B also consists of 15 general-purpose registers,
B0—B14. Many of the TMS34020 instructions use these registers for storing
and manipulating data.

The TMS34020’s register files have several advantages:

[ Thegeneral-purposeregisters are dual-ported. This allows the TMS34020
to read from or write to two separate registers at the same time.

Ld Severalinstructions use general-purpose registers to contain source and
destination operands; these are called register-to-register instructions.

TMS34020 Registers
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Multiple internal data paths link the ALU to the general-purpose registers,
allowing the TMS34020 to execute most register-to-register instructions
in a single machine state. Single-state instructions include add, subtract,
Boolean operations, and shifts (1 to 32 bits).

During a single-state instruction, the following actions may occur:

B The TMS34020 reads, in parallel, two 32-bit operands from the
general-purpose registers.

B The ALU performs the specified operation.

B The 32-bit result is stored in the specified general-purpose register.
All register-to-register instructions (except MOVE Rs, Rd) require both regis-

ters to be in the same file. Instructions that can use registers AO—A14 and
B0—B14 as operands can also use the SP as an operand.

Note:

For some graphics operations, the B-file registers have hardware-dedicated
functions. When their special functions are used, the contents of the B-file reg-
isters are referred to as implied graphics operands. Several I/O registers
also contain implied operands.

No hardware-dedicated functions are associated with the A-file registers;
generally, instructions do not use the A-file registers as implied operands.

L J

Table 4-3 (page 4-8) summarizes the names and functions associated with
the B-file registers when they are used as implied operands.

47
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Table 4-3. Summary of B-File Registers’ Implied-Operand Functions

Register Function

Description

BO SADDR Source address. Address (linear or XY) of a source pixel array; usually the address
of the array’s upper left corner (the lowest pixel address in the array).
B1 SPTCH Source pitch. Difference in start addresses (linear) between adjacent rows of a
source pixel array.
B2 DADDR Destination address. Address (linear or XY) of a destination pixel array; usually the
address of the array’s upper left corner (the lowest pixel address in the array).
B3 DPTCH Destination pitch. Difference in start addresses (linear) between adjacent rows of
a destination pixel array.
B4 OFFSET Offset. Linear bit address, corresponds to the XY origin (X=0, Y=0).
B5 WSTART Window start address. XY address of the upper left corner of the window (smallest
X and Y coordinate values in the window).
B6 WEND Window end address. XY address of the lower right corner of the window (largest
X and Y coordinate values in the window).
B7 DYDX Delta Y/deltaX. The 16 LSBs of DYDX define the width (X dimension) of a pixel array.
The 16 MSBs define the height (Y dimension) of a pixel array.
B8 COLORO Background pixel color. COLORO contains the background color for graphics oper-
ations.
B9 COLORt1 Foreground pixel color. COLOR1 contains the foreground color for graphics opera-
tions.
B10 MADDR Mask address. Address of the upper left corner of a mask pixel array (lowest pixel
address in the array).
COUNT Loop counter. LINE & FLINE instructions use B10 to count the number of pixels
drawn within the line.
TEMP Temporary register.
B11 MPTCH Mask pitch. Difference in start addresses (linear) between adjacent rows of a mask
array.
INC1 Diagonal increment. LINE & FLINE use INC1 to identify the amount by which a pixel
address is incremented in the diagonal direction.
B12 INC2 Dominantincrement. LINE & FLINE use INC2 to identify the amount by which a pix-
el address is incremented in the dominant direction.
TEMP Temporary register.
B13 PATTERN  Array or line pattern. The 1s and Os within PATTERN identify a pixel pattern for an
array or aline.
B14 TEMP Temporary register.

Note: Some graphics instructions use the TEMP (temporary) registers to store temporary values and context in-
formation during instruction execution.

4-8
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4.5 1/O Registers

Figure 4-5.

The TMS34020 supports a set of I/O registers that control and monitor

communications between the TMS34020 and a host processor,

the TMS34020’s interface to local memory,

interrupts,

video timing and screen refreshing, and

graphics-drawing operations.

The I/O registers reside in the TMS34020’s on-chip memory, occupying
addresses C000 0000h—C000 03FFh. Figure 4-5 shows this.

Qoo 0dd4d

I/0 Register Memory Map
HESYNC VESYNC
HEBLNK VEBLNK
HSBLNK VSBLNK
HTOTAL VTOTAL
DPYSTRT DPYCTL
CONTROL DPYINT
HSTADRL HSTDATA
HSTCTLL HSTADRH
INTENB HSTCTLH
CONVSP INTPEND
PSIZE CONVDP
PMASKH PMASKL
CONTROL CONVMP
DPYTAP CONFIG
HCOUNT VCOUNT
REFADR DPYADR
DPYSTH DPYSTL
DPYNXH DPYNXL
DINCH DINCL
HESERR reserved
reserved reserved
reserved reserved
BSFLTST SCOUNT
reserved DPYMSK
SETHCNT SETVCNT
BSFLTDH BSFLTDL
reserved reserved
reserved reserved
IHOST1H IHOST1L
IHOST2H IHOST2L
IHOST3H IHOST3L
IHOST4H IHOST4L

The TMS34020 can access these registers directly; a host processor can
access them through the TMS34020’s host interface. I/O registers are
accessed like any other memory location. Table 4—4 summarizes the I/O regis-
ters and their functions.

4-9
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Table 4-4. Summary of I/O Registers

Register Address Description

BSFLTDL C000 0320h Bus-fault data. When a bus fault occurs, the TMS34020 stores the cur-

BSFLTDH C000 0330h rent LAD data in the BSFLTD registers.

BSFLTST C000 2D0h Bus-fault status. When a bus fault occurs, the TMS34020’s memory con-
troller saves its current state into BSFLTST.

CONFIG C000 01AOh System configuration. Contains several parameters that enable VRAM
register loads and control little-/big-endian addressing, row-column ad-
dress configuration, and refresh rates.

CONTROL C000 00BOh Memory control. Controls transparency, window checking, PIXBLT direc-

C000 0190h tion, and cache operation.

CONVDP C000 0140h Destination pitch conversion factor. Contains the XY-to-linear factor for
converting a destination array address.

CONVMP C000 0180h Mask pitch conversion factor. Contains the XY-to-linear factor for con-
verting a mask array address.

CONVSP C000 0130h Source pitch conversion factor. Contains the XY-to-linearfactorforcon-
verting a source array address.

DINCL C000 0240h Display increment. Contains the difference in addresses between verti-

DINCH C000 0250h cally adjacent pixels (the display pitch).

DPYADR CO000 01EOh Display address. Provides TMS34010 compatibility.

DPYCTL C000 0080h Display control. Controls video timing parameters.

DPYINT C000 00ACh Display interrupt. Identifies the next scan line at which a display interrupt
will be requested.

DPYNXL C000 0220h Display next address. The DPYNX registers contain a 32-bit address.

DPYNXH C000 0230h

DPYMSK C000 02EOh Display mask. When screen refreshes are enabled, DPYMSK defines
which bits of the address in the DPYNX and DPYST registers correspond
to the tap-point portion of the address output during screen-refresh cycles.

DPYSTL C000 0200h Display start address. Points to the pixel at the left of the 15! line dis-

DPYSTH C000 0210h played on the screen.

DPYSTRT C000 0090h Display start address. Provides TMS34010 compatibility.

DPYTAP C000 01BOh Display tap point address. Provides TMS34010 compatibility.

HCOUNT C000 01D0Oh Horizontal count. Tracks the number of VCLKSs per horizontal scan line.

HEBLNK C000 0030h Horizontal end blank. Defines the point at which the horizontal blanking
interval ends.

HESERR C000 0270h Horizontal end serration. Defines the point at which the composite sync
pulse ends during the serration region of vertical blanking.

HESYNC C000 0010h Horizontal end sync. Defines the point at which the horizontal sync pulse
ends.

HSTADRH C000 00EOh Host interface address. Provides TMS34010 compatibility.

HSTADRL C000 00D0Oh

4-10
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Table 4-4. Summary of I/O Registers (continued)
Register Address Description

HSTCTLH C000 0100h Host interface control, high word. Controls host-interface functions
such as halt acknowledge, software reset, the nonmaskable interrupt, host
autoincrements and prefetches, and halting TMS34020 execution.

HSTCTLL C000 00FOh Host interface control, low word. Controls host-interface functions such
as messages, emulator control, and bus-fault and retry information.

HSTDATA C000 00COh Host interface data. Provides TMS34010 compatibility.

HSBLNK C000 0050h Horizontal start blank. Defines the point at which the horizontal blanking
interval begins.

HTOTAL C000 0070h Horizontal total. Defines the duration of each horizontal scan line (in
terms of VCLK periods).

IHOST C000 0380h Internal host interface address. The host interface uses these 32-bit

through locations.
C000 03F0h

INTENB C000 0110h Interrupt enable. Assuming that the status IE bit = 1, setting specific bits
to 1 enables external interrupts 1 & 2, the host interrupt, the display inter-
rupt, or the window-violation interrupt.

INTPEND C000 0120h Interrupt pending. The values of specific bits indicate whether an exter-
nal interrupt, host interrupt, display interrupt, or window-violation interrupt
has been requested but not yet serviced.

PMASKL C000 0160h Plane mask. The PMASK registers form a 32-bit value that selectively en-

PMASKH C000 0170h ables/disables individual planes in a multiple-bit-per-pixel display system.

PSIZE C000 0150h Pixel size. Defines the pixel size (in bits). Valid pixel sizes include 1, 2, 4,
8, 16, and 32.

REFADR C000 01FOh Refresh pseudo-address. Contains the address output during DRAM-
refresh cycles.

SCOUNT C000 02C0h Shift clock counter. Incremented during the active display time so that
it always contains the tap point of the bit most recently shifted out of the
VRAM serial registers.

SETHCNT C000 0310h Set horizontal count. When external video is enabled, SETHCNT con-
tains the value that is loaded into HCOUNT.

SETVCNT C000 0300h Set vertical count. When external video is enabled, SETVCNT contains
the value that is loaded into VCOUNT.

VCOUNT C000 01COh Vertical count. Counts the horizontal lines in the video display, increment-
ing on the same clock edge that resets HCOUNT to 0.

VEBLNK C000 0020h Vertical end blank. Defines the time at which the vertical blanking interval
ends.

VESYNC .C000 0000h Vertical end sync. Defines the time at which the vertical sync pulse ends.

VSBLNK C000 0040h Vertical start blank. Defines the time at which the vertical blanking inter-
val begins.

VTOTAL C000 0060h Vertical total. Defines the time at which the vertical sync pulse begins.
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4.5.1 CPU Control Registers

CONTROL PSIZE CONVSP
CONVDP CONVMP

These 5 registers provide CPU control. They allow you to select those
TMS34020 characteristics that meet your specific system needs, such as the
pitches for pixel transfers, window-checking modes, transparency modes,
Boolean or arithmetic pixel-processing options, PIXBLT direction, and pixel
size.

4.5.2 Host Communications Registers

HSTCTLH HSTCTLL

These registers provide a host processor with the ability to interrupt or halt the
TMS34020, flush the instruction cache, communicate with an emulator, and
select modes for accessing TMS34020 local memory.

4.5.3 Local-Memory and DRAM/VRAM Interface Registers

CONFIG PMASK REFADR
BSFLTD BSFLTST

The memory controller manages the TMS34020's interface to the local
memory, automatically performing the bit alignment and the masking neces-
sary to access data located at arbitrary bit boundaries within memory.

4.5.4 Interrupt Registers

INTENB INTPEND

These registers control and monitor interrupt requests to the TMS34020,
including 2 externally generated interrupts and 3 internally generated
interrupts, including

L External interrupts 1 and 2
(2 Window-violation interrupt
(d Host interrupt

(3 Display interrupt

If the IE status bit (global interrupt enable) = 1, you can set a bit in the INTENB
register to enable any of these interrupts. You can check bits in the INTPEND
register to see if any of these interrupts are pending.
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4.5.5 Video Timing and Screen-Refresh Registers

Twenty-eight registers are dedicated to video timing and screen-refresh func-
tions. The TMS34020 can drive composite sync or separate sync displays.
Parametersinthe DPYCTL register allow you to select the direction (input/out-
put) of the sync signals:

Composite Sync Mode Separate Sync Mode

Signal Direction Signal Direction
VSYNC 1/0 VSYNC 1/0
HSYNC I/0 HSYNC I/O
CSYNC I/0 HBLNK 0]
CBLNK ] VBLNK )

In composite mode, the TMS34020 can extract VSYNC and HSYNC from an
external composite sync, oritcan generate CSYNC from separate VSYNC and
HSYNC inputs. Internally, you can set the TMS34020 to preset the horizontal
and vertical counts upon receiving an external sync signal. This allows com-
pensation for any combination of internal and external delays that occur in the
video synchronization process.

[ An external HSYNC loads HCOUNT from SETHCNT.
[ An external VSYNC loads VCOUNT.

[ Anexternal CSYNC loads both HCOUNT and VCOUNT from SETHCNT
and SETVCNT, respectively.

The TMS34020 directly supports multiport VRAMs by generating the serial-
register transfer cycles that are necessary for refreshing a display. The
memory locations that contain the display information, as well as the number
of horizontal scan lines displayed between serial-register transfer cycles, are
programmable.

4.5.6 Latency of Writes to /O Registers

The TMS34020 has a high degree of internal parallelism; for example, it can
fetch instructions and data while still executing the current instruction. Normal-
ly this is beneficial. This could cause problems, however, if the current instruc-
tion alters an 1/O register and the next instruction uses that register as an
implied operand. In this situation, the second instruction may not execute prop-
erly. This could occur, for example, if a PIXBLT followed a MOVE instruction
that modified the CONTROL register.

You can easily avoid this situation by ensuring that the write to the I/O register
completes before any subsequent instructions use the modified register value.
To do this, follow the write to the register with an MWAIT instruction.
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4.6 Alphabetical Summary of I/O Registers and B-File Registers

4-14

The remainder of this chapter contains an alphabetical reference ofthe I/O and
B-file registers. Some I/O registers contain implied operands for graphics
instructions; the B-file registers also contain implied graphics operands.
Therefore, the B-file registers and I/O registers are summarized togetherin this
section.

Here's an important point: Although you'll use both B-file and I/O registers as
implied operands, you must access them differently. Because the I/O registers
are memory mapped, they are accessed similarly to external memory loca-
tions.

The code segment below shows a sample implied-operand setup fora FILL L
instruction. It shows that you must use a different MOVE instruction for loading
an I/O register than you would use for loading a B-file register. Note that most
programs refer to registers by their symbolic names (such as DADDR or
PSIZE, assuming you've equated these names to the actual register name or
location).

* Set up the B—file registers

MOVI 0050h, B2 ;s DADDR
MOVI 0100h, B3 ; DPTCH
MOVI 000050008h, B7 ;s DYDX
* Set up the I/O registers
MOVK 4, A0
MOVE A0, @0C0000150h, O ; PSIZE
CLR A0
MOVE A0, @0C0000160h, 1 ; PMASK
MOVE A0, @0C00000BOh, O ;s CONTROL
MWAIT ; wait until data has been written
FILL L
TMS34020 Registers



Bus-Fault Data Registers BSFLTD

BSFLTD (32-bit address): C000 0320h

BSFLTDL (16-bit address): C000 0320h
BSFLTDH (16-bit address): C000 0330h

_ BSFLTD—32 bits of bus-fault data
or
Note:
You can access the bus-fault registers separately or together by using differ-
ent addresses and different field sizes.
[d To access BSFLTD as a single 32-bit register, access the 32-bit field at
address C0O00 0320h.
[d Toaccess BSFLTDL as a 16-bit register, access the 16-bit field at address
C000 0320h.
[ Toaccess BSFLTDH as a 16-bit register, access the 16-bit field ataddress
C000 0330h.
Description When a bus fault occurs, the TMS34020’s memory controller uses BSFLTD to

store the data on the LAD bus. When any CPU-initiated memory access
returns a bus-fault completion code on the LRDY and BUSFLT pins, the
memory controller

Step 1: Saves the data currently stored on LAD0—LAD31 into BSFLTD.

Step 2: Signals the CPU that a bus fault occurred. The CPU
X pushes the current machine state onto the stack,

[ executesabusfaultinterruptroutine to clear the cause of the bus
fault, and

[ pops the machine state off the system stack to restore the CPU
to its previous state.

Step 3: Usesthe datainthe BSFLTD registers to restore LADO—LAD31 and
re-executes the memory access that caused the bus fault. If the
faulted memory access was a read, the data saved in and restored
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from the BSFLTD registers has no significance. However, the
memory controller saves and restores the LAD data, regardless of
whether the faulted memory access was a read or a write.

Do not write to these registers. When a bus fault occurs, the saved LAD data
writes over any data in the BSFLTD registers. If necessary, you can read the
contents of the BSFLTD registers during your bus fault interrupt routine.

Note:

Although BSFLTDL and BSFLTDH are I/O registers, they are not loaded by
a memory write when a bus fault occurs. If external memory shadows these
locations, the BSFLTD registers are not copied to external memory.
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Bus-Fault Status Register BSFLTST

Format

Description

address: C000 02D0Oh

When a bus-fault occurs, the TMS34020’s memory controller saves its current
state into the BSFLTST register. The status information tells the memory con-
troller what type of access triggered the bus fault and marks the point within
the access where execution can resume.

When any CPU-initiated memory access returns a bus-fault completion code
on the LRDY and BUSFLT pins, the memory controller

Step 1: Saves its current state into BSFLTST.
Step 2: Signals to the main processor that a bus fault occurred.

Step 3: After the CPU clears the cause of the bus fault and restores its inter-
nal state, the memory controller restores its pre-bus-fault state from
the BSFLTST register and re-executes the memory access that
caused the bus fault.

Usually, you should not write to the BSFLTST register. When a bus fault occurs,
the saved memory controller state writes over any data in the BSFLTST regis-
ter. If you do notwant the TMS34020 to re-execute the faulted memory access,
your bus-fault interrupt routine should write the value FFFF g to the BSFLTST
register. This causes the memory controller to return from the bus fault in an
idle state.

Note:

Although BSFLTST is an l/Q register, it is not loaded by a memory write when
a bus fault occurs. If external memory shadows this location, the BSFLTST
register is not copied to external memory.




COLORO Background Color Register

B-file register?

register number: B8

Format

Description

Which instructions
use this register?

Example

4-18

COLORQO provides abackground color, defining the replacement color for 0 bits
in a binary source array or in the PATTERN register. Pixel alignment within
COLORQO corresponds directly to alterable pixels within memory; individual
pixels within COLORO are used as they align with pixels in the destination
word.

Binary PIXBLTs use color information in COLORO and COLOR1 to transform
a binary pixel array into a multiple-bits-per-pixel array.

Note:
You must replicate the color information throughout all 32 bits of COLORO.

Execution of graphics instructions does not modify COLORO.

Instruction COLORO's function
FLINE, LINE Replaces 0s in the PATTERN value
FPIXEQ, FPIXNE Comparison value
PFILL XY Replaces 0s in the PATTERN value
PIXBLT B, L Background pixel color for color-expanded array
PIXBLT B, XY Background pixel color for color-expanded array

This example is for 4-bit pixels. A pixel value of 5 is replicated throughout the
COLORQO register.

COLORO  .set B8

MOVI 55555555h, COLOR0O ; store uniform pixel
; value in COLORO
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Foreground Color Register COLOR1

B-file register? register number: B9

Format

Description

Which instructions
use this register?

Example

COLORT1 provides a foreground color, defining the replacement color for 1 bits
in a binary source array. Pixel alignment within COLOR1 corresponds directly
to alterable pixels within memory; individual pixels within COLOR1 are used
as they align with pixels in the destination word.

Binary PIXBLTs use color information in COLORO and COLOR1 to transform
a binary pixel array into a multiple-bits-per-pixel array. Other graphics instruc-
tions use COLOR1 as the replacement color for an alterable destination pixel
or for alterable pixels within a pixel block.

Note:
You must replicate the color information throughout all 32 bits of COLOR1.

Execution of graphics instructions does not modify COLOR1.

Instruction COLORT1’s function
DRAV Pixel color for pixel draw
FILLs (both) Pixel color for filled array
FLINE, LINE Replaces 1s in the PATTERN value
PFILL XY Replaces 1s in the PATTERN value
PIXBLT B, L Foreground pixel color for color-expanded array
PIXBLT B, XY Foreground pixel color for color-expanded array
TFILL Pixel color for drawing
VLCOL Color-fill data value for VRAM color registers

This example is for 4-bit pixels. A pixel value of 3 is replicated throughout the
COLOR1 register.

COLOR1 .set B9

MOVI 33333333h, COLOR1l ; Store uniform pixel
; value in COLOR1
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CONFIG System Configuration Register

address: C000 01AOh

Format

Bits

Description

COMPA>

4-20

15 14 13 1 5
AT £ B (LTI BBt
Iy Vs,
Bits Name Function
0 BEN Enables big-endian memory addressing
1—2 RCM Configures RCA bus address
3 CBP Enables configuration byte protect
8 VEN Enables VRAM internal register load
12—10 RR Selects refresh rate
4—7,9, Wl

T

13—15 i Reserved; do not use

CONFIG controls several system parameters: it selects the memory address-
ing configuration, informs the TMS34020 that the system contains VRAMs with
color-latch and write-mask registers, and selects the DRAM-refresh rate.

Note:

Future pin-compatible TMS340x0 devices may use bit 4, providing you with
the ability to extend the Q4 phase of certain memory subcycles. This will ease
interfacing to DRAMs if the TMS340x0’s LCLK frequency is increased above
10 MHz. To ensure compatibility with your existing TMS34020 system, set bit
4 to 1. Setting this bit will not affect the TMS34020.

Before almost any system activity can take place, you must select appropriate
values for CONFIG'’s 3 LSBs. BEN and RCM affect memory addressing; until
BEN and RCM have appropriate values, the TMS34020 can successfully
access only 32-bit words at memory addresses that have row addresses of all
1s or all 0s.

a1 Ifthe TMS34020 is not powered up in host-present mode, it reads the reset
vector from address FFFF FFEOh. Then, before fetching any instructions,
the TMS34020 writes the 4 LSBs of the reset vector to the 4 LSBs of
CONFIG; this defines the system’s memory addressing configuration. You
should program the BEN and RCM values into the 3 LSBs of the reset vec-
tor; program bit 3 of the reset vector to set the CBP bit. Because the reset
vector’s row address is all 1s, the TMS34020 can successfully read the
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System Configuration Register CONFIG

bit 0

RCMO—RCM?

bits 1 & 2

reset vector, regardless of the BEN and RCM values. The TMS34020
assumes that the reset vector is aligned to a 16-bit word, so the values in
the reset vector's 4 LSBs do not affect the location from which the
TMS34020 starts fetching instructions.

Cd If the TMS34020 is powered up in host-present mode, the host must set
BEN and RCM before accessing the TMS34020's local memory.

Big-endian memory addressing enable

BEN Effect
0 Selects little-endian addressing (default)
1 Selects big-endian addressing

The TMS34020 can use either little- or big-endian addressing conventions.
Little-endian is the default (BEN=0). To use big-endian memory addressing,
set BEN to 1. For more information about these addressing modes, refer to

Section 3.8, Big-Endian and Little-Endian Addressing, on page 3-20.

RCA bus configuration mode

Base Array Size  Logical Address Bits Output on

RCM1 RCMO0 (CAMD=0) RCAO0—RCA12 at Row-Address Time
0 0 64Kxn 241012
(0] 1 256Kxn 2510 13
1 0 1Mxn 26to 14
1 1 AMxn 27 t0 15

The RCM bits determine which bits of the logical address are output on
RCA0—RCA12 at row-address time. Additionally, the CAMD pin allows the
address output at column-address time to be modified on a cycle-by-cycle
basis. These capabilities allow you to directly wire DRAMs and VRAMs of more
than 1 of the above sizes to the RCA bus in the same system, without using
external multiplexing logic. If CAMD is set high during a cycle, most of the bits
in the column address are shifted left by 1 bit. However, the logical address bits
output on RCAQ, RCA11, and RCA12 are not determined by a shift, and vary
according to the value of the RCM bits.

Logical Address Bits Output on RCA0—RCA12 at
RCM1 RCMO Column-Address Time with CAMD=1

0 0 23,22,13,12,11,10,9,8,7,6,5,S, S
0 1 26, 14,13, 12,11,10,9,8,7,6,5,S, S
1 0 15,14, 13,12,11,10,9,8,7,6,5,S, S
1 1 28,14,13,12,11,10,9,8,7,6,5, S, 16

Key: S is the 16-bit word select.
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CONFIG System Configuration Register

4-22

bit 3

Formore information about RCA0—RCA12 address multiplexing, refer to Sec-
tion 8.16.2 on page 8-53.

Configuration byte protect

CBP Effect
0 LSbyte of CONFIG is not write-protected
1 Write-protects the LSbyte of CONFIG

Setting CBP to 1 write-protects the LSbyte of CONFIG (bits 0 to 7). You can
set CBP by writing to it or by placing a 1 in bit 3 of the reset vector. During a
reset, the TMS34020 automatically copies the 4 LSBs of the reset vectorto the
4 LSBs of CONFIG. To clear CBP, reset the TMS34020 with a hardware reset
or write a 1 to RST[HSTCTLH].

VRAM internal register load enable

VEN Effect
0 Enables VRAM write-mask load and write with mask
1 Disables VRAM write-mask load and write with mask

The TMS34020 instructions and memory interface support VRAMs with inter-
nal write-mask and color registers (such as the TMS44251). Use VEN to inform
the TMS34020 that your system’s VRAMs support these features.

The VEN bit does not enable or disable execution of VBLT or VFILL instruc-
tions. Don't use these instructions if your system’s VRAMs do not support the
block-write feature.

If VEN=1 and any bit in the PMASK is written, the TMS34020 automatically
executes a special load-write-mask memory cycle to load the 1s complement
of the 32-bit plane mask into the VRAMSs’ write masks. This cycle is performed
in the next available memory cycle. No further CPU-initiated memory cycles
are executed until after the write mask is loaded.

If the TMS34020 subsequently performs a VFILL, VBLT, or pixel write, the
plane mask=0, and VEN=1, the TMS34020 automatically generates special
block-write-with-mask and write-with-mask cycles. This allows selected
planes within each pixel to be written without the need for read-modify-write
cycles.
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System Configuration Register CONFIG

RR0O—RR2

bits 10—12

Which instructions
use this register?

Refresh rate

RR2 RR1 RRO Refreshes scheduled every . ..
0 0 0 8 machine states
0 0 1 16 machine states
0 1 0 32 machine states
0 1 1 64 machine states
1 0 0 128 machine states
1 0 1 256 machine states
1 1 0 undefined
1 1 1 DRAM refresh disabled

The RR bits determine the frequency of DRAM refreshes. An internal counter
schedules a DRAM-refresh request at the frequency determined by RR. Each
time a DRAMrefreshis scheduled, the TMS34020 increments another internal
counter to track the number of pending refreshes. (Pending DRAM refreshes
are refreshes that are requested but not yet performed.) Each time a DRAM
refresh is performed, the refresh pending counter is decremented. Note that
if a retry terminates a DRAM-refresh cycle, the pending count is not decre-
mented, and the refresh is retried.

A maximum of 15 DRAM refreshes can be pending. If more refreshes are
requested, the pending counter overflows and the 16 refreshes are lost (15
pending, plus the refresh that caused the overflow). However, 12 or more
pending DRAM refreshes cause DRAM-refresh memory cyclesto become one
of the highest priority memory cycles, so losing the refreshes should never
happen. Realistically, even 12 DRAM refreshes pending are unlikely, because
4 or more DRAM refreshes pending are a higher priority than CPU-initiated
memory accesses. '

Any write to the PMASK register while VEN=1 causes the TMS34020 to load
the VRAM write-mask registers with the 1s complement of PMASK.
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CONTROL Graphics Instruction Control and Memory Control Register

/O register?

address: C000 00BOh
and C000 0190h

Format
Bits
Description
bits 0—2
4-24
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Bits Name Function
0—2 ™ Selects a transparency mode
5 T Enables transparency
6—7 W Selects a window-checking mode
8 PBH Selects PIXBLT horizontal direction
9 PBV Selects PIXBLT vertical direction
10—14 PPOP Selects a pixel-processing operation
15 CD Disables cache
3—4 ittty Reserved; do not use

The CONTROL register controls several aspects of CPU instruction execution
and of the memory interface. You can access this register at two addresses:
at address CO000 00BOh for compatibility with the TMS34010, and at
C000 0190h so that all I/O registers used as implied operands are in a contigu-
ous block (C000 0130h to CO00 0190h). If you write to one location, both are
affected.

Transparency mode select

T™M2 TM1 TMO Description
0 0 0 Transparency on result equal 0
0 0 1 Transparency on source equal COLORO
1 0 0 Transparency on result equal 0
1 0 1 Transparency on destination equal COLORO
0 1 0
? 1 (1) Reserved
1 1 1

Whentransparency is enabled, the TM bits select the transparency mode. You
can enable transparency by setting the T bit to 1.
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Graphics Instruction Control and Memory Control Register CONTROL

bit 5

bits 6&7

bit 8

Pixel transparency enable

T Description
0 Disables transparency
1 Enables transparency

The T bit enables or disables pixel transparency. When transparency is
enabled, the TMS34020 inhibits overwriting of a transparent pixel (as deter-
mined by the current transparency mode).

Window checking

W1 WO Description
0 0 No pixel writes are inhibited, and no interrupt requests are generated

0 1 Generate interrupt request on attempt to write to pixel lying inside win-
dow and inhibit all pixel writes

1 0 Generate interrupt request on attempt to write to pixel lying outside win-
dow

1 1 Inhibit pixel writes outside window, but do not request interrupt

The W bits select the action the TMS34020 takes when a pixel operation would
cause the TMS34020 to write a pixel to a location lying either inside or outside
specified window limits. Window checking applies to attempts to write to pixel
locations defined by XY addresses only. Window checking affects neither non-
pixel data writes nor writes to pixel locations defined by linear memory ad-
dresses.

A request for a window violation interrupt can occur when W=015 or W=10o.
WVP[INTPEND] is set to 1 to indicate that a window violation occurred. This
in turn interrupts the TMS34020, if both WVE[INTENB] and IE[ST] equal 1.

PIXBLT horizontal direction

PBH Description
0 Increment in the X direction (move from left to right)
1 Decrement in the X direction (move from right to left)

The PBH bit determines the horizontal direction (increasing or decreasing X)
of pixel processing for these instructions:

PIXBLT XY, XY PIXBLT L, XY
PIXBLT XY, L PIXBLT L, L
PIXBLTL, M, L
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CONTROL Graphics Instruction Control and Memory Control Register

PBV
bit 9

PPOP

bits 10—14

PIXBLT vertical direction
PBV Description (assuming default screen origin)
0 Increment in the Y direction (move from top to bottom)
1 Decrement in the Y direction (move from bottom to top)

The PBV bit determines the vertical direction (increasing or decreasing Y) of
pixel processing for these instructions:

PIXBLT XY, XY PIXBLT L, XY
PIXBLT XY, L PIXBLT L, L
PIXBLT L, M, L

Pixel processing operation

The PPOP bits define the manner in which a source pixel is combined with a
destination pixel during a pixel operation. The following 16 PPOP codes per-

form Boolean operations on pixels of 1, 2, 4, 8, 16, and 32 bits.

PPOP: 4 3 2 1 0 Operation Description
000O00O S—D  Source replaces destination
0 0O0O 1 S AND D—D  AND source with destination
00010 SANDD—D AND source with NOT(destination)
00O 11 0—D Os replace destination
00100 SORD—D OR source with NOT(destination)
0 01 01 SXNORD—D XNOR source with destination
00110 D—D Invert destination
00111 SNORD—D NOR source with destination
01000 SORD—D OR source with destination
01001 D—D Do not change destination (note, however,
that memory cycles still occur)
01010 S XORD—D XOR source with destination
01011 SAND D—D AND NOT(source) with destination
01100 15D  1sreplace destination
01101 SORD—D OR NOT(source) with destination
01110 SNANDD—D NAND the source and destination
01 111 S—D NOT (source) replaces destination

These PPOP codes perform arithmetic operations on 2, 4, 8, 16, and 32-bit pix-
els (but not on 1-bit pixels).
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PPOP: 4 3 2 1 0 Operation Description
10000 S +D—D Add source to destination
1 0 001 SADDSD—D Addsource to destination with saturation
10010 D-S—D Subtract source from destination
10011 D SUBS S—D  Subtract source from destination with satu-

ration

10100 SMAX D—D Replace destination with maximum of
source and destination

10101 SMIND—D Replace destination with minimum of
source and destination

Note: PPOP codes 101105 through 111115 are reserved.
Cache disable

bit 15
CD Description
0 Enables instruction cache
1 Disables instruction cache
CD enables or disables the instruction cache. When the cache is disabled,
cache contents (including data, P flags, SSA registers, etc.) are not disturbed,
and all instructions are fetched from memory, not the cache. When the cache
is re-enabled, its previous state (before it was disabled) is restored, and the
instructions retained within the cache are once again available for execution.
m'gggi;ngggscfggs Instruction Bits used
all instructions CD
DRAV PPOP T&TM W
FILL L PPOP T&TM
FILL XY PPOP T&TM w
FLINE PPOP T&TM
LINE PPOP T&T™M W
PIXBLT B, L PPOP T&TM
PIXBLT B, XY PPOP T&T™M w
PIXBLTL, L PPOP T&T™M PBH & PBV
PIXBLT L, XY PPOP T&T™M w PBH & PBV
PIXBLT XY, XY PPOP T&TM W PBH & PBV
PIXBLT XY, L PPOP T&T™M PBH & PBV
PIXT Rs, *Rd PPOP T&T™
PIXT *Rs, *Rd PPOP T&TM
PIXT Rs,*Rd.XY  PPOP T&TM w
TFILL PPOP T&TM w
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CONVDP, CONVSP, and CONVMP Pitch Conversion Factor Registers

CONVDP address: C000 0140h

CONVSP address: C000 0130h
CONVMP address: C000 0180h

Format
CONVDP

CONVSP

CONVMP

Description

4-28

15

. conversion factor for XY destination address

15 0

B conversion factor for maskvalue =~ |

CONVDP, CONVSP, and CONVMP are 16-bit registers that contain control
parameters used during execution of a pixel operation. The TMS34020 uses
CONVDP and CONVSP with

¥ XY addressing,

(2 window clipping, and

[d FILLs or PIXBLTs (except for PIXBLT L,L) that process pixels from the
bottom of the array to the top (PBV=1).

The TMS34020 uses CONVMP for XY addressing (CVMXYL).

Each conversion factor register is associated with an appropriate pitch regis-
ter; each CONVXP register associated with an instruction that loads the con-
version factor into CONVxP according to the pitch value in xPTCH.

Conversion Factor Associated Pitch

Register (CONVxP) Register (xPTCH) Associated Instruction
CONVDP DPTCH SETCDP
CONVSP SPTCH SETCSP
CONVMP MPTCH SETCMP

TMS34020 internal hardware uses the CONVDP and CONVSP values when
converts an XY destination or source address, respectively, to alinear address.

[ PIXBLT and FILL instructions with an XY destination use DPTCH and
CONVDP to convertthe XY coordinates to a linear address before the pixel
transfer begins.

L PIXBLT instructions with an XY source address use the SPTCH and CON-
VSP values to convert the XY coordinates to a linear memory address be-
fore beginning the pixel transfer.
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Pitch Conversion Factor Registers CONVDP, CONVSP, and CONVMP

If a PIXBLT or FILL requires preclipping of the destination array in the Y direc-
tion, the TMS34020 uses CONVDP to calculate the effect of the clipped start-
ing Y coordinate on the destination array’s starting linear address. For
PIXBLTs, the starting source address is modified to accommodate the resulting
changes to the starting destination address. When a PIXBLT instruction’s start-
ing Y coordinate lies in either of the 2 lower corners of the destination array
(PBV=1), the TMS34020 uses CONVDP and CONVSP to calculate the linear
addresses corresponding to the specified starting coordinates.

CONVXxP contains 1 of 3 types of values, depending on the value in the asso-
ciated pitch register:

If the xPTCH

register = then...
a power of 2 The 5 LSBs of CONVxP contain the 1s complement of logo(xPTCH). During XY-to-linear
conversion, the product of the Y value and the pitch is calculated by shifting Y left by
logo(xPTCH).

two powers of 2 CONVXxP contains 2 conversion values. The 5 LSBs of CONVxP should contain the 1s com-
plement of log, of the greater of the powers of 2, and the 5 LSBs of the upper byte contain
the 1s complement of logs of the lesser of the powers of 2. During conversion, the product
ofthe Y value and the pitch is calculated by adding Y shifted left by each of the 2 conversion
factors.

arbitrary pitch The LSbyte of CONVxP contains 0s. The TMS34020 must multiply the address by xPTCH.
This is a 16-by-32-bit signed multiply in which only the 32 LSBs of the result are retained.

Which instructions

use these registers? CONVDP CONVSP CONVMP
CVXYL CVSXYL CVMXYL
CVDXYL PIXBLT L, XY SETCMP
DRAV PIXBLT XY, L
FILL XY PIXBLT XY, XY
FLINE, LINE PIXT *Rs.XY, Rd
PIXBLT B, XY PIXT *Rs.XY, *Rd.XY
PIXBLT L, XY SETCSP
PIXBLT XY, L
PIXBLT XY, XY

PIXT Rs, *Rd.XY
PIXT *Rs.XY, *Rd.XY
SETCDP

TFILL

For more information about array pitches and XY-to-linear conversion, refer

to Section 12.12, Converting an XY Address to a Linear Address, on page
12-47.
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DADDR Destination Address Register

B-file register? register number: B2

Format

or

Description

Which instructions
use this register?

4-30

DADDR contains the destination array address for PIXBLTs, FiLLs, LINE, and
FLINE. DADDR usually points to the pixel with the lowest address in the desti-
nation array. When the selected starting corner is not the upper left corner, the
TMS34020 automatically adjusts DADDR to point to the selected starting cor-
ner of the destination array. (For PIXBLT L,L, however, you must manually
adjust DADDR to point to the starting corner.)

Some instructions use DADDR with DYDX to perform a common rectangle
function (FILL XY, PFILL XY, PIXBLT B,XY, PIXBLT L,XY, and PIXBLT XY, XY,
with window option 1). Inthese cases, the TMS34020 sets DADDR to the start-
ing XY address of the rectangle that represents the intersection of the original
destination array and the clipping window. No drawing is performed. Ifthe array
and the window do not intersect, the V bit is not set and the contents of DADDR
are undefined.

The TMS34020 treats the address in DADDR as an XY address or a linear
address, depending on the instruction you use.

If DADDR contains an XY address, the instruction converts it to the corre-
sponding linear address before beginning the pixel transfer. During a PIXBLT
or FILL, DADDR is maintained in linear format. When the instruction com-
pletes, DADDR points to the linear starting address of the row following the last
row in the array (for LINE, FLINE, and VFILL, DADDR contains the address
of the next point on the line). If a PIXBLT is interrupted, DADDR points to the
next word of pixels to be read.

Instruction DADDR’s format and function
BLMOVE Linear; points to the beginning of the destination array
CLIP XY; points to the beginning of the destination array
FILLL Linear; points to the beginning of the destination array
FILL XY XY; points to the beginning of the destination array
FLINE Linear; starting point for the line
LINE XY; starting point for the line
PFILL XY XY; points to the beginning of the destination array
PIXBLT B, L Linear; points to the beginning of the destination array
PIXBLT B, XY XY; points to the beginning of the destination array
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Destination Address Register DADDR

Instruction DADDR’s format and function

PIXBLT L, L Linear with special requirements when PBH=1 or PBV=1;
refer to PIXBLT L,L for a description of its unique require-
ments

PIXBLT L, XY XY; points to the beginning of the destination array

PIXBLT XY, L Linear; points to the beginning of the destination array

PIXBLT XY, XY XY; points to the beginning of the destination array

PIXBLT L,M,L Linear; points to the beginning of the destination array

TFILL XY; instruction uses this to hold temporary values

VBLT Linear; points to the beginning of the destination array

VFILL Linear; points to the beginning of the destination array

Example DADDR .set B2

Move XY value
15h,8h into B2
Move linear
value 10AFCh
into B2

MOVI [0008h, 0015h], DADDR

MOVI 00010AFCh, DADDR

Ne N Ne Ne wo
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DINC Display Increment Registers

DINCL (16-bit address): C000 0240h
DINCH (16-bit address): C000 0250h

Format ,
DINC
or DINCL
DINCH
Bits Bits Name  Function
0—4 YZINC Y-zoom increment vaiue
5—31 SRINC  Screen-refresh address increment value
Note:
You can access the display increment registers separately or togethef by
using different addresses and different field sizes.
@ To access DINC as a single 32-bit register, access the 32-bit field at
address C000 0240h.
[ To access DINCL as a 16-bit register, access the 16-bit field at address
C000 0240h.
[ To access DINCH as a 16-bit register, access the 16-bit field at address
C000 0250h.
Description The DINC registers contain two increment values. One controls the

TMS34020’s Y-zoom feature; the other is used for screen refreshes.
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Display Increment Registers DINC

YZINC

bits 0—4

bits
5—31

Y-zoom increment value

YZINC Zoom

4 3 2 1 0 Factor Description

0 0 0 0 O 1 No repetition of scan lines
1 0 0 0 O 2 Repeat scan line 2 times
0 1 0 0 O 4 Repeat scan line 4 times
0 0 1 0 O 8 Repeat scan line 8 times
0 0 0 1 O 16 Repeat scan line 16 times
0 0 0 0 1 32 Repeat scan line 32 times

If you want to change the value in YZINC when video is enabled
(ENV[IDPYCTL]=1), you should also clear YZCNT[DPYNX] to 0.

Display increment value

The 27-bit SRINC value specifies the amount by which the address stored in
SRNX[IDPYNXI should be incremented following completion of each horizon-
tal-blanking screen-refresh cycle. This value corresponds to the display pitch.
If you are using the Y-zoom feature, the TMS34020 will not increment SRNX
after each horizontal-blanking screen refresh. Instead, it will increment SRNX
after every nth screen refresh if zoomxn is selected.

Forbothinterlaced and noninterlaced video, load SRINC with the display pitch.
In interlaced video, the SRNX[DPYNX] registers are automatically increm-
ented by 2xSRINC to account for the fact that in any field (odd or even), only
alternate lines are displayed.

The bits of DPYNX and DPYST that correspond to the column and row
addresses actually latched into the VRAMSs vary from system to system. The
bits of SRINC that contain the display pitch depend on the alignment of the
address in SRNX[DPYNX] and SRSTIDPYSTI. SRINC is usually a power of
2 or a sum of two powers of 2, but can be any arbitrary value required.
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DPTCH Destination Pitch Register

register number: B3

Format 31 0

Description DPTCH defines the linear difference in the starting memory addresses of adja-

cent rows of a destination array. The TMS34020 uses the value in DPTCH to
move from row to row through the destination array. DPTCH can have any val-
ue that is a multiple of the current pixel size. Note that XY-to-linear conversion
is most efficient when DPTCH is a power of 2.
If you're manually converting an XY address to a linear address, you can use
the SETCDP instruction. SETCDP uses the DPTCH value to calculate the des-
tination pitch conversion factor and loads the correct value into CONVDP. The
contents of CONVDP are then available for use by the CVXYL or CVDXYL
instructions; these instructions perform the conversion.

‘%tgtigilsngg;sc{ggs Instruction DPTCH’s format and valid values

CVXYL Linear; any value
CVDXYL Linear; any value
DRAV Linear; any value
FILLs (both) Linear; any value
FLINE, LINE Linear; any value
PFILL XY Linear; any value
PIXBLTs (all) Linear; any value
PIXT Rs, *Rd.XY Linear; any value
PIXT *Rs.XY, *Rd.XY Linear; any value
SETCDP Linear; any value
TFILL Linear; any value
VBLT Linear; any value
VFILL Linear; any value
Example DPTCH .set B3
MOVI 00001000h, DPTCH ; Power of 2
MOVI 00010AFCh, DPTCH ; Arbitrary value
MOVI 00000180h, DPTCH ; 2 powers of 2
; (128 + 256)
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Display Address Register DPYADR

Format

Description

address: C000 01EOh

. no defined function for TMS34020

DPYADR is a simple-16-bit read/write location that is included for compatibility
with the TMS34010. The TMS34010 used DPYADR as the source of the row
and column addresses output during screen-refresh cycles. The TMS34020
uses a different register for this purpose and assigns no function to DPYADR.
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DPYCTL Display Control Register

I/O register? address: C000 0080h

Format 15 14 13 12 1110 9
T LT L L)L g L L LA L a1y
Vlven| sVl
Bits Bits Name Function
0 HSD Selects the horizontal-sync direction
1 VSD Selects the vertical-sync direction
2 CsD Selects the composite-sync direction
3 CVD Disables composite video
6 SSv Enables split-serial-register midline reload
7 VCE Enables video capture
11 CST Enables CPU serial-register transfers
12 SRE Enables screen refreshes
14 NIL Enables noninterlaced video
15 ENV Enables video
(LTI (T
g:?o u::::':lui::":nﬂ}:':in}:E:':L:: Reserved; do not use
Description DPYCTL contains several parameters that control video timing.
HSD Horizontal-sync direction
bit 0
When HSD = HSYNCisan..
0 Input
1 Output

The HSD bit controls the direction (input or output) of the HSYNC signal.

3 When HSD=0, HSYNC is an input. The TMS34020'’s internal video timing
logic synchronizes to external pulses applied to HSYNC. Whenever the
TMS34020 detects the start of an external horizontal-sync pulse on
HSYNC, it loads HCOUNT from SETHCNT. The internal horizontal- and
composite-sync intervals begin if they were not already started.

3 When HSD=1, HSYNC is an output and is controlled according to the val-
ues in the video timing registers.
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Display Control Register DPYCTL

bit 1

csD
bit 2

Vertical-sync direction

When VSD = VSYNCisan..
0 Input
1 Output

VSD controls the direction (input or output) of the VSYNC signal.

i When VSD=0, VSYNC is an input. The TMS34020’s internal video timing
logic synchronizes to pulses that an external source applies to VSYNC.
Whenever the TMS34020 detects the start of an external vertical-sync
pulse input on VSYNC, the TMS34020 loads VCOUNT from SETVCNT.
The internal vertical-sync interval begins if it was not already started by the
internal video timing logic. Enabling noninterlaced video (NIL=1) also
loads HCOUNT from SETHCNT. The internal horizontal- and compos-
ite-sync intervals begin if they were not already started by the internal vid-
eo timing logic.

2 When VSD=1, VSYNC is an output and is controlled according to the val-
ues in the video timing registers.

Composite-sync direction

CVD CSD Status of CSYNC/HBLNK
CSYNC is an input
CSYNC is an output
undefined

HBLNK is an output

CSD controls the direction (input or output) of the CSYNC/HBLNK pin when
it is configured as CSYNC (CVD=0).

Lk If CVD=1, the pin is configured as HBLNK, and CSD must be 1. When
CSD=1, CSYNC (CVD=0) or HBLNK (CVD=1) is an output and is con-
trolled according to values in the video timing registers.

Lk If CSD=0, CSYNC is an input and the TMS34020'’s internal video timing
logic synchronizes to external pulses applied to CSYNC. Whenever the
TMS34020 detects the start of an external composite-sync pulse input on
‘CSYNC, the TMS34020 loads HCOUNT from SETHCNT. The internal
composite-sync interval begins if it was not already started by the internal
video timing logic. Normally, the internal horizontal-sync interval also be-
gins if it has not already started. However, in interlaced video (NIL=0), ex-
ternal composite-sync pulses occur every half horizontal scan line during
the equalization and serration regions of vertical blanking, so the internal
horizontal-sync interval is started by alternate external composite-sync
pulses at these times. The first serration pulse input on CSYNC also loads
VCOUNT from SETVCNT, and the internal vertical-sync interval begins if
it was not already started by the internal video timing logic.

el K= B K =)
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DPYCTL Display Control Register

4-38

bit 3

bit 6

Composite video disable

Status of CSYNC/HBLNK || status of CBLNK/VBLNK
CVD=0 | Selects CSYNC [ selects CBINK
cvD=1 | Selects FBLNK | selects VBINK

CVD controls the functions of the CSYNC/HBLNK and CBLNK/VBLNK pins.
Because both composite and separate synchronization and blanking signals
are internal, CVD simply selects which of these functions is visible at the pins.

Split-serial-register midline reload enable

SRE SSV  Effect
0
0
1
1

Disables split-serial-register midline reload

Disables split-serial-register midline reload

Disables split-serial-register midline reload

- |O|=|O

Enables split-serial-register midline reload

SSV determines whether or not the TMS34020 performs screen-refresh
cycles for VRAMSs with split-serial registers during the active display time. SSV
works in conjunction with the screen-refresh enable bit (SRE). If SSV=1 and
screen refreshes are enabled (SRE=1), the TMS34020 performs an ordinary
screen-refresh (memory-to-register) cycle during horizontal blanking, which

Step 1: reloads an entire row of VRAM memory into the VRAM serial
registers,

Step 2: updates the address in SRNX[DPYNX] for the next screen refresh,
and

Step 3: reloadsthe SCOUNT register with the tap point of the current screen-
refresh address, using the mask in the DPYMSK register.

This is immediately followed by a split register-to-memory cycle, which

Step 4: reloads the half serial registers that do not contain the current tap
point so that they contain data for the next half line to be displayed,

Step 5: and initializes the VRAM for split-serial-register operation.

After blanking ends, SCLK starts shifting data from the VRAMs and increments
SCOUNT (which tracks the VRAM tap point). When SCOUNT overflows from
atap point of all 1s to all Os, this indicates that the VRAMs have switched from
one half serial register to the other. A split register-to-memory cycle (midline-
reload cycle) is executed, performing Step 4.

Note:

You must provide an SCLK pulse to the VRAMs between these two screen-
refresh cycles to ensure that the tap-point address is latched correctly.
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Display Control Register DPYCTL

bit 7

bit 11

Video capture enable

VCE Effect
0 Selects memory-to-register screen-refresh cycles
1 Selects register-to-memory screen-refresh cycles

VCE determines whether TMS34020 screen-refresh cycles are memory-to-
register cycles or register-to-memory cycles. VCE affects only those memory
cycles that are initiated by the TMS34020's video timing logic.

When VCE=1, screen-refresh cycles initiated by the video timing logic are per-
formed as screen-capture cycles; data shifted into the VRAM serial registers
is transferred to the specified row of VRAM ready for the next line.

Do not use midline reload in systems with video capture; clear SSV to 0.
VRAMs support only the transfer of an entire serial register’s contents into the
specified memory row. If you used midline reload to condense the display
memory into a contiguous region of VRAM, it would be necessary to transfer
only some of the bits of the serial register into the memory array in order to not
overwrite previously captured data.This is not possible.

CPU serial-register transfer enable

CST  Effect
0 Pixel-access cycles occur normally
1 Converts pixel-access cycles into VRAM serial-register-transfer cycles

CST converts an ordinary pixel access into a VRAM serial-register transfer
cycle. Several of the TMS34020’s graphic instructions treat data as pixels.

By default, CST=0 and accesses of pixel data are normal read and write cycles.
When CST=1, however, pixel accesses are converted to serial-register-tran-
sfer cycles:

X A pixel read cycle becomes a memory-to-register cycle.
(X A pixel write cycle becomes a register-to-memory cycle.

This register-transfer cycle is performed under explicit program control, as
opposed to the screen-refresh cycles enabled by the SRE bit, which are auto-
matically generated at regular intervals.

CST is useful for bulk initialization of an entire VRAM array. You can clear the
entire screen to a specified background color in only 256 memory cycles for
64Kxn VRAMs, or 512 memory cycles for 256Kxn VRAMs (where nis the num-
ber of planes within the VRAM). (Note that the TMS4461 and TMS44251 have
this capability, but not all VRAMs support this function.) The CST bit affects
only pixelaccesses; it does not affect instruction fetches or nonpixel accesses.
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DPYCTL Display Control Register

4-40

bit 12

NIL
bit 14

bit 15

Screen-refresh enable

ENV SRE Effect ENV SRE Effect
0 0 Disables screen refresh 1 0 Disables screen refresh,
but tracks the address
0 1 Disables screen refresh 1 1 Enables screen refresh

SRE enables automatic screen refreshing. Screen refreshes are performed by
means of the VRAM memory-to-register cycles, which the TMS34020 per-
forms automatically during each horizontal-blanking interval. DPYST, DINC,
and DPYCTL control generation of addresses output during these cycles. If
ENV=1, the TMS34020 continues to generate the screen-refresh address
internally, even if SRE=0. This allows an external source to insert images into
the display; during each horizontal-blanking period, the TMS34020 continues
to track the address of the image hidden beneath the externalimage. Thus, the
TMS34020 can restart screen refreshes after inserting the image without
adjusting the address to account for the undisplayed lines.

Changing SRE’s value affects screen refreshes, starting with the next horizon-
tal-blanking period—or, if SSV=1 and SCLK is running, starting with the next
time the VRAMSs change active half serial registers, whichever comes first.
Normally, however, SCLK does not shift data to the screen when screen
refreshes are disabled.

Noninterlaced video enable

NIL Effect
0 Selects interlaced video timing
1 Selects noninterlaced video timing

NIL selects between an interlaced or a noninterlaced display. The TMS34020
modifies its video timing output signals according to NIL's value. Chapter 9 de-
scribes the timing differences between interlaced and noninterlaced video.

Enable video
ENV Effect
0 Blanks the entire video screen
1 Enables the video display

ENV enables or disables the video display.

d When ENV=0, the display remains blanked. The signal output at CBLNK/
VBLNK (and at CSYNC/HBLNK if CVD=1) is forced to remain at active low
throughout the frame, inhibiting the display interrupt. (DIP[INTPEND]
can'tbe set. If DIP is already set when ENV changes from 1 to 0, itremains
set until you explicitly clear it.)

2 When ENV=1, the video display is enabled. The output signals are
controlled according to the parameters in the video timing registers, and
DIP is set when VCOUNT becomes equal to DPYINT.
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Display Interrupt Register DPYINT

Format

Description

DPYINT identifies the next scan line (in some cases, the next half scan line)
atwhich a display interrupt will be requested. DPYINT helps to coordinate soft-
ware activity with the refreshing of a selected horizontal scan line on the
screen.

The video timing logic compares the contents of DPYINT to VCOUNT. This
usually coincides with the start of the horizontal-blanking interval that marks
the end of the line designated by the value in DPYINT. If interlaced video is
enabled (NIL=0), then during the part of the vertical-blanking interval when
VCOUNT isincremented every halfline, DPYINT is compared to VCOUNT just
before VCOUNT is incremented, at the end and in the center of each horizontal
scan line. When VCOUNT=DPYINT, a display interrupt is requested and
DIPLINTPEND] is set to 1.

For split-screen applications, you can load a new value into the
SRNX[DPYNX] bits, immediately following detection of the 0-to-1 transition
of DIP. The new SRNX value does not affect the line that follows the current
horizontal-blanking interval, but affects the next line. A screen-refresh cycle
will be scheduled to occur at the start of the same horizontal-blanking period
in which DIP is set. At the end of the screen-refresh memory cycle, the
screen-refresh address in SRNX is automatically incremented. Requests for
screen-refresh cycles have a higher priority than CPU requests. Thus, if the
CPU loads a new value into SRNX immediately after setting the DIP bit, SRNX
will not actually be modified until after the screen-refresh cycle completes and
the existing contents are incremented. This new address becomes the address
used in the next screen refresh. SRNX can change only during the scan line
under explicit program control. The display interrupt is disabled when
ENVIDPYCTL] is 0.
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DPYNX Display Next Address Registers

/O register?

DPYNX (32-bit address): C000 0220h
DPYNXL (16-bit address): C000 0220h
DPYNXH (16-bit add : C000 0230h

Format
DPYNX

or DPYNXL
DPYNXH

Bits

Description

bits 0—4

4-42

Biis Name Function

0—4 YZCNT Y-zoom count

5—31 SRNX Next screen-refresh address
Note:

You can access the display next-address registers separately or together by
using different addresses and different field sizes.

X To access DPYNX as a single 32-bit register, access the 32-bit field at
address C000 0220h.

[ To access DPYNXL as a 16-bit register, access the 16-bit field at address
C000 0220h.

[ Toaccess DPYNXH as a 16-bit register, access the 16-bit field at address
C000 0230h.

The DPYNX registers contain two values. One is used for the Y-zoom feature;
the other is an address that is output during a screen-refresh cycle.

Y-zoom increment value

The 5-bit YZCNT value determines when the SRNX address can be incre-
mented by SRINC[DINC]. After every local-memory screen-refresh cycle, the
TMS34020 increments YZCNT by the value of YZINC[DINCI. If YZCNT=0
before it is incremented, SRNX is incremented at the same time. [f YZCNT=0,
SRNX is not incremented, so the next scan line contains the same pixels as
the current scan line. This allows the image on the screen to be magnified (or
zoomed) in the Y direction. The value of YZINC determines how many times
the scan line is output, and thus determines the zoom factor.
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Display Next Address Registers DPYNX

bits
5—31

YZCNT will equal 0 when
nx YZINC modulo 32 = 0

(nisthe Y-zoom factor). This occurs once every nscan lines. During each verti-
cal-blanking interval, YZCNT is reset to YZINC.

Next screen-refresh address

The 27-bit SRNX value represents the long-word address that is output during
a screen-refresh cycle. When YZCNT=0, the TMS34020 increments SRNX
(by SRINCIDINC]) after each screen-refresh cycle.

SRNX consists of a row-address portion and a column-address portion, corre-
sponding to the bits of the address connected to the VRAMs at row- and col-
umn-address times on RCA0—RCA12. The column- and row-address fields
should be contiguous to one another within SRNX. However, you can choose
where the two fields are placed within the 27 bits of SRNX, provided that all
of the row-address bits are output on RCA0—RCA12 at row-address time, and
all the column-address bits are output on RCAO—RCA12 at column-address
time. Section 8.16.2 (page 8-53) details which bits of the logical address are
output on RCA0—RCA12 at row- and column-address times.
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DPYMSK Display Mask Register

Format

Description

DPYMSK is used when midline-reload screen refreshes are enabled
(SSVIDPYCTLI=1). DPYMSK defines which bits of the address in
SRST[DPYST]and SRNX[DPYNX] correspondto the tap-point portion of the
address output during screen-refresh cycles. DPYMSK is loaded with a field
of contiguous 1s to indicate where the tap pointis within SRST and SRNX. This
information is then used to perform these functions:

(3 Isolate the tap point from the 27-bit, long-word screen-refresh address so
that it can be loaded into SCOUNT (the counter register that tracks the
VRAM tap point and schedules midline-reload split-serial-register
screen-refresh cycles during the active portion of the display).

L3 Determine which bit of the 27-bit, long-word address should be increm-
ented so that the address output during a midline-reload memory cycle is
the address of the next half-row of VRAM.

DPYMSK maps to the 16 LSBs of SRST and SRNX, which correspond to bits
5 to 20 of DPYST and DPYNX, respectlvely There are two reasons for this
skewed mapping:

i Bit5of DPYNXis the least significant address bit output during screen-re-
fresh memory cycles.

L3 If the mapping were not skewed, a 32-bit DPYMSK register would be re-
quired to determine which bits in DPYNXH and DPYSTH were part of the
tap point.

Figure 4-6. How DPYMSK Maps to the Logical Screen-Refresh Address
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DPYMSK

The tap point’'s LSB does not have to be in bit 5 of the logical address. This al-
lows for some bank selection bits at the least significant end of the address.
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Display Mask Register DPYMSK

The bits from the logical address identified by DPYMSK to be the tap point are
automatically shifted right by the number of Os at the least significant end of
DPYMSK before being loaded into SCOUNT.

The number of contiguous 1s in DPYMSK depends on the number of address
bits needed to specify the tap-point address for the VRAMs. This field is either
right-justified in DPYMSK, or it is preceded by several Os if there are inter-
leaved banks addressed with bits of the logical address less significant than
the tap point. The remaining bits at the most significant end of DPYMSK should
be 0s.

During a midline-reload screen-refresh cycle, the address output by the
TMS34020 is that of the next half-row of VRAM to be displayed. This address
has a 0 tap point and is stored in an inaccessible register. This address must
then be incremented to point to the next half-row after that, as there may be
muitiple midline reloads on any one horizontal scan line. The address is
incremented at the next bit position to the left of the leftmost 1 in DPYMSK. The
most significant 1 in DPYMSK must not be any higher than bit 10 or lower than
bit 7 of DPYMSK.

Figure 4-7.  The Functions of the Different Fields of DPYMSK

contiguous 1s optional Os

Because the serial registers in the VRAMs are split into two parts, the tap point
for each VRAM needs to address only enough bits for half a row. This means,
forinstance, that for a 256Kx4 VRAM (the smallest available with the split-seri-
al-register), the tap point mask should be 8 contiguous 1s despite the fact that
a256Kx4 VRAM or DRAMrequires 9 row- and column-address bits; when con-
sidering the split-serial register, the MSB of the column address is not part of
the tap point, but selects between the upper and lower serial register halves.
Similarly, 1Mxn VRAMs should have a 9-bit tap point mask.
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DPYST Display Start Address Registers

DPYST (32-bit address): C000 0200h

DPYSTL (16-bit address): C000 0200h
DPYSTH (16-bit address): C000 0210h

Format
DPYST

or DPYSTL

DPYSTH

Bits

Description
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Bits Name Functicn
0—4 Fiid  Reserved; do not use

5—31 SRST Screen-refresh start address

Note:

You can access the display start address registers separately or together by
using different addresses and different field sizes.

[k Toaccess DPYST as a single 32-bit register, access the 32-bit field at ad-
dress CO00 0200h.

[ To access DPYSTL as a 16-bit register, access the 16-bit field at address
C000 0200h.

Lk Toaccess DPYSTH as a 16-bit register, access the 16-bit field at address
C000 0210h.

[ — ]

The 27-bit SRST value represents the address that points to the pixel at the
left of the first line displayed on the screen. This address is used in calculating
the screen-refresh address output just before the start of each frame (or field
in interlaced video). There are a number of cases to consider.

G In noninterlaced video, the address output at the beginning of each field
is simply that contained in SRST, so SRST is copied into SRNX[DPYNX]
at the beginning of each vertical-blanking period.

L} Ininterlaced video,

B At the beginning of the even field, the address of the first pixel
displayed is that of the pixel half way across the first line. So,
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Display Start Address Registers DPYST

SRINC[DINCI/2 is added to SRST before the address is loaded into
SRNXIDPYNX] at the start of the vertical-blanking interval. -

B Atthe beginning of the odd field, the address of the first pixel displayed
is that of the first pixel on the second line. So, SRST is added to
SRINC[DINC] before being loaded into SRNX[DPYNX] at the start of
the vertical-blanking interval.

L The address output at the beginning of the second line of the even field in
interlaced video is that of the first pixel on the third line of the display.
Normally, the address is generated by adding SRINC[DINC] or, in inter-
laced video, 2xSRINC to the value in SRNXIDPYNXI. However, in this
particular instance ,SRNX contains the address of the pixel half way
across the first line of the display, and so would need 1.5xSRINC added
to it to arrive at the correct address. Because of this, the value of SRNX
generated after the first screen refresh in the even field is generated by
adding 2xSRINC to SRST.

The address consists of a row-address portion and a column-address portion,
corresponding to the bits of the address connected to the VRAMSs at row- and
column-address times, respectively, on the RCA0—RCA12 bus. The column-
and row-address fields should be contiguous to one another within the 27 bits
of SRNX. However, you can choose where the two fields are placed within the
32-bit register, provided that all of the row-address bits are output on
RCAO0—RCA12 at row-address time, and all the column- address bits are out-
put on RCA0O—RCA12 at column-address time. Section 8.16.2 (page 8-53)
details which bits of the logical address are output on RCAO—RCA12 at row-
and column-address times.
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DPYSTRT Display Start Address Register

COMPAX

Format

Description

4-48

address: C000 0090h

DPYSTRT is a simple 16-bit read/write location that is included for compatibili-
ty with the TMS34010. The TMS34010 used DPYSTRT to indicate the address
of the first pixel to be displayed in each frame. The TMS34020 uses a different
register for this purpose and assigns no function to DPYSTRT.

TMS34020 Registers



Display Tap-Point Address Register DPYTAP

Format

Description DPYTAP is a simple 16-bit read/write location that is included for compatibility
with the TMS34010. The TMS34010 used DPYTAP to indicate the VRAM tap
pointused during screen-refresh cycles. The TMS34020 uses adifferent regis-
ter for this purpose and assigns no function to DPYTAP.
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DYDX Delta Y/Delta X Register

B-file register? register number: B7

Format

Description

Which instructions
use this register?

4-50

DYDX defines the X and Y dimensions of the rectangular destination array for
PIXBLT and FILL instructions. Both the X and Y dimensions are in pixels; the
DX value is the number of pixels in the width of the array, and DY is the number
of rows of pixels in the array.

When window clipping is selected, the pixel block dimensions for the transfer
are determined by the relationships between WSTART, WEND, DADDR, and
DYDX. If either the X or Y dimension is 0, then the entire block is interpreted
as having a dimension of 0; no transfer is performed.

The values for DY and DX can range up to the coordinate extent of the display
(upto 65,535, depending on the display pitch and pixel size selected). For win-
dow operations, the relationship between DYDX, WSTART (at location [Xstart,
Ystartl), and WEND (at location [Xgngd, Yend)) is such that DY < (Yend — Ystart
+ 1) and DX < (Xgnd — Xstart + 1). The value in DYDX is used with WSTART,
WEND, and DADDR to preclip pixels, lines, and pixel arrays.

Most graphics instructions do not modify the contents of DYDX. For FILL XY,
PIXBLT B, XY, PIXBLT L,XY, and PIXBLT XY,XY, with window option 1, howev-
er, DYDX is used with DADDR to perform a common rectangle function. In this
case, the instruction sets DYDX to the dimensions of the common pixel block
represented by the intersection of the original destination array and the win-
dow. No drawing is performed. If there is no common rectangle, the V bit is not
set, and the value of DYDX is indeterminate.

Instruction DYDX'’s format and function

FILLL Array dimensions in XY format

FILL XY Array dimensions in XY format; special results when W=1 is
selected, as previously noted

FLINE, LINE Dimensions of the rectangle described by the line to be drawn

PIXBLT B, L Array dimensions in XY format

PIXBLT B, XY Array dimensions in XY format; special results when pick is
selected, as previously noted

PIXBLT L, L Array dimensions in XY format

PIXBLT L, XY Array dimensions in XY format; special results when pick is
selected, as previously noted

PIXBLT XY, L Array dimensions in XY format
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Instruction DYDX’s format and function

PIXBLT XY, XY Array dimensions in XY format; special results when pick is
selected, as previously noted

PIXBLTL, L Array dimensions in XY format
PIXBLT L, XY Array dimensions in XY format; special results when pick is
selected, as previously noted
PFILL XY XY; dimensions of the fill area
VBLT XY; dimensions of the pixel block
VFILL XY; dimensions of the fill area
Example This example illustrates the relationship of DYDX to WSTART and WEND by

setting DYDX to the width and height of the clipping window.

WSTART .set B5

WEND .set B6
DYDX .set B7
MOVE WEND, DYDX ;s Put WEND into DYDX

SUBXY WSTART, DYDX
ADDXYI [1, 1], DYDX

Generate (WEND—WSTART)
Increment by 1 in each
dimension

Ne we Ne N
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HCOUNT Horizontal Count Register

Format

Description

4-52

HCOUNT is a 16-bit counter used for generating horizontal and composite
video signals. HCOUNT is incremented on the falling edge of the VCLK, thus
counting the number of VCLK periods per horizontal scan line.

[k To generate horizontal sync and blanking signals, the value of HCOUNT
is compared to the values of HESYNC, HEBLNK, HSBLNK, and HTOTAL.

[ To generate composite serration and equalization pulses, HCOUNT is
compared to the value of HESERR and half the value of HESYNC, respec-
tively.

HCOUNT is reset to 0 on the next VCLK falling edge after HCOUNT=
HTOTAL, and the HSYNC output is driven low. I CSYNC/HBLNK s configured
to CSYNC, this pin is also driven low.

If interlaced composite video is enabled, HCOUNT is also reset to 0 on the next
VCLK falling edge after HCOUNT=HTOTAL/2 during the equalization and ser-
ration regions of vertical blanking.

In external horizontal or composite-sync video, HCOUNT is reloaded from the
SETHCNT register on the rising edge of the video input clock. This is 4 VCLK
cycles after the HSYNC or CSYNC input signals, respectively, are driven low.

Two separate, asynchronous elements of the TMS34020 logic can access the
HCOUNT register.

[d The video timing control logic (which runs synchronously to the VCLK)
increments, clears, and reloads HCOUNT (from SETHCNT) in generating
the sync and blanking signals.

[d The internal processor (which runs synchronously to LCLK1 and LCLK2)
can access HCOUNT as an I/O register.

No synchronization between these subsystems is provided. HCOUNT can be

- reliably read from or written to only while VCLK is held at the logic-high level.

HCOUNT is typically not read from or written to except during chip test.
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Horizontal End Blank Register HEBLNK

Format

Description

HEBLNK s used for generating the HBLNK or CBLNK signals output to avideo
monitor. The 16-bit HEBLNK value is compared to HCOUNT and defines the

point at which the horizontal-blanking interval ends.

For composite video, select the CBLNK/VBLNK pin as CBLNK. CBLNK out-
puts the logical-OR of the internal horizontal- and vertical-blanking signals; it
is low if horizontal- or vertical-blanking is active internally.

Most video monitors require HEBLNK to contain a value that is less than
HSBLNK but greater than HESYNC.
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HESERR Horizontal End Serration Register

address: C000 0270h

Format

Description

4-54

HESERR is used for generating the composite-serration pulses output to the
video monitor. You need to program this register only when the CSYNC/

HBLNK pinis selected as CSYNC. The 16-bit HESERR value defines the point
at which the composite-sync pulse ends during the serration region of vertical
blanking (this coincides with the vertical-sync region). When the value in
HCOUNT=HESERR during this region, the signal output from the CSYNC pin
is driven inactive high to signal the end of the serration pulse.

NTSC and similar composite-video standards require HESERR to contain the
value (HTOTAL/2) —HESYNC - 1. (Serration pulses occur every half line, and
in each cycle, the CSYNC signal is inactive high for the same duration as hori-
zontal sync is active low.) .

When external composite sync is enabled, load HESERR with a value that
ensures that the HCOUNT does not become equal to HESERR before the
external composite-sync signal goes inactive high, but before CSYNC goes
active low again.
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Horizontal End Sync Register HESYNC

Format

Description

HESYNC is used for generating the horizontal- and composite-sync éignals
output to a video monitor. The 16-bit HESYNC value defines the point at which
the horizontal-sync pulse ends. If the CSYNC/HBLNK pin is selected as
CSYNC, HESYNC also determines the point at which the composite- sync
pulse ends (except during the serration region of vertical blanking). When the
value in HCOUNT=HESYNC, the signal output from the HSYNC and CSYNC
pins is driven inactive high to signal the end of the horizontal-syncinterval. Dur-

ing the equalization regions of vertical sync, the CSYNC pin is driven inactive
highwhen HCOUNT=HESYNC/2, indicating the end of the composite-equali-
zation interval.

Monitors typically require HESYNC to contain avalue less than HEBLNK; how-
ever, the TMS34020 does not require this. The minimum value of HESYNC is
0.

When external horizontal or composite sync is enabled, you should load
HESYNC with a value that ensures two things:

Ca that the value in HCOUNT does not reach HESYNC before the external
horizontal or composite-sync signal goes inactive high

Lk that the value in HCOUNT reaches HESYNC before HSYNC or CSYNC
goes active low again

For external composite sync, HCOUNT must not become equal to HESYNC/2
before the composite-sync equalization pulse goes inactive.
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HSTADR Host-Interface Address Registers

4

= HSTADRH address: C000 00EOh

8 HSTADRL address: C000 00DOh
Format
Format HSTADRH and HSTADRL are simple 16-bit read/write locations that can be

used to store information passed between the host and the TMS34020.
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Host-Interface Control Register, High Word HSTCTLH

I/0 register?

address: C000 0100h

Format
Bits
Description
bit 4
bits 5&6

i5 14 143 12 11 10 9 8 3 2 1 0

o TE T Twirs
Bits Name Function
4 HACK Acknowledges TMS34020 halt
5—6 HLBO, HLB1 Selects the host byte order
7 RST Resets the TMS34020
8 NMI Enables the nonmaskable interrupt
9 NMIM Selects the mode for the nonmaskable interrupt
11 HPFW Enables host prefetches after writes
12 HINC Enables host increment
14 CF Flushes the cache
15 HLT Halts TMS34020 processing
L
(1)0—,? 3 ::m:"::::::"ﬁﬂ::"::::::"::: Reserved; do not use

HSTCTLH contains10 programmable bits for controlling host interface
communications. Both the TMS34020 and a host processor can read from or
write to HSTCTLH; typically, however, only the host alters HSTCTLH.

Halt acknowledge

HACK Description
0 The TMS34020 is running
1 The TMS34020 is halted

The TMS34020 sets HACK when the TMS34020 is halted by setting HLT. (Both
the host processor and the TMS34020 can write to HLT; in either case, the
TMS34020 sets HACK.) By polling the value of HACK, the host can determine
when the TMS30420 actually halts. The TMS34020 automatically clears
HACK when HLT is cleared to release the TMS34020 from halt.

Host last byte
HLB1 HLBO LastByte Accessed [[HLB1 HLBO Last Byte Accessed
0 0 byte 3 1 0 byte 1
0 1 byte 2 1 1 byte 0
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HSTCTLH Host-interface Control Register, High Word

4-58

...RST. .,

bit 7

bit 8

The host processor sets the HLB bits to inform the TMS34020 which byte of
a 32-bit word the host will access last. The TMS34020’s host interface uses
the HLB value to determine when to prefetch the next 32-bit word in memory.
If prefetches are enabled, the TMS34020 prefetches the next location from
memory after the host accesses the last byte. The HPFW bit determines
whether this access must be a read or a write. The 2-bit HLB code allows for
all host byte-ordering conventions.

For an 8-bit host, the value of both bits determines after which byte access of
the appropriate type (read or write) the TMS34020 will prefetch the next 32-bit
location. For a 16-bit host, the value of HLB1 alone is sufficient to determine
after which 16-bit word access the TMS34020 will prefetch the next 32-bit loca-
tion. For a 32-bit host, any combination of HLB1—HLBO causes the TMS34020
to prefetch the next 32-bit location after each host access of the appropriate

type.

Reset
RST Effect
0 Allows normal operation
1 Executes reset

Setting RST to 1 has the same effect as asserting the RESET pin low—the
TMS34020 executes a reset. However, when RST is set, only the TMS34020
is reset; typically, the RESET signal is connected to all devices in the system,
and asserting it low affects the entire system.

While the TMS34020 is executing reset internally and the RESET pin is high,
DRAM CAS-before-RAS refresh cycles are performed, thus preserving the
contents of the DRAMs in the system. During a hardware reset, the TMS34020
uses the value of HCS just before the rising edge of RESET to determine
whether to come up in self-bootstrap or host-present mode. When reset is
caused by setting RST, however, there is no rising edge on the RESET pin.
Because of this, the TMS34020 remembers which mode it was brought up in
the last time a reset was caused by asserting RESET, and it configures itself
in that mode.

It is not necessary to clear RST; reset clears it automatically.

Nonmaskable interrupt, host to TMS34020

NMI Effect
0 No NMI is requested
1 The host is requesting an NMI

The nonmaskable interrupt allows a host processor to redirect the CPU’s
execution flow to an NMl routine, regardless of the current state of the interrupt
mask flags. The host writes a 1 to the NMI bit to send a nonmaskable interrupt
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bit 9

© bit11

request to the TMS34020. The interrupt request cannot be disabled, and is
always executed (unless the TMS34020 is reset before it can complete inter-
rupt execution). The interrupt is initiated immediately when NM is set (at the
time the current instruction completes execution, or at the next interruptible
point in an instruction). Once the interrupt is taken, internal logic automatically
clears the NMI bit to 0.

You can use NMI to generate a soft reset after the host downloads new code
into TMS34020 memory. After execution of a nonmaskable interrupt,
screen-refresh and DRAM-refresh functions continue unaffected. The inter-
rupt does not alter the contents of internal registers except for HSTCTLH (the
NMI bit), although the NMI service routine may alter them.

Nonmaskable interrupt mode

NMI NMIM Effect NMI NMIM Effect
0 0 No effect 1 0 NMI, save context on current stack
0 1 undefined || 1 1 NMI, discard context

The NMI mode bit determines whether or not the context (PC and ST) of the
interrupted program is saved when a nonmaskable interrupt occurs.

2 When NMIM=0, the TMS34020 saves the context on the system stack
before executing the NMI service routine. This is useful for applications
(single-step instruction execution, for example) that must preserve the
PC’s status between consecutive nonmaskable interrupts. Note that sav-
ing the context may be of no benefit if either

B control will never be returned to the interrupted program, or
B the integrity of the stack pointer is suspect.

i When NMIM=1, the TMS34020 discards the context when it executes the
NMI service routine. You can use a nonmaskable interrupt to simulate a
hardware reset in software (using the NMI vector). The NMI does not reset
the 1/O registers; if you simulate a hardware reset with an NMI, the NMI
service routine should reset the 1/0 registers.

Host prefetch-after-write enable
HINC HPFW Effect

0 0 Disables prefetching and incrementing of internal address

0 1 Disables prefetching and incrementing of internal address

1 0 Enables prefetching after last byte read and incrementing of in-
ternal address after any last byte access

1 1 Enables prefetching after last byte write and incrementing of in-

ternal address after any last byte writes

HPFW works with the HINC bit to enhance a host processor’s access to blocks
of TMS34020 memory. When host prefetches are enabled (HINC=1), the value
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4-60

HINC

bit 12

of HPFW determines whether prefetches are executed after a read to or a write
from the last byte of a word (identified by the HLB bits).

L Selecting HINC=1 and HPFW=0 enhances the host processor’s ability to
read contiguous blocks of TMS34020 memory. This tells the TMS34020
to prepare for the host’s next read request by prefetching the next 32-bit
location in memory after completing the read of the current long word. If
the host uses implicit addressing to access TMS34020 memory (that is,
the host provides only the first address of a contiguous block of memory),
the TMS34020 automatically generates subsequent addresses by incre-
menting the address after each access (regardless of whether the access
is a read or a write).

Lk Selecting HINC=1 and HPFW=1 enhances the host processor’s ability to
modify contiguous blocks of TMS34020 memory. This tells the TMS34020
to prepare for the host's next read request by prefetching the next 32-bit
location in memory after the write to the current word is complete. This pro-
vides an efficient read-modify-write mechanism. If the host uses implicit
addressing to access a block of TMS34020 memory, the TMS34020 gen-
erates subsequent addresses by incrementing the address after each
write.

If the host is not using implicit addressing, prefetching could yield an unwanted
address; however, the TMS34020 has a built-in mechanism that compares the
fetched address to the requested address. If the TMS34020 prefetches an un-
wanted location, it makes an additional access to the requested location.This
ensures that the host always accesses the correct location.

Host increment
HINC Effect
0 Disables prefetching, incrementing, and comparison of addresses
1 " Enables prefetching, incrementing, and comparison of addresses

Setting HINC enhances the TMS34020's host interface performance by pro-
viding these features.

L Address comparison. The TMS34020 compares the address most
recently read or prefetched by the host with the address currently
requested by the host on read accesses. This allows prefetching while en-
suring that the correct location is always accessed. If the host requests ac-
cess to a location different from a prefetched location, the TMS34020 de-
tects this and initiates another access to the explicitly requested location.

Address comparison s also useful if the host is not a 32-bit machine. In this
case, the host must perform multiple reads to fully read a 32-bit word. The
address comparison ensures that once data from the address is latched
into the external host data transceivers, accesses to other bytes of the
same word do not cause the data to be fetched repeatedly from the
TMS34020’s local memory.
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bit 14

HLT
bit 15

¥ Address prefetch. The TMS34020 supports prefetching, providing the
host with an efficient method for accessing contiguous blocks of
TMS34020 memory.

(3 Address increment. A host can use implicit addressing, supplying only
the first address in the block of words that it will read, write, or modify. The
TMS34020 automatically increments the address after each last-byte host
read/write (HPFW=0), or after each last-byte write (HPFW=1).

Cache flush

CF Effect
0 No effect
1 Flushes and disables the cache

Setting CF to 1 disables the instruction cache and flushes the cache contents.
While CF=1, all 4 of the cache’s P flags are forced to 0. The TMS34020 must
fetch instructions one-at-a-time from local memory.

Normal cache operation resumes when CF is cleared to 0 (assuming that
CD[CONTROL] also = 0). When the value of CF changes from 1 to 0, the
cache begins operation in the same initial state as that which immediately
follows reset.

Flushing the cache is useful when the host processor downloads new code to
TMS34020 local memory. By setting CF to 1 and then to 0, the host forces the
TMS34020 to load new instructions into the cache from memory rather than
to continue executing the stale instructions already in the cache.

Halt TMS34020 program execution

HLT Effect
0 Allows TMS34020 to run
1 Halts TMS34020 instruction execution

When HLT=1, the TMS34020 suspends instruction processing at the next
instruction boundary. Once halted, the TMS34020 does not respond to inter-
rupt requests, including NMI. Local-memory-refresh and video-timing func-
tions continue unaffected while the TMS34020 is halted. When HLT is cleared
to 0, the TMS34020 continues execution.

The state of HLT immediately after reset is determined by the state of the HCS
pin at the low-to-high transition of RESET:

@ IfHCS is low, HLT is set to 0 and the TMS34020 can begin executing its
reset routine.

L If HCS is high, HLT is set to 1 and the TMS34020 is halted.

Both the host processor and the TMS34020 can write to the HLT bit; this means
the TMS34020 can halt itself by setting HLT to 1.
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HSTCTLL Host-Interface Control Register, Low Word

address: C000 00FOh

Format 15 9 8
.. g:ll"::n'ﬁlﬂ":::ll“::::l
Bits Bits Name Function
0—2 MSGIN Buffers an input message
3 INTIN Sends input interrupt from host to TMS34020
4—6 MSGOUT Buffers an output message
7 INTOUT Sends output interrupt from TMS34020 to host
10 EMR Emulator handshake (request to host)
1 EMG Emulator handshake (grant from host)
12 EMIEN Enables emulator inhibit host port interrupt
13 HRY!I Indicates a retry on a host access
14 HBFI Indicates a bus fault on a host access
15 HBREN Enables host retry or bus-fault interrupt
89 it Reserved; do not use
Description HSTCTLL controls host interface communications. Both the TMS34020 and
the host can read all of HSTCTLL's bits, but these restrictions apply to writes:
TMS34020 Host Processor
MSGOUT | Can modify Can’t modify
MSGIN | Can’t modify Can modify
INTIN | Can write a O; writing a 1 has no effect | Can write a 1; writing a 0 has no effect
INTOUT | Can write a 1; writing a 0 has no effect | Can write a 0; writing a 1 has no effect
Message in—host to TMS34020
bits 0—2
The message-in bits buffer a 3-bit interrupt message to the TMS34020 from
the host. The host can read from and write to MSGIN, but the TMS34020 can
only read MSGIN. MSGIN typically contains a command or status code from
the host, which the TMS34020 reads in response to a host-generated interrupt
(INTIN=1). The code’s meaning depends on your application.
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bit 3

bits 4—6

bit 7

bits 10&11

Interrupt in—host to TMS34020

INTIN Effect
0 No interrupt request to TMS34020
1 Host requests a TMS34020 interrupt

INTIN controls the host's message interrupt to the TMS34020. To generate this
request, the host sets INTIN to 1. The TMS34020 can deactivate the request
by clearing INTIN. The host cannot clear INTIN; similarly, the TMS34020 can-
not set INTIN. The HIP[INTPEND] bit reflects the status of INTIN.

Message out—TMS34020 to host

MSGOUT buffers a 3-bit interrupt message to the host from the TMS34020.
The TMS34020 can read from and write to MSGOUT, but the host can only
read MSGOUT. MSGOUT typically contains a command or status code from
the TMS34020, which the host reads in response to a TMS34020-generated
interrupt (INTOUT=1). The code’s meaning depends on your application.

Interrupt out—TMS34020 to host

INTOUT Effect
0 No interrupt request to host
1 TMS34020 requests a host interrupt

The INTOUT bit controls the TMS34020’s message interrupt to the host. The
TMS34020 transmits an interrupt request to the host by driving HINT active
low. When INTOUT=1, HINT is driven active low; when INTOUT=0, HINT is
driven inactive high. The TMS34020 activates the interrupt request by setting
INTOUT to 1; the host deactivates the request by clearing INTOUT. The
TMS34020 cannot clear INTOUT; similarly, the host cannot set INTOUT.

Emulator (or debugger) handshake—request to/grant from host

EMG EMR Interpretation
0 0 No request, no interrupt

0 1 Host request from EMU, interrupt if enabled
1 0 Host released by EMU, interrupt if enabled
1 1 Host grant to EMU, no interrupt

An in-circuit emulator or software debugger may use EMR and EMG for
exchanging information and coordinating activity with a host processor. The
precise meaning of these bits depends on your application, the emulator or
debugger software, and the host processor.

If adebugger or an in-circuit emulator needs to start emulation activity with the
TMS34020, the debugger or emulator may set EMR to make this request to
the host. If EMIEN=1, setting EMR causes the host to be interrupted via HINT.
The hostthen sets EMG to acknowledge this, causing HINT to return to its inac-
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HSTCTLL Host-Interface Control Register, Low Word

4-64

bit 12

bit 13

bit 14

bit 15

tive level. The emulator or debugger then clears EMR, signalling the end of the
activity to the host. Again, if EMIEN=1, clearing EMR causes the host to be in-
terrupted via HINT. The host then clears EMG, completing the transaction and
causing HINT to return to its inactive level.

Only an emulator or debugger should modify EMR, and only the host should
modify EMG. If you are not using this protocol, clear thesé bits to 0.

Emulator inhibit host port interrupt enable

EMIEN  Effect
0 EMR XOR EMG causes no host interrupt via HINT
1 EMR XOR EMG causes an interrupt to the host via HINT

EMIEN controls whether the exclusive-OR of the EMR and EMG bits causes
the HINT pin to be driven active low, thus interrupting the host.

Retry on host access interrupt

HRYI Effect
0 Host access was not retried

1 Host access was retried (HINT was set active, if enabled)

The TMS34020’s host interface sets HRY!I if a host access returns a retry
memory cycle completion code. The TMS34020 automatically attempts to
retry the memory access. If enabled (HBREN=1), the TMS34020 interrupts the
host via the HINT pin. The host must ensure that the appropriate action (if any)
is taken to clear the cause of the retry, and then the host must clear HRY].

Bus fault on host access interrupt

HBFI Effect
0 Host access was not faulted
1 Host access was faulted (HINT was set active, if enabled)

The TMS34020's host interface sets HBFI if a host access returns a bus-fault
memory cycle completion code. The TMS34020 performs no further error
recovery, but terminates the host request and drives HRDY high as if the cycle
completed successfully. If enabled (HBREN=1), the TMS34020 interrupts the
host via the HINT pin. The host must ensure that the appropriate action (if any)
is taken to clear the cause of the bus fault, and then the host must clear HBFI.

Host bus-fault or retry interrupt enable
HBREN Effect

0 No interrupt sent to the host via HINT if HRYI or HBFI is set
1 An interrupt is sent to the host via HINT if HRY| or HBFI is set

HBREN enables or inhibits the TMS34020 from interrupting the host when a
retry or bus fault occurs on a host access.
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Host-Interface Data Registers HSTDATA

address: C000 00CO

Format

Description HSTDATA is a simple 16-bit read/write location that can be used to store infor-
mation passed between the host and the TMS34020.
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HSBLNK Horizontal Start Blank Register

I/O register?

address: C000 0050h

Format

Description

4-66

HSBLNK is used for generating the HBLNK or CBLNK signal output to the vid-
eo monitor. The 16-bit HSBLNK value is compared to HCOUNT and defines
the point at which the horizontal-blanking interval begins.

For composite video, select the CBLNK/VBLNK pin as CBLNK. CBLNK out- |
puts the logical-OR of the internal horizontal- and vertical-blanking signals; it
is low if either horizontal- or vertical-blanking is active internally.

Several internal events coincide with the start of horizontal blanking:

[ A request for a screen-refresh memory cycle is sent to the TMS34020’s
memory controller.

Lk Ifadisplay interruptis programmed to occur at a particular horizontal scan
line, the actual interrupt request is generated at this point.

Monitors typically require that HSBLNK contain a value less than HTOTAL, but
greater than HEBLNK.
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Horizontal Total Register HTOTAL

I/O register?

address: C000 0070h

Format

Description

HTOTAL is used for generating the horizontal- and composite-sync signals
outputto the video monitor. The 16-bit HTOTAL value is comparedto HCOUNT
and defines the duration of each horizontal scan line on the screen in terms of
VCLK periods.

HTOTAL is compared with the horizontal count in HCOUNT to determine the
point at which the horizontal- and composite-sync pulses begin. Usually,
HCOUNT counts from 0 to the value in HTOTAL. When HCOUNT = HTOTAL,
the HSYNC output is driven active low on the next falling edge of VCLK, and
HCOUNT is reset to 0 on the same clock edge. If the CSYNC/HBLNK pin is
selected as CSYNC, then CSYNC is also driven active low.

In addition, for interlaced composite video, HCOUNT is reset to 0 when
HCOUNT=HTOTAL/2 during the equalization and serration regions. This con-
dition triggers the equalization and serration pulses on the CSYNC pin (which
occur every half horizontal scan line). During this time, the beginning of hori-
zontal-sync pulses on the HSYNC pin are caused by alternating occurrences
of HCOUNT=HTOTAL/2.

In interlaced video, HTOTAL should contain an odd number (LSB=1) to
achieve equal spacing between lines. Equalization and serration pulses are
then evenly separated by half a scan line. The total number of VCLKSs per hori-
zontal scan line is calculated as HTOTAL + 1.

When external horizontal or composite video is enabled, HTOTAL should con-
tain a value not less than HCOUNT's value at the point at which the external
sync pulse is expected. If you use SETHCNT to exactly align the internal video
timing with the external sync, set HTOTAL to exactly match the number of
VCLKSs between external syncs.

HTOTAL should contain a 16-bit value greater than HSBLNK but less than or
equal to 65,535 (FFFF4g).
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IHOST Internal Host-Interface Address Registers

I/O register? addresses: C000 0380h
C000 03A0h
C000 03COh
C000 03EOh
Format
Description The TMS34020’s host interface uses these 32-bit locations for storing the ad-

dresses used in making host-requested reads, writes, and prefetches to
TMS34020 local memory. These locations are included in the 1/O register
memory space for purposes of chip test only. You cannot write to these loca-
tions. The data read from these locations is generally not 0.
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Interrupt Enable Register INTENB

I/O register?

Format

Bits

Description

address: C000 0110h

15 14 13 12
,ul:“l,ul AT l[lI:IH

s iy
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I |l|l ! l“I I|1| l||1 “11 l|1| I||I l||l I||I |ll'
L L L e L U :

L M i D 7

Bits Name Function

1 X1E Enables external interrupt 1

2 X2E Enables external interrupt 2

9 HIE Enables the host interrupt

10 DIE Enables the display interrupt

11 WVE Enables the window violation interrupt
I

3s Y Reserved;donotuse

12_15 Al

INTENB contains an interrupt mask that selectively enables 3 internally gener-
ated and 2 externally generated interrupt requests.

X1 & X2 external interrupts 1 and 2. Generated by active-low signals on the
LINT1 and LINTZ2 input pins, respectively.

Hi host interrupt. Generated when the host processor sets
INTIN[HSTCTLLI to 1.

- DI display interrupt. Generated when the vertical count in the VCOUNT

register reaches the value of DPYINT.

wv window-violation interrupt. Caused by an attempt to write a pixel in-
side or outside the current window limits (depending on the selected
window-checking mode).

The status register contains a global interrupt enable bit (IE). The INTENB reg-
ister contains individual interrupt enable bits associated with each of the 5in-
terrupts described above. Interrupts are enabled through a 2-step process:

Step 1: Set the IE bit to 1.
Step 2: Set the appropriate bits in INTENB to 1.

Setting IE to O disables all of these interrupts, regardless of the value in
INTENB. When IE=1, each interrupt is enabled according to the appropriate
value in INTENB (1 enables the interrupt, 0 disables it).
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INTPEND _ interrupt Pending Register

I/0 register?

address: C000 0120h

Format

Bits

Description

4-70
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Bits Name Function
1 X1P Identifies a pending external interrupt 1
2 X2P Identifies a pending external interrupt 2
9 HIP Identifies a pending host interrupt
10 DIP Identifies a pending display interrupt
11 WVP Identifies a pending window violation interrupt
(1)23__12 |::l::::::iE::::'::l:::}'::i:ﬂ::::: Reserved; do not use

INTPEND indicates which interrupt requests are currently pending (for a de-
scription of these interrupts, refer to the discussion of the INTENB register).
The individual pending bits in the INTPEND register reflect the status of inter-
rupt requests. The interrupt is requested if the corresponding pending bit is 1;
there is no request if the pending bit is 0. INTPEND reflects the status of each
interrupt request, regardless of whether the interrupt is enabled or not; this
allows the TMS34020 to poll interrupts.

X1P and X2P are read-only bits that reflect the input levels on LINT1 and
LINT2; they are not affected when INTPEND is written to. LINT1 and LINT2
are asynchronous inputs, but signals to these pins are synchronized internally
sothat you can always reliably read X1P and X2P. If an external interrupt is dis-
abled, the TMS34020 ignores the interrupt request, even if the corresponding
pending flag is set. The TMS34020 takes the interrupt only if the external re-
quest is maintained at the request pin, until the interrupt is again enabled.

DIP and WVP reflect the status of interrupt requests generated internally.
These 2 bits are implemented as latches. Once set, DIP or WVP remain set
until a 0 is written to the appropriate bit (or until the TMS34020 is reset). Writing
a 1 to either of these bits has no effect at any time.While an internal interrupt
is disabled, the interrupt request is ignored, even if the corresponding pending
flag is set. If the interrupt is then enabled while the interrupt-pending flag is set
(because of a prior interrupt request), the TMS34020 takes the interrupt.

HIP is a read-only bit that always displays the current contents of INTIN. Writ-
ing to the INTPEND register does not affect HIP. A host interrupt request is gen-
erated when the host processor writes a 1 to INTIN. The TMS34020 clears the
interrupt request by writing a 0 to INTIN[HSTCTLL].
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Mask Address Register MADDR

register number: B10

Format

Description

Which instructions
use this register?

Example

near bit address

MADDR contains the mask array address for PIXBLT L,M,L. MADDR usually
points to the mask bit with the lowest address in the mask array. When the
selected starting corner is not the upper left corner, you must manually adjust
MADDR to point to the mask array’s starting corner.

MADDR always contains alinear address. When the PIXBLT L,M,L completes,
MADDR points to the starting location of the row that follows the last row in the
array. If PIXBLT L,M,L is interrupted, MADDR points to the next word of pixels
to be read.

Instruction MADDR'’s format
SETCMP Linear; any value
PIXBLT L, M, L Linear; any value

MADDR .set B1O
MOVI 00010AFCh, MADDR ; Move linear

; value 10AFCh
; into B10
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MPTCH Mask Pitch Register

Format

Description

Which instructions
use this register?

Example

4-72

MPTCH defines the linear difference in the starting memory addresses of adja-
cent rows of the mask array for PIXBLT L,M,L. The TMS34020 uses the value
in MPTCH to move from row to row through the mask array. MPTCH can have
any value.

If you're manually converting an XY address to a linear address, you can use
the SETCMP instruction; SETCMP uses the MPTCH value to calculate the
mask pitch conversion factor and loads the correct value into CONVMP. You
can then use CVMXYL to perform the conversion.

Instruction MPTCH’s format
CVMXYL Linear; any value
FLINE, LINE Linear; any value
FPIXEQ, FPIXNE Linear; any value
PIXBLTL, M, L Linear; any value
SETCMP Linear; any value

MPTCH .set Bll

MOVI 00000100h, MPTCH ; Power of 2
MOVI 00O0AO03DOh, MPTCH ; Arbitrary wvalue
MOVI 00000220h, MPTCH ; 2 powers of 2

; (512 + 32)
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XY-Address Offset Register OFFSET

Format

Description

Which instructions
use this register?

Example

OFFSET contains the linear address of the first pixel in the XY coordinate
space for instructions using XY addressing. This address corresponds to the
linear address of the XY origin (X=0,Y=0). The TMS34020 uses this value as
the memory base for performing XY-to-linear address conversions.

OFFSET always contains a linear address. The offset address may be at any
position in the TMS34020 linear address space. For proper XY address con-
versions, transparency, pixel processing, and plane masking, OFFSET should
contain a pixel-aligned value. Instructions that use OFFSET as an implied
operand do not modify the register’s contents.

Instruction OFFSET'’s function
CVXYL Linear address of XY origin
DRAV Linear address of XY origin
FILL XY Linear address of XY origin
LINE Linear address of XY origin
PFILL XY Linear address of XY origin
PIXBLT B, XY Linear address of XY origin
PIXBLT L, XY Linear address of XY origin
PIXBLT XY, L Linear address of XY origin
PIXBLT XY, XY Linear address of XY origin
PIXBLTL, M, L Linear address of XY origin
PIXT Rs, *Rd. XY Linear address of XY origin
PIXT *Rs.XY, Rd Linear address of XY origin
PIXT *Rs.XY, *Rd. XY Linear address of XY origin
TFILL Linear address of XY origin

OFFSET .set B4

MOVI 00042000h, OFFSET ; Linear value on
; pixel boundary
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PATTERN Pixel Pattern Register

B-file register? register number: B13

Format
Description PATTERN uses the information in COLORO0 and COLOR1 to define a pixel pat-
tern. COLORO defines the replacement color for 0 bits in the pattern; COLOR1
provides the replacement color for 0 bits in the pattern.
Note:
If the PATTERN value is less than 32 bits, you must replicate the pattern
throughout all 32 bits of the PATTERN register.
Lan ihis ragieesS Instruction PATTERN's function
FLINE, LINE Line pattern
PFILL XY Array pattern. If PATTERN contains all 1s, PFILL uses
COLOR1 toproduce a solidfill. If PATTERN contains all Os,
PFILL uses the COLORO value to produce a solid fill.
4-74
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Plane Mask Registers PMASK

PMASKL (16-bit address) C000 0160h
PMASKH (16-bit address): C000 0170h

Format

Description

or

Note:
You can access the plane mask registers separately or together by using dif-
ferent addresses and different field sizes.

L3 To access PMASK as a single 32-bit register, access the 32-bit field at
address C000 0160h.

L To access PMASKL as a 16-bit register, access the 16-bit field at address
C000 0160h.

[ Toaccess PMASKH as a 16-bit register, access the 16-bit field at address
C000 0170h.

The PMASK registers selectively enable or disable various planes in the bit-
map of a multiple-bit-per-pixel display system. Together, PMASKL and
PMASKH (referred to as PMASK) contain a 32-bit value that determines which
bits of each pixel can be modified during execution of a graphics instruction.
The PMASK registers enable you to identify which bits in each pixel are
protected (mask bit=1) or not protected (mask bit=0) from modification.

(X During a pixel write, Os in the plane mask identify destination bit positions
that can be modified. The 1s in the plane mask represent bit positions with-
in the destination that are protected from modification.

CX During a pixel read, Os in the plane mask identify readable bits within a
pixel; bits corresponding to 1s in the mask are always read as 0s.

Display memory organization can be described in terms of bit planes. If the pix-
el size is 4 bits, for example, and the bits in each pixel are numbered from 0
to 3, the display memory is composed of 4 bit planes, numbered 0 to 3. Plane
0 contains all the bits numbered 0 from all the pixels, plane 1 contains all the
bits numbered 1 from all the pixels, and so on. A 4-bit mask is constructed so
that bit 0 of the mask enables or disables writes to the bits in plane 0, mask bit
1 enables or disables writes to plane 1, etc.
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PMASK Plane Mask Registers

The plane-mask value for a 4-bit pixel is a 4-bit value; the plane mask for an
8-bit pixel is an 8-bit value, etc. You must replicate the plane mask throughout
the 32 bits of the PMASK registers. For example, when PSIZE=8, you must
load the PMASK registers with 4 identical copies of the 8-bit plane-mask value,
as Figure 4-8 shows. In general, all 32 bits of the registers are used, and a
mask for a pixel size of less than 32 bits must be duplicated » times (where n
is 32 divided by the pixel size).

Figure 4-8.  Replicating the Mask Value for an 8-Bit Pixel

Which instructions
use this register?
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8-bit mask 8-bit mask 8-bit mask

The individual bits of the PMASK registers are associated with corresponding
bits of the 32-bit LAD bus (data are multiplexed over the same LADO—LAD31
pins as the address). PMASK register bit 0 corresponds to bit 0 of the data bus
(the bit transferred on LADQ), PMASK bit 1 is associated with bit 1 of the data
bus, etc. In general, if PMASK bit n is a 0, the mask enables bit » of the data
bus; if PMASK bit n is a 1, the mask disables bit n.

You can effectively disable plane masking by loading all Os into the PMASK
registers; this allows all bits of each pixel to be modified. This is the default state
of the PMASK registers following reset.

If your system’s VRAMs can store a copy of the plane mask internally (the
TMS44251 can do this), then you should set VEN[CONFIG]. The TMS34020
automatically detects when the PMASK registers are modified. It subsequently
performs a special load-write-mask memory cycle to copy the 1s complement
of the PMASK contents into the VRAMSs' internal write-mask. (The PMASK is
inverted because the meaning of the bits in a VRAM’s write mask is opposite
to the meaning of the bits in the PMASK.) The TMS34020 can use the VRAM
copy of the plane mask to perform plane-masked writes without performing
read-modify-write cycles.

Instruction PMASK's function
DRAV Plane-mask value for graphics operations
FILLs (both) Plane-mask value for graphics operations
FLINE, LINE Plane-mask value for graphics operations
FPIXEQ, FPIXNE Plane-mask value for graphics operations
PIXBLTs (all) Plane-mask value for graphics operations
PIXT Rs, *Rd and *Rs, *Rd.XY Plane-mask value for graphics operations
TFILL Plane-mask value for graphics operations
VBLT Plane-mask value for graphics operations
VFILL Plane-mask value for graphics operations
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Pixel Size Register PSIZE

address: C000 0150h

Format

Description PSIZE defines the pixel size in bits. If the pixel size is 4, load PSIZE with the
value 4; if the pixel size is 8, load PSIZE with 8, etc. All 16 bits of the PSIZE
register can be written to or read. Legal pixel sizes are 1, 2, 4, 8, 16, and 32

 pixelsize

Which instructions

use this register?

bits; any other value of PSIZE is undefined.

PSIZE = 0001h Pixel size= 1 bit per pixel
PSIZE = 0002h Pixel size= 2 bits per pixel
PSIZE = 0004h Pixel size = 4 bits per pixel
PSIZE = 0008h Pixel size= 8 bits per pixel
PSIZE = 0010h Pixel size = 16 bits per pixel
PSIZE = 0020h Pixel size = 32 bits per pixel
Instruction PSIZE'’s function

CVXYL X shift amount for XY-to-linear conversion

CVDXYL X shift amount for XY-to-linear conversion

CVMXYL X shift amount for XY-to-linear conversion

CVSXYL X shift amount for XY-to-linear conversion

DRAV Pixel size for, graphics operations

FILLs (both) Pixel size for graphics operations

FLINE, LINE Pixel size for graphics operations

FPIXEQ, FPIXNE Pixel size for graphics operations

PIXBLTs (all) Pixel size for graphics operations

PIXT Rs, *Rd Pixel size for graphics operations

PIXT *Rs, *Rd Pixel size for graphics operations

PIXT Rs, *Rd.XY
PIXT *Rs.XY, *Rd
PIXT *Rs.XY, *Rd.XY
RPIX

TFILL

VBLT

VFILL

Pixel size for graphics operations
Pixel size for graphics operations
Pixel size for graphics operations
Field size for replication

Pixel size for graphics operations
Pixel size for graphics operations
Pixel size for graphics operations
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REFADR Refresh Pseudo-Address Register

/O register?

Format

Description

4-78

address: C000 01FOh

REFADR contains the address output during DRAM-refresh cycles. DRAMs
require periodic refreshing to retain their data. The TMS34020 automatically
generates CAS-before-RAS cycles that refresh the DRAMs at regular inter-
vals. You can select the interval between refresh cycles by loading an appropri-
ate value into RRO—RR2[CONFIG]. This determines how often, if at all,
DRAM refreshes should be performed.

REFADR forms a contiguous binary counter. Each time a DRAM refresh is per-
formed, the address in REFADR is output on both LAD16—LAD31 and
RCA0—RCA12. RCMO—RCM1[CONFIG] determines which bits of the
logical address appear on RCA0—RCA12 at row-address time. During a
DRAM-refresh cycle, the address is valid on both LAD16—LAD31 and
RCAO—RCA12throughoutthe memory cycle. This memory cycle is 3 machine
states long, allowing plenty of time for the external decode logic to detect the
refresh (from the status code output on LAD3—LADO) and then to enable the
appropriate banks of memory for refresh. The refresh pseudo-address is in-
cremented after each DRAM-refresh cycle that completes normally (that is,
does not return the retry completion code on the LRDY and BUSFLT pins). If
arefresh cycle does return a retry condition, the refresh cycle is automatically
rescheduled and the same address is output.

You can use the refresh pseudo-address to determine which banks of memory
will be refreshed. Or, you can use it as the refresh address required by DRAMs
that support RAS-only refresh. The TMS34020 does not directly support RAS-
only refresh; if you use RAS-only refresh, you must use external hardware to
prevent activation of the CAS strobes.

Reset clears the REFADR register to 0; no refreshes are performed while the
RESET pin is held active low. However, if the RESET pin is held high while the
TMS34020 is still executing reset internally, DRAM refreshes are performed.
After RESET is taken high, no CPU-initiated memory cycles occur until 8
DRAM-refresh cycles are completed. This ensures that the DRAMs and
VRAMs in the system are initialized correctly.
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Source Address Register SADDR

register number: B0

Format
or
Description
Which instructions

use this register?

Example

SADDR contains the source array address for PIXBLTs. SADDR usually points
to the pixel with the lowest address in the source array. When the selected
starting corner is notthe upper left corner, the TMS34020 automatically adjusts
SADDR to point to the selected starting corner of the source array. This feature
allows you to handle overlapping arrays. (For PIXBLT L,L and PIXBLT L,M,L,
however, you must manually adjust SADDR to point to the starting corner.)

The TMS34020 treats the address in SADDR as an XY address or a linear
address, depending on the instruction using it.

During PIXBLT operations, SADDR is maintained in linear format. When the
PIXBLT completes, SADDR points to the starting location of the row that
follows the last row in the array. If a PIXBLT is interrupted, SADDR points to
the next word of pixels to be read.

Instruction SADDR'’s format and function
BLMOVE Linear; points to the beginning of the source array
FLINE, LINE Decision variable d = 2b — g, used for the line draw
PIXBLT B, L Linear; points to the beginning of the binary source array
PIXBLT B, XY
PIXBLT L, L Linear with special requirements when PBH = 1 or PBV=1; re-

PIXBLT L,M,L fer to the PIXBLT L,L discussion for a description of its unique
requirements

PIXBLT L, XY Linear; points to the beginning of the source array

PIXBLT XY, L XY; points to the beginning of the source array
PIXBLT XY, XY

TFILL XY, points to the first pixel in the line
VBLT Linear; points to the beginning of the source array

SADDR .set BO

Move XY value
15h, 8h into BO
Move linear value
AAAAh into BO

MOVI [08h, 015h], SADDR

MOVI 0000AAAAh, SADDR

Se Se N Ne

4-79



SCOUNT ' shift-Clock Counter Register

address: C000 02COh

Format

Description

4-80

During horizontal-blanking screen-refresh cycles, the video timing logic auto-
matically loads SCOUNT with the VRAM tap point (determined using the value
in DPYMSK). The tap point is automatically right-justified before it is loaded
into SCOUNT. SCOUNT is incremented by the rising edge of a pulse on the
SCLK pin. You should connect SCLK to the VRAM's serial clock signal so that
SCOUNT is incremented each time a bit of data is shifted out of the VRAM’s
serial register. This means that SCOUNT always contains the tap point of the
bit most recently shifted. When the VRAM s shift the last bit out of one half serial
register and start shifting bits from the other half serial register, SCOUNT over-
flows from all 1s to 0 and schedules a midline-reload screen refresh to transfer
the next half-row of VRAM into the half serial register not being shifted out.

Hold the SCLK pin at the inactive-low level throughout horizontal and vertical
blanking, when the VRAM serial registers are not shifting data.

Two separate asynchronous elements of the TMS34020 internal logic can
access SCOUNT:

d The midline-reload timing control logic, which runs synchronously to
SCLK, increments SCOUNT during the active regions of the screen (when
neither vertical nor horizontal blanking is active).

Lk The internal processor, which runs synchronously to the local clocks
LCLK1 and LCLK2, can access SCOUNT as an I/O register and can load
it with the VRAM tap point during horizontal blanking.

No synchronization between these subsystems is provided. SCOUNT can be
reliably read or written only while SCLK is held at the logic-low level. SCOUNT
is not typically read or written except during chip test.
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Set Horizontal Count Register SETHCNT

Format

Description

address: C000 0310h

_ programmable value for HCOUNT

If external horizontal or composite video is enabled (by clearing the HSD or
CSD bit, respectively, in DPYCTL), the video timing logic loads the value of
SETHCNT into HCOUNT when

Lk the logic detects an external horizontal-sync pulse on HSYNC, or
Ld the logic detects an external composite-sync pulse on CSYNC.

Setting HCOUNT to a programmable value rather than clearing it counteracts
delays inherent in the synchronization of external sync pulses and other exter-
nal system delays.

It takes 4 VCLK cycles from the time an external sync is detected at the appro-
priate sync input pin until its effects propagate to the video output pins. If
SETHCNT contains the value 4, then HCOUNT is set to 4 at the beginning of
the fifth VCLK cycle (thatis, 4 whole VCLK cycles) after the external sync pulse
is detected at the pins. This has the same effect as if HCOUNT were cleared
to 0 in the same VCLK cycle that the external sync signal went active low. If
the HTOTAL value matches the parameters of the external video source, then
HCOUNT=HTOTAL coincides with the beginning of the next external sync
pulse. This condition causes HCOUNT to be loaded with 0, and the internal
horizontal- and composite-sync pulses begin. As a result, any sync pins confi-
gured as outputs go active low on the same VCLK cycle as the external sync
signal, and internally generated video signals are synchronous to and aligned
with the external video signals.

This is especially useful if the TMS34020 is performing sync conversion. By
programming all the video timing registers to match the parameters of the
external video source, an external composite sync can be used to generate
horizontal- and vertical-sync outputs, or external horizontal and composite
syncs can be used to generate a composite-sync output.

Programming SETHCNT to a value greater than 4 causes the sync pins confi-
gured as outputs to change SETHCNT—4 VCLK cycles before the external
sync (or syncs) changes. This is useful if the system contains external clock
skews. Similarly, programming SETHCNT to a value less than 4 causes the
sync pins configured as outputs to change after the external sync (or syncs).
Do not set SETHCNT to a value less than 0.
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SETVCNT  Set Vertical Count Register

Format

Description

4-82

address: C000 0300h

If external vertical or composite video is enabled (by clearing the VSD or CSD
bit, respectively, in DPYCTL), the video timing logic loads the value of
SETVCNT into VCOUNT when

Ld the logic detects an external vertical-sync pulse on VSYNC, or

Lk the logic detects the first serration pulse in the external composite-sync
signal on CSYNC.

SETVCNT provides symmetry with the SETHCNT register. If you are using
interlaced video, program SETVCNT to 0. If you do not, the TMS34020 will not
be able to distinguish between external odd and even fields and may not
correctly synchronize to the external source.

For noninterlaced video, you can set SETVCNT to nonzero values. This
causes the internal vertical-blanking signal (visible externally on CBLNK/
VBLNK) and the internal vertical-sync signal (visible externally on VSYNC if
it is an output) to start and end an integral number of scan lines ahead of the
external vertical sync and blanking signals. Programming SETVCNT to »
causes the internal signals to be n scan lines in advance of the external signals.
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Source Pitch Register SPTCH

B-file register? | register number: B1

Format

Description

Example

linear bit address

SPTCH defines the linear difference between the starting addresses of adja-
cent rows of a source array. The TMS34020 uses the value in SPTCH to move
from row to row through the source array. SPTCH can have any value that is
a multiple of the current pixel size. Note that XY-to-linear conversion is most
efficient when SPTCH is a power of 2.

If you're manually converting an XY address to a linear address, you can use
the SETCSP instruction; SETCSP uses the SPTCH value to calculate the
source pitch conversion factor and loads the correct value into CONVSP. You
can then use CVSXYL to perform the conversion.

Instruction SPTCH'’s format
CVSXYL Linear; any value
PIXBLTs (all) Linear; any value
PIXT *Rs.XY, Rd Linear; any value
PIXT *Rs.XY, *Rd.XY Linear; any value
SETCSP Linear; any value

SPTCH .set Bl
MOVI 00001000h, SPTCH ; Power of 2

MOVI 00000900h, SPTCH ; 2 powers of 2
MOVI 00010AFCh, SPTCH ; Arbitrary value
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VCOUNT Vertical Count Register

Format

Description
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VCOUNT counts the horizontal lines in the display, and is used for generating
vertical and composite sync and blanking signals. VCOUNT increments on the
clock edge thatresets HCOUNT; ininterlaced video, VCOUNT also increments
on the clock edge after HCOUNT=HTOTAL/2. This causes VSYNC's falling
and rising edges to coincide with the falling edge of CSYNC or HSYNC (ininter-
laced video, some VSYNC transitions occur halfway between two HSYNC

pulses). If CBLNK/VBLNK is selected as VBLNK, this also applies to VBLNK.

Togenerate vertical sync and blanking signals, the video timing logic compares
VCOUNT to the values of VEBLNK, VSBLNK, VTOTAL, and VESYNC/2. In
interlaced composite video (when CSYNC/HBLNK s selected as CSYNC), the
full value of VESYNC is used to determine the end of the second equalization
region. When HCOUNT=HTOTAL (or HCOUNT= HTOTAL/2 in interlaced vid-
eo) and VCOUNT=VTOTAL simultaneously, VCOUNT is reset to 0 on the next
falling edge and VSYNC is driven active low. In external vertical- or composite-
sync video, VCOUNT is reloaded from SETVCNT when a falling edge is
detected on VSYNC, or when the first serration pulse is detected on CSYNC.

When CSYNC/HBLNK is selected as CSYNC, VCOUNT determines the type
of pulse output on this pin. If VESYNC<VCOUNT= VSBLNK, then CSYNC out-
puts ordinary horizontal-sync pulses that coincide with HSYNC. In interlaced
video, if VSBLNK<VCOUNT<VTOTAL or VESYNC/2<VCOUNT< VESYNC,
equalization pulses are generated on CSYNC. Equalization puises appear ev-
ery half line and are half the width of the pulses on HSYNC. Every other pulse
begins coincident with a pulse on HSYNC.

IfVTOTALLVESYNC/2, CSYNC generates serration pulses. HESERR defines
the length of these pulses. In noninterlaced video, they always begin coinci-
dent with a pulse on HESYNC. In interlaced video, they occur every half line,
so every other pulse begins coincident with a pulse on HSYNC.

Adisplay interrupt is generated when VCOUNT=DPYINT. You can use this to
coordinate software activity with the refreshing of selected lines on the screen.

Two separate, asynchronous elements of the TMS34020 internal logic can
access VCOUNT:

X The video timing control logic (which runs synchronously to VCLK) incre-
ments and clears or reloads VCOUNT while generating sync and blanking
signals.
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Vertical Count Register VCOUNT

[ The internal processor (which runs synchronously to LCLK1 and LCLK2)
can access VCOUNT as an I/O register.

The TMS34020 provides no synchronization between these subsystems.
VCOUNT can be reliably read or written only while VCLK is held at the logic-low
level. VCOUNT is not typically read or written except during chip test.
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VEBLNK Vertical End Blanking Register

address: C000 0020h

Format

Description
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VEBLNK is compared to VCOUNT to determine when the vertical-blanking
interval ends. The vertical-blanking interval ends when VCOUNT=VEBLNK
and either of these conditions is satisfied:

0 HCOUNT=HTOTAL or
[ HCOUNT=HTOTAL/2 in the interlaced even field.

In separate sync, the vertical-blanking signal is output on the CBLNK/VBLNK
pin, which is selected as VBLNK. In composite sync, CBLNK/VBLNK is
selected as CBLNK; in this case, CBLNK outputs the logical-OR of the internal
horizontal- and vertical-blanking signals. CBLNK is low if either horizontal- or
vertical-blanking is active internally.

Monitors typically require VEBLNK to contain a value less than VSBLNK and
greater than VESYNC/2.
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Vertical End Sync Register VESYNC

address: C000 0000h

Format

Description

VESYNC is compared to VCOUNT to determine when the vertical-sync pulse
ends and, in interlaced composite video, when the second equalization region
ends. The sync pulse ends when VCOUNT= VESYNC/2 and either of these
conditions is satisfied:

[ HCOUNT=HTOTAL or
0 HCOUNT=HTOTAL/2 in interlaced video.

The VSYNC output is driven inactive high to signal the end of the vertical-sync
interval.

Ininterlaced video, the second serration region ends if both of these conditions
are satisfied:

[ VCOUNT=VESYNC and
X HCOUNT=HTOTAL/2.

Monitors typically require VESYNC/2 to contain a value less than VEBLNK;
VESYNC'’s minimum value is 0.

In external vertical or composite video, you should load VESYNC with a value
such that the internal vertical-sync pulse ends before or at the same time as
the end of the external vertical-sync pulse or the end of the external serration
region. If the external vertical-sync pulse or the external serration region is still
active when the internal vertical-sync pulse ends, it causes VCOUNT to be
reloaded from SETVCNT, and the internal vertical-sync interval starts again.
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VSBLNK Vertical Start Blanking Register

address: C000 0040h

Format

Description
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VSBLNK is compared to VCOUNT to determine when the vertical-blanking
interval starts. Vertical blanking starts when VCOUNT=VSBLNK and either of
these conditions is satisfied:

&y HCOUNT=HTOTAL or
[ HCOUNT=HTOTAL/2 in the interlaced odd field.

Additionally, vertical blanking will start if the video timing logic detects an exter-
nal composite-sync pulse (when CSYNC is aninput) or a horizontal-sync pulse
(when HSYNC is an input).

In separate sync, the vertical-blanking signal is output on the CBLNK/VBLNK
pin, which is selected as VBLNK. In composite sync, CBLNK/VBLNK is
selected as CBLNK; in this case, CBLNK outputs the logical-OR of the internal
horizontal- and vertical-blanking signals. CBLNK is low if either horizontal- or
vertical-blanking is active internally.

Monitors typically require VSBLNK to contain a value less than VTOTAL and
greater than VEBLNK.
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Vertical Total Register VTOTAL

address: C000 0060h

Format

Description

VTOTAL defines the time at which the vertical-sync pulse begins. The video
timing logic compares VTOTAL to VCOUNT to determine when to start the ver-
tical-sync pulse. The vertical-sync pulse starts and VCOUNT is resetto 0 when
VCOUNT=VTOTAL and either of these conditions is satisfied:

[ HCOUNT=HTOTAL or
b HCOUNT=HTOTAL/2 in the interlaced video.

The internal vertical-sync pulse begins (if it was not already caused to do so
by either of the conditions above) when

La the video timing logic detects an external vertical-sync pulse (when
VSYNC is an input) or

LA the video timing logic detects the first external composite serration pulse
(when CSYNC is an input).

When this happens, VCOUNT is reloaded from the SETVCNT register.

The VSYNC output is driven low to signal the start of the vertical-sync interval.
The falling and rising edges of VSYNC coincide with the falling edge of CSYNC
or HSYNC (in interlaced video, some transitions of VSYNC occur halfway
between 2 HSYNC pulses).

Set VTOTAL to a value greater than VSBLNK. VTOTAL's maximum value is
65,535.
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WEND Window End Address Register

Format

Description

Which instructions
use this register?

Example

4-90

sign of Y coordinate sign of X coordinate

WEND defines the XY address of the most significant pixel within the rectangu-
lar destination clipping window. WEND must be valid for instructions that use
an XY destination address and a nonzero window option. The most significant
pixel is the pixel with the highest address within the window. For a screen with
the origin in the top left corner of the pixel array, this address corresponds to
the pixel in the lower right corner.

The X and Y portions of the address are signed values; WEND can be at any
position in any quadrant of the XY address space. It describes an inclusive pix-
el; that is, the pixel at the XY location in WEND is included in the window.The
value in WEND is used with WSTART, DADDR, and DYDX to preclip pixels,
lines, and pixel arrays. WEND is not modified by instruction execution.

Instruction WEND’s function
CPW XY address of most significant window corner
DRAV XY address of most significant window corner
FILL XY XY address of most significant window corner
FLINE, LINE XY address of most significant window corner
PIXBLT B, XY XY address of most significant window corner
PIXBLT L, XY XY address of most significant window corner
PIXBLT XY, XY XY address of most significant window corner
PIXT Rs, Rd.XY XY address of most significant window corner
PIXT Rs.XY, Rd.XY XY address of most significant window corner
TFILL XY address of most significant window corner
WEND .set B6

MOVI [040h, 0100h], WEND ; XY value (256,64)
; stored in WEND
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Window Start Address Register WSTART

Format

Description

Which instructions
use this register?

Example

t sign of Y coordinate sign of X coordinate

WSTART defines the XY address of the least significant pixel within the rectan-
gular destination clipping window. WSTART must be valid for instructions that
use an XY destination address and a nonzero window option. The least signifi-
cant pixel is the pixel with the lowest address in the array. For a screen with
the origin in the top left corner of the pixel array, this address corresponds to
the pixel in the upper left corner.

The Xand Y portions of the address are signed values; WSTART can be atany
position in any quadrant of the XY address space. It describes an inclusive pix-
el; that is, the pixel at the XY location in WSTART is included in the window.
The value in WSTART is used with WEND, DADDR, and DYDX to preclip pix-
els, lines, and pixel arrays. WSTART is not modified by instruction execution.

Instruction WSTART'’s function
CPW XY address of least significant window corner
DRAV XY address of least significant window corner
FILL XY XY address of least significant window corner
FLINE, LINE XY address of least significant window corner
PIXBLT B, XY XY address of least significant window corner
PIXBLT L, XY XY address of least significant window corner
PIXBLT XY, XY XY address of least significant window corner
PIXT Rs, Rd.XY XY address of least significant window corner
PIXT Rs.XY, Rd.XY XY address of least significant window corner
TFILL XY address of least significant window corner

WSTART .set BS

MOVI [040h, 0100h], WSTART ; XY value (256,64)
; stored in WSTART
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Chapter 5

Instruction Cache and Internal Parallelism

Most program execution time is spent on repeatedly executing a few main
procedures or loops. Program execution can be speeded up by placing these
often-used code segments into a fast memory. The TMS34020 uses a
512-byte, on-chip instruction cache for this purpose.

To further enhance execution speed, the TMS34020 can access several areas
of memory, including the cache, in parallel. Although the TMS34020 stores
code and data in a single memory space, the TMS34020’s internal parallelism
provides benefits that are often found in processors that use separate code and
data spaces.

This chapter includes the following topics:

Section Page
Cache information describes the 5.1 Cache Architecture ..................... 5-2
architecture and operation of the 5.2  Cache Replacement Algorithm . .. ......... 5-4
instruction cache. 5.3 CacheOperation .........cccvvnivnnnn.. 5-5
5.4 Performance with Cache Enabled
vs. Cache Disabled .................... 5-9
Internal parallelism describes how 5.5 Internal Parallelism ...........ccoeuvunnn.. 5-10

the TMS34020’s ability to
simultaneously access various
memory areas improves system
performance.
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Cache Architecture

5.1 Cache Architecture

Figure 5-1 illustrates cache organization.

Figure 5-1. TMS34020 Instruction Cache

address: g i

| SSA register 0 | subéegmeht
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| SSA register 1 ] subsegment

subsegment

| SSA register 2 f
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subsegment

SSA register 3
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Cache Architecture

Figure 5-2.  Segment Start Address

Only instruction words (memory words that the PC points to) can be accessed
from the cache. This includes

C¥ Opcodes

[ Immediate operands
L3 Displacements

L Absolute addresses

Instructions and data can reside in the same area of memory; therefore, data
may occasionally be copied into the instruction cache along with instruction
words. However, the TMS34020 cannot access data from the cache; all reads
and writes of data in memory bypass the cache.

The instruction cache contains 512 bytes of RAM for storing up to 128 long
(32-bit) words (this is equivalentto 256 6-bitinstruction words). Each instruc-
tion word in cache is aligned on an even long-word boundary.

As Figure 5-1 shows, the cache is divided into four 64-word segments. Each
cache segment may contain up to 64 instruction words of a 64-word segment
from memory. This memory segment is a block of 64 contiguous instruction
words, beginning at an even 64-word boundary in memory.

Each cache segment is further divided into 8 subsegments; each subsegment
contains 4 long-words (up to 8 instruction words). Dividing each segment into
subsegments reduces the number of word fetches required from memory
when fewer than 64 words of a memory segment are used.

Each of the 4 cache segments is associated with a segment start address
(SSA) register. Figure 5-2 shows how a long-word is partitioned into the com-
ponents used by the cache-control algorithm.

22 bits

nstructlon-word address

are always 0 .

address
uent

The 22 bits of the SSA register correspond to the 22 MSBs of the segment’s
memory address. These 22 MSBs are common to all 8 subsegments within a
segment. The nextthree bits (bits 6—8) identify one of the 8 subsegments. Bits
4, 5, and 6 identify one of the 8 instruction words within a subsegment. The 4
LSBs are always 0s because instructions are aligned on word boundaries.
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Cache Replacement Algorithm

5.2 Cache Replacement Algorithm

5-4

When the TMS34020 requests an instruction word from a segment that is not
in the cache, the contents of one of the 4 cache-resident segments must be
discarded to make room for the segment that contains the requested word. A
modified form of the least-recently-used (LRU) replacement algorithm is used
to select the segment to be discarded.

The LRU segment manager (part of the cache control logic) maintains an LRU
stack to track use of the 4 segments. The LRU stack contains a queue of seg-
ment numbers, 0 through 3. Each time a segment is accessed, its segment
number is moved to the top of the stack, pushing the other segment numbers
down as necessary to make room at the top. Thus, the number at the top of
the LRU stack identifies the most-recently-used segment and the number at
the bottom identifies the least-recently-used segment.

When a new segment must be loaded into cache, the least-recently-used
segment is discarded. The 8 P flags (described in Section 5.3) of the selected
segment are set to 0s, and the segment’s SSA register is loaded with the new
segment address. After the requested subsegment is loaded from memory, its
P flag is set to 1, and the requested instruction fetch is allowed to complete.

Following reset, all P flags in the cache are set to 0.
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Cache Operation

5.3 Cache Operation

5.3.1 Cache Hits

When the TMS34020 requests aninstruction word, it checks to see if the cache
contains the word. First, the processor compares the 22 MSBs of the instruc-
tion address to the 4 SSA registers. If the TMS34020 fins a match, it searches
for the appropriate subsegment. A present (P) flag, associated with each
subsegment, indicates the presence of a particular subsegment within acache
segment:

4 P=1indicates thatthe requested instructionword is in cache. This is called
a cache hit.

[ Ifthere is no match, or if there is a match and P=0, the instruction word is
not in cache. This is called a cache miss.

A cache hit means that the cache contains the requested instruction word. In
this case, the TMS34020 performs the following actions:

1) Performs a short (one machine state) access cycle to read the instruction
word from cache.

2) Moves the segment number to the top of the LRU stack, pushing the other
three segment numbers toward the bottom of the stack (assuming that this
segment was not the most recently used segment).

Because of pipelining, instruction fetches from the cache overlap completion
of preceding instructions. Thus, the overhead due to instruction fetches is
effectively 0.

5.3.2 Cache Misses

A cache miss means that the cache does not contain the instruction word.
There are two types of cache miss—subsegment miss and segment miss.

O Subsegment miss

The 22 MSBs of the instruction-word address match one of the 4 SSA
registers’ 22 MSBs; that is, the appropriate segment is in the cache. How-
ever, the P flag for the requested subsegment is not set. The TMS34020
performs these actions:

1) Readsinto cache the 8-instruction-word subsegmentthat contains the
requested instruction word.

2) Moves the segment number to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack (assum-
ing that this segment was not the most recently used segment).
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3)
4)

Sets the subsegment'’s P flag to 1.

Reads the instruction word from the cache.

Segment miss

The instruction word address does not match any of the SSA registers. The
TMS34020 performs the following actions:

1)
2)

3)

5)

Selects the least-recently-used segment for replacement; clears the P
flags of all 8 subsegments.

Loads the SSA register for the selected segment with the 22 MSBs of
the address of the requested instruction word.

Reads into cache the 8-instruction-word subsegment in memory that
contains the requested instruction word. This word is placed in the
appropriate subsegment of the least-recently-used segment. The
TMS34020 sets the subsegment’s P flag to 1.

Adjusts the LRU stack by moving the number of the new segment from
the bottom (indicating that it is least recently used) to the top (indicat-
ing that it is most recently used). This pushes the other three segment
numbers in the stack down one position.

Reads the instruction word from the cache.

5.3.3 Fetching Data into the Cache Following a Cache Miss

Following either type of cache miss, the TMS34020 loads 4 long-words into a
cache subsegment. The order in which the TMS34020 fetches these
long-words is determined by the position, within the 4 long-words, of the
opcode or immediate data that caused the cache miss.

Example 5-1.  Code Without Branches or Immediate Data

Consider code that starts at address 0 and continues to a high address (such as 010000h).
Assume that this code contains no loops or immediate data. When the TMS34020 begins to ex-
ecute this code, it jumps to the first opcode (at address 0) and finds that the opcode is notin cache.
So, itfills the first subsegment with the 8 opcodes that are in the first 4 long-words in memory. The
TMS34020 reads the data in this order:

15t read: 32 bits at address 020h (opcodes 2&3)  2M9 read: 32 bits at address 040h (ops 48&5)
3" read: 32 bits at address 060h (opcodes 6&7) 4 read: 32 bits at address 000h (ops 0&1)

Note that the TMS34020 does not read the words in the expected cyclic order—it reads the
long-word with the first opcode /ast, not first. This is the general case.
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Example 5-2. Code with Branches

As another example, consider the following code segment.

0001 00000000 5600 clr a0

0002 00000010 5684 clr a4

0003 00000020 56a5 clr ab

0004 00000030 56¢c6 clr a6

0005 00000040 c000 jruc next_subseg+48
00000050 0005

0006 00000060 0300 nop

0007 00000070 0300 nop

0008 00000080 next_subseg:

0009 00000080 0300 nop

0010 00000090 0300 nop

0011 000000a0 0300 nop

0012 000000b0 5673 clr b3

0013 000000cO 5694 clr b4

0014 00000040 56b5 clr b5

0015 000000e0 56d6 clr b6

0016 000000£0 56£7 clr b7

0017 00000100 loop:

0018 00000100 cOff jruc loop

This example jumps from the middle of the first subsegment to the middle of the second subseg-
ment. The first subsegmentis loaded into cache as described in Example 5—-1. The code executes
until the TMS34020 encounters the jump on line 5. At this point, control passes to the opcode at
address 0BOh. This opcode is not in cache, so the TMS34020 loads the next subsegment. The
4 long-words are loaded in cyclic order; the long-word containing the opcode at address 0BOh is
read last. The order of memory accesses is

1Stread: 32 bits at address 0COh 2nd read: 32 bits at address 0EOh
3 read: 32 bits at address 080h 4thread: 32 bits at address 0AOh

Even though the code jumps over the long-word at address 080h, this word is loaded into cache.

Example 5-3.  Code with Immediate Data

Some instructions have immediate data; for example,

movi OABCDABCDh, A0 (32 bits of

7
; immediate data)
4

move @OFFFFFF20h,@OEEEEEE00,0 (64 bits of

; immediate data)
Immediate data follows the opcode in the object code. If an opcode with immediate data is near
the end of a subsegment, the TMS34020 may encounter a cache miss when it attempts to access
the immediate data. The next subsegment is loaded with 4 long-words, in cyclic order, so that the
long-word containing the immediate data that caused the first cache miss is loaded in last.
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5.3.4 Self-Modifying Code

Avoid using self-modifying code; it can cause unpredictable results. When a
program modifies its own instructions, only the copy of the instruction that
resides in external memory is affected. Copies of the instructions that reside
in cache are not modified, and the TMS34020 doesn’t attempt to detect this.

5.3.5 Flushing the Cache

Flushing the cache sets it to an initial state, identical to the state of the cache
following reset: The cache is empty and all 32 P flags are cleared to 0.

You can flush the cache by setting the CF (cache flush) bit in the HSTCTLH
registerto 1. The CF bit retains the last value loaded until a new value is loaded
or until the TMS34020 is reset. The contents of the cache remain flushed as
long as the CF bit equals 1. All instruction fetches bypass the cache and are
accessed directly from memory.

Unless the cache is disabled, normal cache operation resumes when the CF
bit is cleared to 0.

One use for flushing the cache is to facilitate downloading new code from a host
processor to TMS34020 local memory. The host typically halts the TMS34020
during downloading by writing a 1 to HLT[HSTCTLH]. Before allowing the
TMS34020 to execute downloaded code, the host should flush the cache to
purge it of stale instructions.

For performance reasons, CF[CONTROL] should not remain set to 1 for long
periods. While CF=1, only 1 word is fetched at a time.

5.3.6 Disabling the Cache

Disabling the cache facilitates program debugging and emulation. The cache
is disabled by setting CD[CONTROL] to 1. While the cache is disabled, the
TMS34020 bypasses the cache and fetches all instructions from external
memory.

Setting CD to1 is similar to setting CF to 1. However, when CD=1 and CF=0,
data already in the cache is protected from change. When the CD bit is cleared
to 0, the prior state of the cache (before CD was set to 1) is restored. The
instructions in the cache are once again available for execution. If the cache
contents become invalid while CD=1, they can be flushed by setting CF to 1.

For faster execution in some time-critical applications, you may wish to manip-
ulate the CD bit to preserve code in the cache . For example, if an inner loop
just exceeds 512 bytes, most of the loop, but not all of it, can fit in the cache.
During execution of the few instructions that are not in the cache, you can set
the CD bit to 1 to prevent the TMS34020 from replacing the code in the cache.
In this instance, the loop’s execution speed is improved by eliminating the
thrashing of cache contents. Use this technique carefully; in some cases, itcan
negatively affect execution speed.
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Performance with Cache Enabled vs. Cache Disabled

5.4 Performance with Cache Enabled vs. Cache Disabled

When the instruction cache is disabled, the TMS34020 fetches instruction
words from external memory. Assuming no wait states are necessary, each
instruction fetch from external memory adds 3 machine cycles to the access
time. This is considerably slower than a program that uses the cache efficiently
(when each word in cache is used several times before it is replaced).

A less efficient use of cache occurs when words in cache are used only once
before they are replaced. This produces a cache miss every eighth word (even
in this case, operation is usually much better than operation when the cache
is disabled). With the cache enabled, the time penalty due to cache misses in
this case is .75 machine states per single-word instruction (compare this to 3
states when the cache is disabled), which is calculated as follows:

Lx 5 machine cycles are required to load 4 long-words (8 instruction words)
into cache from memory (in page mode).

[ 1 additional machine state is required to begin processing the instruction.

Ci Dividing the total of 6 machine states by 8 instruction words yields an aver-
age of .75 machine states per instruction word.

Performance with the cache enabled is nearly always better than performance
with the cache disabled. There are two exceptions:

L1 Ifthe code contains many jumps, only a portion of each subsegment may
be executed before control is transferred to another subsegment.

L& If aninner loop is larger than the cache, only a portion of the instructions
inthe inner loop can be contained in the cache at any time. Inthis situation,
you can improve performance by manipulating the CD bit as described in
Section 5.3.6.

While the cache is disabled, the TMS34020’s internal memory controller
fetches each instruction word from memory only as it is requested by the CPU.
This differs from operation with the cache enabled, in which case a cache miss
causes the entire 8-instruction-word subsegment containing the requested
instruction word to be loaded into the cache at once.
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Internal Parallelism

5.5 Internal Parallelism

Figure 5-3 illustrates the internal data paths associated with TMS34020
processor functions. The TMS34020 uses a single, logical memory space for
storing both data and instructions. However, internal parallelism provides the
TMS34020 with the benefits found in architectures that use separate data and
instruction storage (sometimes referred to as Harvard architectures). The abil-
ity to fetch instructions from cache in parallel with accessing data from memory
greatly enhances execution speed. Hardware parallelism allows the
TMS34020 to access these three storage areas simultaneously:

L3 Instruction cache :
[d Dual-ported, general-purpose register files A and B
[ External memory

Figure 5-3.  Internal Data Paths
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instruction
cache

general-
purpose
registers

The TMS34020 can access each storage area independently of the other two.
This allows the TMS34020 to perform the following actions in parallel during
a pair of machine states:

(3 1 external memory cycle
L4 2instruction fetches from cache
(4 4 reads and 2 writes to the general-purpose register files

The need to schedule conflicting internal operations can limit the TMS34020’s
ability to perform these actions in parallel. For example, an instruction that
requires the memory controller to perform a read must finish executing before
the next instruction can be executed. Figure 54 illustrates an example of inter-
nal parallelism.
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Figure 5-4.  Parallel Operation of Cache, Execution Unit, and Memory Interface
(a) Code

(b) Result

Figure 54 (a) shows the inner loop of a graphics routine; Figure 5—4 (b) repre-
sents execution of the code in (a). Figure 5—4 (b) shows three activities occur-
ring in parallel:

[X Instructions are fetched from cache.

Ld Instructions are executed through the general-purpose registers and the
ALU.

L The local memory interface controller performs memory accesses.

The memory controller accesses pixels while the ALU fetches instructions from
cache. The memory controller completes a write cycle while execution begins
on the next instruction.
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Chapter 6

Interrupts, Traps, and Reset

The TMS34020 supports 10 interrupts, including reset, and up to 65,536 soft-
ware traps. These interrupts and traps use a set of 32-bit vector addresses that
point to appropriate service routines. The TMS34020 also supports bus-fault
conditions and single-step execution through these vectors.

You'll find these topics on the following pages:

Section Page
Basic information includes a 6.1 RelatedSignals ....................... 6-2
summary of related signals and 62 Related RegiSters . ...........oeeueun... 6-2
registers, information about . T .
snabling & disabling interrupts, a list © Enabling an.d Plsabllng Interrupts ......... 6-6
of interrupt priorities, and a map of 64 Interrupt Priorities and Vector Addresses .... 6-7
the vector addresses. 6.5 InterruptProcessing .................... 6-9
6.6 Interrupting Instruction Execution .......... 6-13
Specific information describes the 6.7 External Interrupts1and2 ............... 6-15
various types of interrupts and an g g |nternal INErIUPLS « .« .« eevenneeennn. 6-16
application for the single-step
interrupt. 6.9 The Bus-FaultInterrupt ................. 6-19
6.10 Interrupting a Host Processor ............ 6-21
.11 Traps +ovvviiii i it iieneannann 6-21
612 Reset .....oiiiiiiiiiii it 6-22
6.13 An Application for Interrupts:

DebuggingCode ............coviin.n. 6-28



Related Signals / Related Registers

6.1

Related Signals

Several of the TMS34020’s pins request interrupts. Chapter 2 describes the
interrupt signals in detail; they are summarized below for your convenience.

Signals

Descriptions

/0

BUSFLT

HINT

6.2 Related Registers

Several of the TMS34020’s I/O registers provide you with control over inter-
rupts. (Chapter 4 provides detailed descriptions of all the I/O registers.) Some
registers contain bits that you must set to enable certain interrupts; others con-
tain bits that the TMS34020 or another device sets to identify an interrupt re-
quest.

6-2

is a bus-fault signal that tells the local-memory
controller that an error (or faulf) occurred on the
current bus cycle. BUSFLT operates in conjunc-
tion with the LRDY signal; if both BUSFLT and
LRDY are sampled high during a local-memory
cycle, a bus-fault interrupt is generated.

is the interrupt signal that allows the TMS34020 to
send aninterrupt request to a host processor. This
interrupt is activated by setting bits in the
HSTCTLL register.

are level-sensitive, active-low inputs. They allow
external devices to interrupt the TMS34020.

is the system reset signal. During normal opera-
tion, RESET is driven low to reset the TMS34020.

These registers control interrupt functions:

C

Q0 O O0QQ4d

The status register contains a bit that globally controls interrupts; it also
reflects the status of certain interrupts.

The INTENB register is the interrupt-enable register.

The INTPEND register is the interrupt-pending register.

The HSTCTLL register is a host-interface register that provides control

over general TMS34020-to-host and host-to-TMS34020 interrupts.

The HSTCTLH register is a host-interface register that provides control
over the nonmaskable interrupt, halt, and reset.

Note:

You can access I/O registers in the same manner as any other TMS34020
memory locations. You can access the status register with the GETST and
 PUTST instructions. ‘

Interrupts, Traps, and Reset



Related Signals

The remainder of this section describes these registers and tells you which bits
are associated with the interrupts. In the pictures of the registers, shaded areas
indicate bits that have no interrupt functions.

Status Register (ST)

31 26 25 22 21 0

WWWWWWWWWWWWN WWH WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW\
L T LT T L L LT LT T (LT g || L g g L g g L g ML Ll

e e e e BF| IX ' bt SS|IE 0

Note: For a complete illustration and description of ST, see Section 4.1, page 4-2.

B Setting IE (global interrupt enable) to 1 allows you to globally enable the inter-
bit 21 rupts that are controlled by the INTENB register. If IE = 0, then interrupts are
globally disabled; in this case, the values in the INTENB register have no effect.

Setting SS (single-step enable) to 1 causes a special interrupt to be generated
bit 22 after each instruction is executed. This allows you to single-step through a
program.

The TMS34020 sets IX (interruptible instruction executing) when it takes an
bit 25 interrupt at an interruptible point in an instruction. The TMS34020 uses IX to
ensure that instruction execution resumes correctly after returning from the in-
terrupt.

The TMS34020 sets BF (bus fault) when it takes a bus-fault interrupt. The
bit 26 TMS34020 uses this bit to ensure that instruction execution resumes correctly
after returning from a bus fault.

INTENB register address COOO 0110h
15 11 10 9
|Il|lll:l|1|l||:::;l ::::ll ::::;l ::::;"’::::;lll|'l|llll':::l|||':::;lll|:::ll|'“::;II' WVE l DIE lHIE EI'::::H"‘IHH
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T
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e
i’

i
L

"

|
! L

The INTENB register allows you to selectively enable or disable interrupts
(when |E=1).

WVE Setting WVE (window-violation interrupt enable) to 1 enables the window-
bit 11 violation interrupt.

IS  Setting DIE (display interrupt enable) to 1 enables the display interrupt.
% Setting HIE (host interrupt enable) to 1 enables the host interrupt.
Setting X2E (external interrupt 2 enable) to 1 enables external interrupt 2.
Setting X1E (external interrupt 1 enable) to 1 enables external interrupt 1.
bit 1
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INTPEND register address COOO 01 20h
15 11 10 9
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The INTPEND register identifies pending interrupts. A pending interruptis an
interrupt that was requested but has not yet been serviced.

wvp When the WVP (window-violation interrupt pending) bit equals 1, a window-
bit 11 violation interrupt is pending.

B When the DIP (display interrupt pending) bit equals 1, a display interrupt is
bit 10 pending.

L Whenthe HIP (hostinterrupt pending) bit equals 1, a host interrupt is pending.

X2E When the X2P (external interrupt 2 pending) bit equals 1, an external interrupt
bit 2 2 is pending.

milss Whenthe X1P (external interrupt 1 pending) bit equals 1, an external interrupt
1 1 is pending.

HSTCTLH register address: C000 0100h

9 8
(LY L L L T T T
||Il T T II Il |1| ]|l il ]|1 ||1 ||l ||l T L Ll ||I il ||| T g
it ] NMIM| NMI RST e e A e e e

[“luul“" T

(LTI
Tl
! .ﬂl"ll |I|’l]I it ﬂ

15
I HLT Fﬂ":::nl"'l:m‘ ol nI"", II|||Il::::::l'::::::l"Il:;:l"’::nll'l

Note: For a complete illustration and description of HSTCTLH, see Chapter 4.

The primary function of these bits is to allow the host processor to interrupt the
TMS34020; however, the TMS34020 is also able to write to these bits and may
therefore set them itself.

RST Setting the RST (reset) bit causes the TMS34020 to execute a reset.

XM The NMI (nonmaskable interrupt) bit allows the host processor to interrupt
bit 8 TMS34020 execution.

N The NMIM (NMI mode) bit specifies if the context of an interrupted program is
bit 9 saved when a nonmaskable interrupt occurs.

HLT A host processor can halt the TMS34020’s on-chip processor by setting the
bit 15 HLT (halt TMS34020 program execution) bit.

6-4 Interrupts, Traps, and Reset
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HSTCTLL register address: C000 00FOh
15 14 13 7 6—4 3 2—0

ity uwlll"lllll""|I|'"|||I"'“u'l:::;;\“l::;lil“lpu"'"'|I|"II||'|:::;;“Il::ill“llul'"lIIII'"""I"':::;I'":::;I"]::n INTOUT |MSGOUT| INTIN I MSGIN |

U"BRENl HBFI | HRYI I::::;1||I:::;ml:::;un“lluﬂ Pl /

I I L (STl
L oL

Note: For a complete illustration and description of HSTCTLL, see Chapter 4.

The MSGIN (message in) field buffers a 3-bit interrupt message from the host
Bits 0—2  processor to the TMS34020.

The host processor can set the INTIN (input interrupt) bit to 1 to generate an
Bit 3 interrupt request to the TMS34020.

The MSGOUT (message out) field buffers a 3-bit interrupt message from the
Bits4—6  TMS34020 to the host.

The TMS34020 can set the INTOUT (output interrupt) field to send an interrupt
Bit 7 request to the host processor.

The TMS34020 sets the HRYI (host retry interrupt) bitif a retry occurs on a host
Bit 13 access. If HBREN=1, setting HRYI sends an interrupt request (via HINT) to the
host processor.

The TMS34020 sets the HBFI (host bus-fault interrupt) bit if a bus fault occurs
Bit 14 on a host access. If HBREN=1, setting HBF| sends an interrupt request (via

HINT) to the host processor.

EEEl Whenthe HBREN (host bus-fault/retry interrupt enable) bit is set, setting HRY!
Bit15 or HBFI causes an interrupt request to be sent to the host processor.




Enabling and Disabling Interrupts

6.3 Enabling and Disabling Interrupts

Enabling an interrupt

Disabling an interrupt

The TMS34020 supports 10 interrupts; 6 of the interrupts must be enabled
before the TMS34020 can recognize them. These interrupts include

Single-step interrupt
External interrupt one
External interrupt two
Host interrupt

Display interrupt
Window-violation interrupt

oo

Note that only these 6 interrupts can be enabled or disabled; reset, bus fault,
NMI, and ILLOP cannot be disabled.

To enable the single-step interrupt, set the SS status bit to 1. The single-step
interrupt operates independently of the IE status bit.

To enable any of the other interrupts listed above (excluding the single-step
interrupt), follow these steps:

Step 1: Set the IE status bit to 1 (you can do this by executing an EINT
instruction).

Step 2: Set the appropriate bit in the INTENB register to 1:

To enable this interrupt: Set this INTENB bit:
external interrupt 1 X1E (bit 1)
external interrupt 2 X2E (bit 2)
host interrupt HIE (bit 9)
display interrupt DIE (bit 10)
window-violation interrupt WVE (bit 11)

To disable the single-step interrupt, clear the SS status bit to 0. The IE status
bit does not affect this interrupt.

To disable any of these other interrupts (excluding the single-step interrupt),
you can do one of two things:

Lh If the IE bit = 1, clear the appropriate bit in the INTENB register.

L3 Clearthe IE bit to 0 (You can do this by executing a DINT instruction). This
disables all five of these interrupts, regardless of the values inthe INTENB
register.

Interrupts, Traps, and Reset
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6.4 Interrupt Priorities and Vector Addresses

Table 6-1 lists the TMS34020 interrupts by priority. Figure 6—1 shows the
interrupts’ vector addresses.

Table 6-1.  Interrupt Priorities

Interrupt Priority Source Description

RESET 1 external/  Device reset. Taken when the RESET input signal is asserted low or when
internal  the RSTILHSTCTLHI bit is set.

BF 2 external  Bus-fault interrupt. External logic generates a bus-fault interrupt by
asserting the BUSFLT signal high; LRDY must also be high.

NMI 3 internal Nonmaskable interrupt. Setting NMIIHSTCTLH Ilgenerates a nonmask-
able interrupt.

HI 4 internal Host interrupt. The host generates this interrupt by setting INTIN
[HSTCTLLI

DI 5 internal Display interrupt. The TMS34020's video timing hardware generates the
display interrupt.

Wwv 6 internal Window-violation interrupt. The TMS34020's CPU generates a win-

dow-violation interrupt when a pixel lies either inside a window (windowing
mode 1) or outside a window (windowing mode 2).

INT1 7 external External interrupt 1. Asserting LINT1 low generates this interrupt.
INT2 8 external External interrupt 2. Asserting LINT2 low generates this interrupt.
SS 9 internal Single-step interrupt. When the SS status bit is set, this interrupt is gener-

ated after each instruction execution.

ILLOP 10 internal lllegal-opcode interrupt. The TMS34020 generates this interrupt when it
encounters an illegal opcode.

Notes: 1) Inorderforthe TMS34020 to recognize interrupts with priorities 4 through 8, you must set the |E status
bit.

2) Because only the hostcan set INTINTHSTCTLL]], Hl could be considered an external interrupt. Howev-

er, Hlis not generated directly from an input pin; in keeping with the other interrupts, it is listed as inter-
nal.

As Table 6—1 shows, RESET has the highest priority. If 2 interrupts are
requested at the same time, the highest priority interrupt is serviced first
(assumingitis enabled). The bus-fault condition is considered to be in the inter-
rupt priority chain, although it behaves differently from other interrupts.
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Figure 6-1.  Vector Address Map

Trap Number  Address Name Description
-32768 000F FFEOh
Application defined
-1 0000 0000h
T70 ~ " " FFFF FFEOh Reset Reset
1 FFFF FFCOh INT1 External interrupt 1
2 FFFF FFAOh INT2 External interrupt 2
3
4 Reserved for future
5 hardware or on-chip
6 interrupts
7
8 FFFF FEEOh NMI Nonmaskable interrupt
9 FFFF FECOh Host interrupt

-
o
m
m
m
il
mn
m
>
o
>

Display interrupt
Window-violation interrupt
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N —
mm
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Reserved for future
hardware or on-chip
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m m
m M
m T
m T
m m
m m
N b
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interrupts
15 FFFF FEOOh
16 FFFF FDEOh

Application defined
29 FFFF FC40h
30 FFFF FC20h llegal-opcode interrupt
31 FFFF FCOOh Application defined
32 FFFF FBEOh Single-step/Emulator
33 FFFF FBCOh Bus fault ’
34 FFFF FBAOh

Application defined

32767 FFFO 0000h

fe—32 bits —»|

Notes: 1) Traps —1 through —32,768 use the memory at the bottom of the address
space for vector addresses. Traps 0 through 32,767 use the memory atthe
top of the address space.

2) Traps 0 through 31 may be accessed by either a TRAP or TRAPL instruc-
tion.

3) Traps -1 through —32,768 and 32 through 32,767 are accessed only by
TRAPL.

4) Traps 3 through 7 and 12 through 15 are reserved for future interrupts.

6-8 Interrupts, Traps, and Reset



Interrupt Processing

6.5

Interrupt Processing

When an interrupt has been requested but has not yet been processed, it is
called a pending interrupt. If a pending interrupt is enabled (and no interrupt
with a higher priority is also pending), the TMS34020 accepts the interrupt at
the end of the current instruction cycle (or at the next interruptible point within
instruction execution). Figure 6-2 lists the actions that the TMS34020 takes
when an interrupt occurs.

Figure 6-2.  Actions Performed When the TMS34020 Takes an Interrupt

1)

2)

4)
5)

6)
7)

If necessary, the TMS34020 pushes onto the stack any temporary registers that the current
instruction is using. This allows the instruction to resume execution correctly upon return from
the interrupt.

a) Ifthe interruptis taken part-way through an interruptible instruction, the TMS34020 pushes
twenty-four 32-bit words. (If the SP is not word aligned when the interrupt is taken, the
TMS34020 may push another long word on as padding.)

b) If the interrupt is caused by a bus fault, the TMS34020 pushes thirty-one 32-bit words.
The TMS34020 pushes the PC onto the stack.

If necessary, the TMS34020 modifies the ST so that instruction execution can resume correctly
after returning from the interrupt.

a) Iftheinterruptis taken part-way through aninterruptible instruction, the TMS34020 sets the
IX bit.

b) If the interrupt is caused by a bus fault, the TMS34020 sets the BF bit.
The TMS34020 pushes the ST onto the stack.
The TMS34020 modifies the contents of the ST as follows:

LAY e L L
MLt L L L L (Lt
Lt .ml“'" u1‘"InI"'“ul'“Ilull'" F

T T
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The TMS34020 fetches the interrupt vector from external memory and places it into the PC.
The TMS34020 begins executing the instruction pointed to by the new PC value.

!

FSO FS1

ojomm

10000

When the first instruction of the service routine begins execution, the new
status register contents imply the following conditions:

Ch Allinterrupts (except BF, NMI, and reset) are disabled.
[d Field 0is 16 bits long and zero-extended.

[d Field 1is 32 bits long and zero-extended.

(2 Single-stepping is disabled.
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6.5.1

If a graphics instruction is interrupted, the TMS34020 does not save the B-file
registers used as implied operands (it doesn’'t push them onto the stack). If your
interrupt service routine needs to use these registers, the routine should first
push them onto the stack, then pop them from the stack before returning.

You may usually want an interrupt service routine to complete before allowing
any more interrupts. However, if you want to be able to interrupt a service
routine, the routine should

Step 1: Set the IE status bit to 1.
Step 2: Set the appropriate bits in the INTENB register.
The service routine can also load new field sizes, if required.

If you want to single-step through the interrupt service routine, you can do so
by setting the SS status bit.

Heturning from an interrupt Service Routine

Interrupt service routines should not assume anything about the state of the
stack except that the stack contains the PC, the ST, and possibly some extra
words (as outlined in Figure 6-2, item 1). The interrupt service routine must
return using a RETI or RETM instruction. Only these instructions pop the PC,
ST, and any extra words from the stack to their correct internal locations, there-
by enabling instruction execution to proceed from the point at which the inter-
rupt occurred. Note that RETS cannot be used, because it pops only the PC.

Figure 6-3.  Actions Performed When the TMS34020 Executes a RETI or RETM Instruction

1)

The TMS34020 pops the value of the ST from the stack.
The TMS34020 pops the value of the PC from the stack.

If necessary (as indicated by the IX and BF bits of the restored ST value), any extra words that
were pushed onto the stack are popped from it.

If the restored IE bit is 1, the TMS34020 takes one of the following actions, depending on the
instruction used:

LA RETI does not alter the restored value of IE. If another interrupt is pending, it is taken as
soon as RETI completes, before the TMS34020 can resume execution of the interrupted
program.

L2 RETMmasks |E during the last machine state of the return. This has the effect of not enab-
ling interrupts until one machine state after RETM completes, which means that even if
another interrupt is pending, the TMS34020 resumes execution of the interrupted pro-
gram. The interruptis then taken at the nextinterruptible point within the program. RETM is
used primarily with the single-step interrupt (see Section 6.13, page 6-28).

6-10
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The RETI and RETM instructions perform the actions described in Figure 6--3.
Provided the interrupt routine has not changed any of the values on the stack,
this restores the CPU to its state immediately prior to taking the interrupt. Under
no circumstances should you change the value of any of the additional words
that may have been pushed onto the stack.

If the cause of an interrupt remains when the TMS34020 completes execution
of RETI or RETM, the interrupt is taken again. When necessary, the interrupt
service routine should take the appropriate steps to clear the cause of the inter-
rupt. Consideration is given to this in Sections 6.7 to 6.9, which discuss each
of the interrupts in detail.

6.5.2 Interrupt Latency

The delay between when an interrupt request is made and when the
TMS34020 begins servicing the interrupt depends primarily on what activity
the TMS34020 is performing at the time. The delay can be broken down into
a number of smaller delays, which fall into four categories. These are listed
below.

[d Delay 1: Interrupt request recognition. This is the period between the
time the interruptis requested and the time the interrupt is recognized. This
is one machine state for interrupts generated synchronous to. the
TMS34020 (such as HI, NMI, and WV), and one to two machine states for
interrupts generated asynchronously to the TMS34020 (such as INTT,
INT2, and DI).

[d Delay 2: CPU response time. This is the time required for an instruction
that was already executing when the interrupt was recognized either to
complete or to reach the next interruptible point. This depends on the
instruction. The instruction timings in Chapter 15 provides details of the
delay possible for each instruction.

(2 Delay 3: Interrupt context switch. This is the time required to push the
PC, ST, and any extra words required onto the stack (as detailed in
Figure 6-2), and read the appropriate interrupt vector from memory.

(X Delay 4: Local memory traffic. Any other memory controller activity that
occurs while the CPU is completing the current instruction or performing
the context switch has an adverse effect on Delay 3, and affects Delay 2
if the executing instruction (such as a PIXBLT or FILL) performs many
local-memory cycles. You should determine what percentage of
local-memory bus bandwidth is taken up with screen refresh, DRAM
refresh, and host local-memory cycles, then increase the delay produced
by Delay 2 + Delay 3 by this amount.
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Table 6-2 summarizes these delays and gives some best- and worst-case
figures. Because the local-memory interface is typically the limiting factorin the
calculations, two worst-case conditions are described; one with 32-bit page-
mode memory, and the other with 16-bit non-page-mode memory. These
figures are intended only to give you some idea of the delay involved in servic-
ing aninterrupt. Obviously, otherfactors not discussed here could further delay
the interrupt: for instance, if another interrupt, which maintained IE=0 through-
out its service routine (disabling other interrupts), was being serviced at the
time the interrupt being considered here occurred. Inserting wait states into the
local-memory cycles also increase the delays. The precise effect of this is diffi-
cult to estimate, because not all the delays are determined by local-memory
interface performance.

Table 6-2.  Sources of Interrupt Delay

6-12

Latency (in states)

Delay Type Minimum Maximum A Maximum B
Interrupt recognition 1 2 2
CPU response time (note 3) 0 32 80
Interrupt context switch 12
J Interruptible instruction 48 129
[  Bus-faultinterrupt 55 157
Local memory traffic 0
[  Perscreen refresh 2 2
0  Per DRAM refresh 3 3
L3  Per host access 2 4

Notes: 1) Maximum A assumes 32-bit wide memory, which supports page mode.

2) Maximum B assumes 16-bit wide memory, which does not support page
mode, with no wait states.

3) This is for the worst-case instruction (PIXBLT XY, XY). Other instructions
are less. See Chapter 13, Assembly-Language Instruction Set, for more
details.

4) If both the host and the CPU request accesses as frequently as they can,
the memory controller priorities are arranged so that they each receive al-
ternative local-memory cycles.

Interrupts, Traps, and Reset
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6.6

Interrupting Instruction Execution

When an instruction is interrupted, instruction execution is suspended until the
interrupt routine completes. At this point, the instruction resumes an finishes
executing.

While an instruction is executing, the state of the instruction is stored in inac-
cessible internal registers. When an interrupt occurs, the contents of these
registers must be moved to memory before the TMS34020 begins executing
the interrupt routine, so that the instruction state can be restored when the in-
terrupt routine completes.

The following events take place when an instruction is interrupted.

Step 1: The IX[STI (interruptible instruction executing) bit is set to 1. This
indicates that the interrupt occurred while an instruction was execut-

ing.

Step 2: The contents of any internal temporary registers are pushed onto the
stack.

Step 3: The PC and ST are also pushed onto the stack.

Step 4: Control branches to your TRAP routine, which should use the MMTM
instruction to stack any register values that need to be preserved for
later use outside the trap routine.

Step 5: Atthe end of the TRAP routine, you should use the MMFM instruction
to restore the stacked register file values and execute a RETl instruc-
tion. (RETI marks the end of the TRAP routine.) Executing RETI
returns control to the interrupted program, popping the ST and PC
from the stack. When the IX bit is detected, the internal register val-
ues are also popped from the stack, and the interrupted instruction
resumes execution. RETI clears IX.

Note that the graphics instructions described in Chapter 12 may take several
thousand machine cycles to execute, depending on the size of the lines and
arrays involved. These instructions check for interrupts at regular intervals,
preventing delays to high-priority interrupts from becoming prohibitively long.
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6-14

Note:

1)

2)

3)

4)

IX is not set to 1 when a PIXBLT or FILL instruction is aborted as a result
of a window violation. In this case, returning from an interrupt routine
causes the TMS34020 to execute the instruction that follows the inter-
rupted instruction.

If a graphics instruction is executing when a bus fault occurs, the steps
described on page 6-13 take place. In addition, BF[ST] is set to 1. In this
case, executing RETI at the end of the bus-fault TRAP routine also clears
BF.

If the SP is not long-word aligned when an instruction is interrupted, then
the TMS34020 aligns the stack to expedite the interrupt sequence. RETI
always restores the SP to its original alignment.

The FPIXEQ and FPIXNE instructions are exceptions. These two instruc-
tions follow the same basic operation when interrupied, but they do not
preserve the contents of temporary registers (skipping step 2, listed on
page 6-13). Instead, these instructions reset their operands so that they
can resume execution when control returns from the interrupt.

Interrupts, Traps, and Reset
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6.7 External Interrupts 1 and 2

The TMS34020 supports two general-purpose interrupts that allow external
devices to interrupt the TMS34020. This is achieved by driving LINT1 or LINT2
low. The interrupts generated by requests to LINT1 and LINT2 are called INT1
and INT2. Table 6-3 lists these interrupts, the signals that generate them, and
the interrupt trap vectors.

Table 6-3.  External Interrupt Vectors

Name Input Pin Vector Address
INT1 LINTH FFFF FFCOh
INT2 LINT2 FFFF FFAOh

Each signal is dedicated to an individual interrupt, allowing 2 separate and
distinct external-interrupt requests. INT1 has a higher priority than INT2; if
LINT1 and LINT2 become active at the same time and both external interrupts
are enabled, INT1 is serviced first.

X1P[LINTPEND] and X2P[INTPEND] reflect the current state of the LINT1
and LINT2 inputs. A bit equals 1 if the corresponding request is active, 0 if it
is not. You can poll these bits to detect transitions at the interrupt inputs.

Once an external devices request an interrupt, the device should continue to
drive the interrupt signal low until the TMS34020 has started to execute the
interrupt service routine.

L4 If the device permits the interrupt pin to go inactive high before the routine
recognizes the interrupt, the request may be missed.

L& If the active level is maintained after the interrupt service routine com-
pletes, the interrupt is taken again.

How you ensure that the interrupt pin is held active until after the beginning of
the service routine depends on the application. However, two possibilities are

L The interrupt service routine writes to an external location to cause the
appropriate interrupt pin to be deactivated.

[ External hardware decodes the vector fetch for the interrupt from the
status code and vector address output on the LAD bus.

The TMS34020 assumes that signals input to LINT1 and LINT2 are asynchro-
nous to the TMS34020 local clocks; the TMS34020 synchronizes the signals
before it processes them. The TMS34020 samples the state of the LINT1 and
LINT2 inputs at each high-to-low transition of LCLK1 and updates the X1P and
X2P bits accordingly. The delay from the transition at the input to the corre-
sponding change in the X1P or X2P bit is from 1 to 2 states, depending on the
transition’s phase relationship to LCLK1.
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6.8 Internal Interrupts

Table 6—4 summarizes the internal interrupts.

Table 6-4. Interrupts That are Associated with Internal Events

Name Function Trap # Vector Location
NMI Nonmaskable interrupt 8 FFFF FEEOh
HI Host interrupt 9 FFFF FECOh
DI Display interrupt 10 FFFF FEAOh
Wwv Window-violation interrupt 11 FFFF FE80h
SS Single-step interrupt 32 FFFF FBEOh
ILLOP lllegal-opcode interrupt 30 FFFF FC20h

If more than one interrupt is pending, the interrupts are serviced according to
the priorities listed in Table 6-1 (page 6-7).

6.8.1 The Nonmaskable Interrupt (NMI)

The nonmaskable interrupt occurs when a 1 is written to NMI[THSTCTLH] (this
is normally done by a host processor). This interrupt cannot be disabled and
always occurs as soon as possible following the request. The NMI is delayed
only for completion of an instruction already in progress, or until the next inter-
ruptible point of an interruptible instruction (such as a PIXBLT) is reached.

NMIMI[HSTCTLH] (NMI mode bit) determines whether context information is
saved on the stack when a nonmaskable interrupt occurs:

Ld IfNMIM =0, the PC and ST are pushed on the stack before servicing the
interrupt.

L3 If NMIM = 1, nothing is saved on the stack before servicing the interrupt.

The TMS34020 automatically clears the NMI bit when it takes the interrupt, so
there is no need for the interrupt service routine to do this.

6.8.2 The Host Interrupt (Hl)

6-16

The host interrupt occurs when a 1 is written to INTIN[HSTCTLLI, providing
that Hl is enabled (HIE=1). Only the host processor can do this; the CPU
cannot write a 1 to INTIN. The host interrupt is serviced as soon as possible
following the request.

The MSGIN[HSTCTLL] bits provide a mechanism for specifying the action
taken by the host interrupt; by checking the value of MSGIN at the beginning
of the interrupt routine, you can branch into one of up to eight different proce-
dures. The host can write to MSGIN wheniit sets INTIN. Only the host can write
to these bits; a write by the CPU has no effect.
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Before returning from the interrupt, the service routine must clear INTIN. This
is the only way INTIN can be cleared, because the host cannot write a 0 to
INTIN. Clearing HIPLINTPEND] does not clear the interrupt.

6.8.3 The Display Interrupt (DI)

The display interrupt coordinates processing activity with display refreshes.
The display-interrupt request becomes active when a particular display line,
specified in the DPYINT register, has been output to the monitor screen. At the
start of each horizontal blanking period, the VCOUNT register is compared to
the DPYINT register. When the vertical-count value in VCOUNT has reached
the value in DPYINT, the TMS34020 generates a display interrupt request. If
enabled, the interrupt is taken.

Before returning, the display interrupt service routine should clear
DIPLINTPENDI] so that the interrupt isn't taken again.

6.8.4 Window-Violation Interrupt (WV)

The window-violation interrupt may occur when the TMS34020 is executing a
graphics operation and windowing option 1 or 2 is selected. W[CONTROL]
defines the window-checking option. WVP[INTPEND] is set if

W=1 and an attempt is made to write a pixel inside the specified window, or
W=2 and an attempt is made to write a pixel outside the specified window.

Before returning, the window-violation interrupt service routine should clear
WVP[INTPEND] so that the interrupt is not taken again.

6.8.5 The Single-Step Interrupt

The single-step interrupt provides a mechanism for executing instructions one
at atime. This is useful when developing and debugging new programs. While
SS=1, aninterrupt is generated after each instruction is executed. Unlike other
interrupts, the single-step interrupt is not taken at interruptible points within an
instruction, only on instruction boundaries.

The single-step interrupt service routine should use the RETM instruction to
return. This allows the next instruction to be executed before the interrupt is
taken again. If RETI is used, the single-step interrupt is taken again as soon
as the RETI completes, and the program is not executed at all; only the inter-
rupt service routine is executed.

Because SS is contained in ST, and ST is saved on the stack before servicing
the interrupt routine, and then restored afterwards, the only methods for clear-
ing the SS bit are

[ To modify the value of the ST on the stack during the single-step service
routine, so that when the ST is restored by RETM, SS is cleared.

[d To single-step a PUTST instruction within the program which clears SS.
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Note:

Allinterrupts clear the SS bit so that interrupt service routines execute normal-
ly (the instructions in the routine aren’t single-stepped). If you want to single-
step through an interrupt service routine, one of the routine’s first instructions
should set the SS bit.

6.8.6 lllegal-Opcode Interrupts
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The TMS34020 recognizes several reserved opcodes as illegal. If the
TMS34020 encounters one of these opcodes, it traps to vector number 30
(located at memory address FFFF FC20h). Anillegal opcode is similar in effect
to a TRAP 30 instruction. The illegal-opcode interrupt cannot be disabled.

For testing purposes, opcodes 0000h and FFFFh are reserved as illegal
opcodes on all TMS340 family devices. Other currently illegal opcodes may be
used for special functions on future TMS340 devices.

A typical cause of an illegal-opcode interrupt is that the program being
executed is corrupted (perhaps because insufficient stack space was
allocated). If you wish to resume execution of the program, the interrupt service
routine should take whatever steps are necessary to remove the illegal opcode
from the program, and then flush the cache before resuming. If the cache is
not flushed, the illegal opcode is executed again, because it is still present in
the cache.
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6.9 The Bus-Fault Interrupt

The bus-fault interrupt provides a mechanism by which the TMS34020 can be
interrupted by its local memory system. This allows correction of an error that
occurred during an access to a particular location. The precise locations (or
groups of locations) within the local-memory cycle that can generate a bus fault
depend entirely on the application. Here are some examples of the use of the
bus-fault mechanism:

[ Itcanindicate that the TMS34020 is attempting to access invalid areas of
memory.

(A It can indicate that the TMS34020 is attempting to access protected
devices.

Ld It can indicate that the TMS34020 is attempting to access an area of
memory implemented as virtual memory space that is not currently
mapped into the physical memory.

A bus fault may be generated as one of the options for ending a local-memory
cycle. Asserting the BUSFLT and LRDY pins high at the rising edge of LCLK2
during the data subcycle causes a bus fault to occur. This is discussed in detail
in Section 8.6, Ending a Local-Memory Cycle (page 8-12). Bus faults can be
generated on virtually all types of local-memory cycle. However, a bus-fault in-
terrupt is generated only if the local-memory cycle was initiated by the CPU.

6.9.1 Activity During a Bus-Fault Interrupt

Unlike any other interrupt, a bus fault does not occur at an instruction boundary
or at an interruptible point within an instruction. By definition, it occurs during
an instruction and must be serviced before program execution can continue.
However, the pipelining of data between the CPU and the memory controller
means that when a bus fault occurs on a memory cycle, the CPU may already
be requesting the next memory operation. If this is the case, the CPU will have
discarded the information relevant to the bus-faulted memory cycle. Because
of this, the CPU cannot stack information relating to the bus-faulted access,
and so the memory controller must save its own state at the time of the
bus-faulted access. This means that the sequence of events when a bus fault
occurs is slightly different from other interrupts:

1) Thememory controller saves the value ofthe LAD bus from the bus-faulted
cycle in the 32-bit BSFLTD register.

2) The memory controller saves its own state in BSFLTST.
3) The memory controller generates a bus-fault interrupt to the CPU.

4) The CPUrespondstothisinterruptimmediately (within one machine state)
and proceeds to push its state onto the stack as outlined in Figure 6-2.
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The bus-fault service routine should start from the address stored at the
bus-fault vector (address FFFF FBCOh). The interrupt service routine should
take the action necessary to clear the cause of the bus fault. Upon returning
from the bus-fault routine, the following actions occur:

1) The CPU restores its state from the stack as outlined in Figure 6-3.
2) The CPU signals the memory controller to resume normal execution.

3) The memory controller restores its state to that of the bus-faulted access
from the BSFLTST register.

4) The memory controller restarts the faulted access. If the access was a
write, the data stored in the BSFLTD register is driven out on the LAD bus
during the cycle.

If you do not want to restart the memory cycle that was originally bus-faulted,
your interrupt service routine should write FFFFh to the BSFLTST register.
This causes the memory controller to restore its inert state (no local-memory
accesses pending). Do not, under any circumstances, modify the BSFLTST
register to any other value; doing so causes unreliable operation..

6.9.2 Bus Fault System Considerations
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Because the memory controller saves the state of the bus-faulted memory
access in the BSFLTD and BSFLTST 1/O registers, and not on a stack, you
should ensure that bus faults cannot be generated when accessing the system
stack. If a bus fault occurs while the CPU is pushing its state onto the stack
before servicing the bus-fault interrupt (or popping its state off the stack after
returning from the bus-fault interrupt), the state of the original bus-faulted
memory cycle is lost.

If it is possible for a bus fault to occur while you are executing the bus-fault
service routine, you should ensure that one of the first operations performed
by the service routine is to push the BSFLTD and BSFLTST registers onto the
stack. These should be restored before returning from the bus fault. Care
should be taken to ensure that any other interrupts which could occur before
the service routine has stacked these registers (such as an NMI) cannot
access locations that could generate a bus fault.
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6.10 Interrupting a Host Processor

6.11 Traps

The TMS34020 has an output pin dedicated to interrupting a host processor.
The TMS34020’s CPU can interrupt the host by writing a 1 to INTOUT
[HSTCTLLI. When this occurs, the HINT pin is asserted active low. It remains
at this level until INTOUT is cleared. Only the host can clear INTOUT; only the
TMS34020 can set it.

The MSGOUT[HSTCTLL] bits provide a mechanism for specifying the action
taken by the host when it takes the interrupt; by reading the value of MSGOUT
at the beginning of the interrupt routine, the host can branch into one of up to
eight different procedures. The CPU can write to MSGOUT when it sets
INTOUT. Only the CPU can write to these bits; a write by the host has no effect.

In addition, provided that HBREN[HSTCTLL] (host bus-fault/retry interrupt
enable) is set, HINT is driven low whenever a retry or bus fault occurs during
a host-initiated local-memory cycle. When one of these situations arises, the
TMS34020’s memory controller sets either HRYITHSTCTLL] (host retry inter-
rupt) or HBFITHSTCTLLI (host bus-fault interrupt). HINT remains active until
the host clears the appropriate bit (HRY! or HBFI). Clearing HBREN also
causes HINT to be driven inactive.

The TMS34020 supports 65,536 software traps, numbered —32,768 through
32,767. Software traps behave similarly to interrupts, except that they are initi-
ated when the TMS34020 executes a TRAP or TRAPL instruction. The TRAP
instruction provides access to traps 0—31 by using a single 16-bit instruction
word. The TRAPL instruction allows access to all 65,536 traps. Unlike an inter-
rupt, a software trap cannot be disabled.

When the TMS34020 executes a TRAP or TRAPL instruction, it performs the
same sequence of actions that it performs for interrupts. All traps except trap
0 push the status register and the PC onto the stack. Trap 0 is similar to a hard-
ware reset because it does not push the status register or PC onto the stack;
itdiffers from a hardware reset because itdoes not setthe TMS34020’s internal
registers to a known initial state. Trap 8 is similar to an NMI interrupt, except
that NMIM[HSTCTLH] does not affect instruction execution. The status regis-
ter and PC are stacked unconditionally when trap 8 is executed.

A 32-bit vector address is associated with each software trap. Here’s how you
determine the vector address for a trap number r:

L If n =0 through 32,767, subtract 32» from FFFF FFEOh.
[ If n=—1through —32,767, subtract 32 from —32n.

Figure 6—1 on page 6-8 shows the vector addresses for the software traps.
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6.12 Reset

Reset is the highest priority interrupt; it puts the TMS34020 into a known initial
state. There are two ways to invoke reset.

L2 Assert an active-low level on the RESET pin. At power-up, RESET
should always be asserted for a minimum of forty local clock periods after
power levels have become stable. At other times, you may reset the
TMS34020 by asserting RESET for a minimum of four local clock periods.

(4 Writea1to RST[HSTCTLH]I. This achieves the same result as asserting
the RESET pin, but without affecting any other devices in the system to
which the RESET pin may be wired. Reset should not be invoked in this
way at power-up. :

Unlike other interrupts and software traps, reset does not save the previous ST
and PC values on the stack. The value of the stack pointer just before a reset
may be invalid. Saving these values on the stack could corrupt valid memory
locations.

6.12.1 Activity During Reset

When reset is initiated, the TMS34020 takes 34 local clock periods to
completely initialize itself (40 cycles must be allowed at power-up because the
TMS34020 may be in an illegal state not achievable during normal operation).
Most of this time is spent clearing the I/0 registers, which are cleared at the
rate of two 16-bit registers per machine state. While the RESET pinis asserted,
the local-memory control signals are in the states shown in Table 6-5.

Table 6-5.  Initial State of Output Pins while RESET and Gl are Low
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Bidirectional Pins
Outputs Driven Outputs Driven Driven to

to High Level to Low Level High-Iimpedance
RAS HINT HRDY VSYNC
CAS3—CAS0 Ri1 CBLNK/VBLNK HSYNC
WE HOE DDIN CSYNC/HBLNK
TR/QE HDST RO LAD31—LADO
DDOUT RCA12—RCA0
ALTCH SF

Note: When Gl is high, all Gl-controlled pins are driven to high impedance. Gl-con-

trolled pins include RAS, CAS0—CAS3, WE, TR/QE, DDOUT, DDIN, ALTCH,
HOE, HDST, RCA0—RCA12, LADO—LAD31, and SF.

The specifications for certain DRAM and VRAM devices require that at
power-up the RAS signal be driven inactive-high for 1 millisecond after power
becomes stable. Aslong as RESET is maintained active, the TMS34020 drives
its RAS and CAS signals inactive-high. In general, holding RESET low for t
microseconds ensures that RAS remains high initially for t=(1 0—tz) microsec-
onds, where {; is one quarter of the local clock period.
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At times other than power-up, the TMS34020 may be in the process of reset-
ting itself while RESET is high. This is the case if reset was initiated by setting
the RST bit or by asserting RESET for less than 34 LCLK periods. If RESET
is high and the TMS34020 is internally resetting itself, the memory controller
performs consecutive DRAM-refresh cycles. This ensures that the DRAM
contents are maintained while the TMS34020 is reset.

The value of the REFADR register is output as a pseudo-address during each
DRAM-refresh cycle. REFADR is incremented after each DRAM refresh cycle.
However, if the DRAM refreshes start before REFADR is cleared, the address
output reverts to zero when this occurs, and then starts incrementing again.

6.12.2 Initial State Following Reset

The TMS34020 completes its reset procedure when RESET is deactivated, or
thirty-four local clock periods after the high-to-low transition of the RESET pin,
which ever occurs last. Immediately following reset, the TMS34020 is in the
following state:

[ Registers

B Alll/Oregisters are cleared to 0000h. The only possible exceptions to
this are HLTTHSTCTLH] (see Section 6.12.4), REFADR (which will
have incremented if DRAM refreshes were performed during reset),
and SCOUNT (if SCLK is oscillating during reset).

B The general-purpose register files A and B are uninitialized.
B The ST is set to 0000 0010h.
® The PC is uninitialized.

[ Cache
B The cache SSA (segment start address) registers are uninitialized.

B The cache LRU (least recently used) stack is set to the sequence 0, 1,
2, 3. This indicates that segment 0 is the most recently used, and seg-
ment 3 is the least recently used.

B Allcache P (present) flags are cleared. This indicates that the cache is
empty.

X The DRAM refresh-pending counter is set to 9.
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6.12.3 Activity Following Reset
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Immediately following reset, the memory controller begins normal operation.
At this time, the refresh-pending counter is set to 9. Four or more DRAM
refreshes take priority over any CPU memory request, so the memory control-
ler performs DRAM refreshes continuously until the pending counter counts
down to 3. At this point, any pending CPU memory request (in this case the
reset-vector fetch) is performed. Because reset sets the TMS34020 to incre-
ment the refresh-pending counter every 8 machine states, additional DRAM
refreshes are requested before the 9 counts down to 3. This results in a total
of 9 consecutive DRAM refreshes, which occur before any CPU-initiated
memory requests are performed. The remaining refreshes are performed
using the normal memory controller priority scheme.

This fulfills most DRAM/VRAM requirements that the DRAM/VRAM's RAS
pins (after being held inactive for 1 ms) are cycled a minimum of 8 times after
power-up before any memory accesses are made. This ensures that the
DRAMs/VRAMs are initialized for correct operation.

Note, however, that if a host requests access before the 8 DRAM refreshes
complete, the host request are performed. Thus, at power-up, the host should
not make any requests to DRAM memory until the 8 initialization cycles have
had time to complete.

If at other times, reset is initiated by setting RST[HSTCTLH] or by asserting
RESET in a manner that maintains the data in the DRAMs. There is no need
for the host to delay making a memory request, because the DRAMs will
already be initialized.

If you initiate reset by asserting RESET, the memory will be maintained if
RESET is not held low for longer than the maximum refresh interval less the
time taken for the TMS34020 to refresh the memories.

After reset completes and the 8 DRAM-refresh cycles are performed, the
TMS34020 either

L3 begins executing instructions (self-bootstrap mode), or
[ halts until the host clears HLT[THSTCTLH].

The level on the HCS pin just before RESET’s low-to-high transition selects
between these two modes. The TMS34020 remembers this information, so
that if resetis initiated via RST[HSTCTLH], the CPU is configured inthe mode
indicated at the most recent rising edge of RESET.
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6.12.3.1 Self-Bootstrap Mode

In self-bootstrap mode, the TMS34020 begins executing instructions immedi-
ately following reset. This mode is typically used in a system in which the reset
vector and reset service routine are contained in nonvolatile memory (such as
a bootstrap ROM). This type of system does not necessarily require a host
processor, and the TMS34020 may be responsible for performing host-proces-
sor functions for the system.

The TMS34020 is configured in self-bootstrap mode when the HCS pin is low
justbefore RESET’s low-to-high transition. The low level on HCS does not alter
the HLT bit, which was cleared to 0 during reset. Immediately following the end
of reset and the 9 DRAM-refresh cycles, the TMS34020 fetches the level-0
vector address (from address FFFF FFEOh) and begins executing the reset
interrupt routine.

Transitions of the HCS and RESET signals are assumed to be asynchronous
with respect to the TMS34020 local clock. HCS and RESET are internally syn-
chronized to the local clock by being held in latches for at least 1 clock period
before the TMS34020 uses them. The delay through the synchronizer latch is
from 1 to 2 local clock periods, depending on the phase of the signal transitions
relative to the clock. TMS34020 on-chip logic delays the HCS low-to-high
transition to ensure that it is detected after RESET’s low-to-high transition. The
level of the delayed HCS signal at this time determines the value of the HLT
bit. In systems without a host processor, this allows HCS and RESET to be
wired together without the need for any external logic to delay the transition on
the HCS pin.

6.12.3.2 Host-Present Mode

Host-present mode assumes that a host processor is connected to the
TMS34020’s host-interface pins. In this mode, the TMS34020 local memory
can be composed entirely of RAM. Following reset, the host processor may
download the initial program code, interrupt vectors, etc., before allowing the
TMS34020 to begin executing instructions.

Here’s how the TMS34020 is configured in host-present mode. The HCS input
is sampled on the trailing edge of RESET. If HCS is inactive high, internal logic
forces the HLT bitto a 1. In this fashion, the TMS34020 is automatically halted
following reset, and does not begin executing its reset service routine until the
host processor clears HLT to 0. In the meantime, the host processor can load
the memory and /O registers with the appropriate initial values before the
TMS34020 begins executing instructions. This may, for example, include
writing the reset vector and reset service routine into the TMS34020’s memory.

No additional external logic is required to force HCS high before RESET's
low-to-high transition. External decode logic is typically used to drive the HCS
input active low only when the TMS34020 is addressed by the host processor.
Assuming that the host processor is not actively chip-selecting the TMS34020
at the end of reset, HCS is high.
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6.12.4 System Configuration Following Reset
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Before any memory locations can be accessed, or instructions executed, the
TMS34020 must be configured in the correct addressing mode. Two different
aspects must be considered:

L4 Little-endian or big-endian addressing. This determines which bit within a
word is addressed as the least significant (see Chapter 3 more details).

L3 The base array size of the DRAMs and VRAMs in the system. This deter-
mines how logical address bits are mapped to the RCA bus to form the row
and column addresses used by DRAMs and VRAMs in the system (see
Section 8.16.2, page 8-51, for details).

The mode bits that determine these configurations are BEN[CONFIG]
(big-endian enable) and RCMO—RCM1[CONFIG] (RCA mode).

The TMS34020 provides a mechanism for ensuring that these bits are set
correctly following reset.

Reset normally clears BEN and RCM0—RCMH1, configuring the TMS34020 to
little-endian operation with a DRAM base array size of 64Kxn. Before these bits
are